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Abstract

We give several characterizations of bounded generalized Dedekind prime rings in terms
of invertible prime ideals and provide examples of PI generalized Dedekind prime rings in
which every maximal ideal is localizable.
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1 Introduction

In [2], one of the authors has introduced a new class of rings, called generalized Dedekind prime
rings (for short, G−Dedekind prime rings) and studied the structure of them (see also [3]).

The aim of this paper is to characterize bounded G−Dedekind prime rings in terms of
invertible prime ideals (without the assumption of maximal orders), which are, in a sense, a
generalization of [3, Theorem 2.6].

Let R be a prime Goldie ring with its quotient ring Q. For any (fractional) right R−ideal
I and left R−ideal J , let

(R : I)l = {q ∈ Q|qI ⊆ R} and (R : J)r = {q ∈ Q|Jq ⊆ R}

which is a left (right) R−ideal, respectively and

Iv = (R : (R : I)l)r and vJ = (R : (R : J)r)l
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which is a right (left) R−ideal containing I(J). I(J) is called a right (left) v−ideal if Iv = I
(vJ = J). In case I is a two-sided R−ideal it is said to be a v−ideal if Iv = I =v I. An R−ideal
A is said to be a v−invertible if v((R : A)lA) = R = (A(R : A)r)v. Note if A is v−invertible,
then (R : A)l = A−1 = (R : A)r and Ol(A) = R = Or(A), where A−1 = {q ∈ Q|AqA ⊆ A},
Ol(A) = {q ∈ Q|qA ⊆ A} and Or(A) = {q ∈ Q|Aq ⊆ A}. Of course, a v−invertible ideal is
invertible.
For any unexplained terminology we refer to [9].

2 Characterizations of bounded generalized Dedekind prime rings

Throughout this paper, R is a prime Goldie ring with its quotient ring Q. We start with the
following two lemmas which are more or less known.

Lemma 2.1. Let R be a prime Goldie ring and A be an R−ideal.

(1) For any right R−ideal I, (IA)v = (IAv)v and if A is invertible, then (IvA)v = (IA)v.

(2) If A is invertible and B is an R−ideal with B = Bv, then (BA)v = BA.

Proof: (1) See [7, Lemma 1.1].
(2) Suppose that (BA)v ⊃ BA. Then B = BAA−1 ⊂ (BA)vA

−1 ⊆ ((BA)vA
−1)v =

= ((BA)A−1)v = Bv = B, a contradiction. Hence (BA)v = BA follows.

Lemma 2.2. Let C be a reguler Ore set of a Noetherian prime ring R and S = RC . Let I be
a right R−ideal and J be a left R−ideal. Then

(i) (S : IS)l = S(R : I)l and (S : SJ)r = (R : J)vS.

(ii) (IS)v = IvS and v(SJ) = SvJ .

Proof: (i) It is clear that (S : IS)l ⊇ S(R : I)l. Let x ∈ (S : IS)l. Then xI ⊆ xIS ⊆ S. Since
I is a finitely generated as a right ideal, there is a c ∈ C with cxI ⊆ R, that is, cx ∈ (R : I)l and
so x ∈ c−1(R : I)l ⊆ S(R : I)l. Hence (S : IS)l = S(R : I)l. Similarly (S : SJ)r = (R : J)rS
follows. The second statements (ii) follows from (i).

A Noetherian prime ring is called a generalized Dedekind prime ring if it is a maximal order
and each v−ideal is invertible ([2]). Without the assumption on maximal orders we have the
following :

Proposition 2.3. For a Noetherian prime ring R the following conditions are equivalent :

(1) R is a G−Dedekind prime ring.

(2) Every prime ideal P of R with P = Pv (or P =v P ) is invertible.

(3) Every ideal A of R with A = Av (or A =v A) is invertible.
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Proof: (1) ⇒ (3) : Let A be a (fractional) R−ideal. It suffices to prove that vA = Av. Since
R is a maximal order, (R : A)l = A−1 = (R : A)r. Thus Av = (R : (R : A)l)r = (R : A−1)r =
A−1−1 and similarly vA = A−1−1. Hence vA = Av follows.
(3)⇒ (2) : This is a special case.
(3) ⇒ (1) : For each ideal A, we have R ⊆ Ol(A) ⊆ Ol(Av) which is equal to R, because
Av = (Av)v and is invertible by the assumption. Hence Ol(A) = R and similarly Or(A) = R,
that is, R is a maximal order and so it is a G−Dedekind prime ring.
(2) ⇒ (3) : Set A = {A : ideal of R|A = Av}. If A is a maximal element in A, then it is
a prime ideal by Lemma 2.1 (1) and so it is invertible. Assume that there exists an A ∈ A
which is not invertible. We may assume that A is a maximal one for this property. There is
an invertible prime ideal P with P ⊃ A and R = PP−1 ⊃ AP−1 ⊇ A. If AP−1 = A, then
A = AP . Consider the localization RP of R at P , which is a local principal ideal ring such that
{pnRP |n = 1, 2, ...} is the set of all proper ideals of RP , where PRP = pRP ([5]). Since ARP
is an ideal of RP ([10, (2.1.16)]), we have, for some n ≥ 1, pnRP = ARP = APRP = pn+1RP
which entails RP = pRP , a contradiction. Thus AP−1 ⊃ A and (AP−1)v = AP−1 by Lemma
1.1. Hence, by the choice of A, AP−1 is invertible and so is A, which is a contradiction. This
completes the proof.

From Proposition 2.3, we have the following corollary :

Corollary 2.4. Let R be a Noetherian prime ring. Suppose that each prime ideal contains an
invertible prime ideal. Then R is a G−Dedekind prime ring.

Proof: Let P be a prime ideal with P = Pv. Then there exists an invertible prime ideal P1 with
P ⊇ P1. It follows that P1(R : P )l ⊆ P1(R : P1)l = P1(R : P1)r = R since (R : P1)l = (R : P1)r.
Note that P1(R : P )lP ⊆ P1. If P ⊃ P1, then P1(R : P )l ⊆ P1 and (R : P )l ⊆ Or(P1) = R.
Thus Pv = R, a contradiction, that is P = P1 follows. Similarly if P =v P , then it is invertible.
Hence R is a G−Dedekind prime ring by Proposition 2.3.

If R is a bounded G−Dedekind prime ring, then the converse of Corollary 2.4 is also true :
Let P be a non-zero prime ideal of a bounded G−Dedekind prime ring and let c be a regular
element in P . Then cR contains a non-zero ideal A with A = Av. By Proposition 2.3 and [2,
Theorem 3.1], P contains an invertible prime ideal.
However the converse of Corollary 2.4 is not necessarily held as we will give a counter example
in the end of the paper.

A Noetherian prime ring is called a unique factorization ring (a Noetherian UFR for short)
in the sense of [6] if every non-zero prime ideal contains a nonzero principal prime ideal. In
[1], they defined another UFRs by using v−ideals : R is called a UFR if every prime ideal P
of R with P = Pv (or P =v P ) is principal. It follows that a UFR in the sense of [6] implies a
UFR in the sense of [1] and that the converse is not necessarily held (see [1]). However, every
bounded UFR in the sense of [1] implies a UFR in the sense of [6]. This is proved in the similar
way as in case of bounded G−Dedekind prime rings.

In [3] she gave new characterizations of G−Dedekind prime rings under the PI condition.
The following theorem is, in a sense, a generalization of [3, Theorem 2.6] to the case of bounded
G−Dedekind prime rings.
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Theorem 2.5. Let R be a bounded prime Notherian ring. Then the following conditions are
equivalent :

(1) R is a G−Dedekind prime ring.

(2) For every regular element c of R, cR and Rc contain a finite product of invertible prime
ideals, respectively.

(3) Every prime ideal of R contains an invertible prime ideal.
Moreover, if every maximal ideal of R is localizable then the conditions (1) − (3) are
equivalent to :

(4) For every maximal ideal M , the localized ring RM is a UFR in the sense of [6].

Proof: (1)⇒ (2) : Let c be a regular element of R. Then cR contains a non-zero ideal A. We
may assume that A = Av and it is a finite product of invertible prime ideals by Proposition 2.3
and [2, Theorem 3.1].
(2) ⇒ (3) : Let P be a prime ideal and c be a reguler element in P . Then there are a finite
invertible prime ideals P1, ..., Pn such that P ⊇ cR ⊇ P1...Pn and so P ⊇ Pi for some i.
(3)⇒ (1) : This follows from Corollary 2.4.

Now suppose that every maximal ideal of R is localizable.
(3)⇒ (4) : Let M be a maximal ideal of R and let P ′ be a prime ideal of RM . Then P = P ′∩R
is a prime ideal of R by [10, (2.1.16)]. There exists an invertible prime ideal P1 with P ⊇ P1.
Then P1RM is a prime ideal of RM which is invertible such that P ′ ⊇ P1RM . By [4, Lemma
3.4], P1RM is principal. Hence RM is a UFR in the sense of [6].
(4) ⇒ (1) : Let P be a prime ideal of R with P = Pv. Suppose (R : P )lP 6= R. Then there
exists a maximal ideal M of R such that M ⊇ (R : P )lP ⊇ P . Put P ′ = PRM , a prime ideal of
RM with P ′∩R = P . By Lemma 2.2, P ′v = PvRM = PRM = P ′ ⊇ P . Thus P ′ is principal, say,
P ′ = pRM for some p ∈ P and RM ⊇ p−1P . Since p−1P is a finitely generated right R−ideal,
there is a c ∈ C(M) with cp−1P ⊆ R, that is, cp−1 ∈ (R : P )l and c ∈ (R : P )lP ⊆ M , a
contradiction. Hence (R : P )lP = R. Furthermore RMvP =v (RMP ) =v (PRM ) = PRM since
PRM is principal, which implies vP ⊆ PRM ∩ R = P , that is vP = P . Thus, by left version
of the discussion above, P (R : P )r = R. Hence P is invertible and R is a G−Dedekind prime
ring by Proposition 2.3.

In [3] she did not give an example of a G−Dedekind prime ring in which every maximal
ideal is localizable. We may give such examples.

Let D be a commutative semi-local Dedekind domain with maximal ideals mi (1 ≤ i ≤ n)
and σ be an automorphism of D such that σ2 = 1 and σ(mi) = mi for each i. Put R = D[[x;σ]],
the skew formal power series ring over R in an indeterminate x. Then we have the following
properties :

(1) R is a Noetherian maximal order ([8, §1]).

(2) gl.dim R = 2 ([10, (7.5.3)]).
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(3) R is a G−Dedekind prime ring ([2]).

(4) Mi = mi + xR(1 ≤ i ≤ n) are only maximal ideals of R.

Proof: Since
R

Mi

∼=
D

mi
, it follows that Mi are maximal ideals of R. Suppose N is a maximal

ideal of R which is different from Mi. Then N +Mi = R for each i and so R = (N +M1)(N +
M2)...(N +Mn) ⊆ N +M1M2...Mn ⊆ R, that is, R = N +M1M2...Mn. Write 1 = a+ b, where
a = a0+a1x+a2x

2+... ∈ N and b = b0+b1x+b2x
2+... ∈M1...Mn, where b0 ∈ m1...mn ⊆ J(D),

the Jacobson radical of D. Thus we have 1 = a0 + b0 and a0 = 1− b0 ∈ 1 + J(D), that is, a0 is
a unit in D. This means a is a unit in R which is a contradiction.
In what follows, putM = m+xR and m is a maximal ideal ofD. Since σ2 = 1, the center Z(R) of
R is Dσ[[x2]], where Dσ = {a ∈ D|σ(a) = a}. Furthermore C(M) = {a = a0+a1x+a2x

2+ ... ∈
R|a0 ∈ D −m}.

Lemma 2.6. Under the same notation above, let a = a0 + a1x + a2x
2 + ... ∈ C(M). Then

there are b = b0 + b1x+ b2x
2 + ... ∈ R and c = c0 + c2x

2 + ... ∈ C(M) ∩ Z(R) such that ab = c

Proof: We define bi and ci in the following way :
Define b0 = σ(a0) and c0 = a0σ(a0) ∈ Dσ − mσ, because σ(m) = m, where mσ = Dσ ∩ m. For
a natural number n we define bn = σ(an) if n is even and bn = −an if n is odd. Furthermore,

we define cn =
n∑
k=0

akσ
k(bn−k).

In case n = 2j. We have

c2j =

j−1∑
k=0

(akσ
k(b2j−k) + a2j−kσ

2j−k(bk)) + ajσ
j(bj). (1)

If k is even then akσ
k(b2j−k) + a2j−kσ

2j−k(bk) = akσ(a2j−k) + a2j−kσ(ak) ∈ Dσ.
If k is odd, then akσ

k(b2j−k) + a2j−kσ
2j−k(bk) = akσ(−a2j−k) + a2j−kσ(−ak) ∈ Dσ.

Finally ajσ
j(bj) = ajσ(aj) ∈ Dσ if j is even and ajσ

j(bj) = ajσ(−aj) ∈ Dσ if j is odd. Hence
c2j ∈ Dσ follows.
In case n = 2j + 1. We have

c2j+1 =

j∑
k=0

(akσ
k(b2j+1−k) + a2j+1−kσ

2j+1−k(bk)). (2)

If k is even, then akσ
k(b2j+1−k) + a2j+1−kσ

2j+1−k(bk) = ak(−a2j+1−k) + a2j+1−kak = 0.
If k is odd, then akσ

k(b2j+1−k) + a2j+1−kσ
2j+1−k(bk) = aka2j+1−k + a2j+1−k(−ak) = 0.

Hence c2j+1 = 0 follows. Hence ab = c and c ∈ C(M) ∩ Z(R).

Lemma 2.7. Under the same notation as in Lemma 2.6, M is localizable and RM is a UFR
in the sense of [6].
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Proof: C = C(M) ∩ Z(R) = {c = c0 + c2x
2 + ... ∈ Dσ[[x2]]|c0 ∈ Dσ −mσ} is closed under the

multiplication and so it is an Ore set of R. For each a ∈ R and d ∈ C(M), there are b ∈ R
and c ∈ C with db = c. Hence ac = ca = dba, that is, C(M) is an Ore set of R. It is clear
that RM = RC . It is also obvious that R is a prime PI ring, because R is a finitely generated
Dσ[[x2]]−module. Since R is a G−Dedekind prime ring, it follows that RM is a UFR in the
sense of [6] by [3, theorem 2.6]

Summarizing the observation above, we have the following example :

Example 1. Let D be a commutative semi-local Dedekind domain and σ be an automorphism
of D such that σ2 = 1 and σ(m) = m for each maximal ideal m. Then R = D[[x;σ]] is a
G−Dedekind prime PI-ring in which each maximal M of R is localizable and RM is a UFR in
the sense of [6].

We can easily find a plenty of commutative semi-local Dedekind domains satisfying the
conditions in Example 1 in number theory and polynomial rings. We only give a simple example
in polynomial rings : Let K[x, y] be a polynomial ring over a field K of characteristic 6= 2 in
indeterminates x, y and σ be an automorphism of K[x, y] defined by σ(x) = −x and σ(y) = −y
so that σ2 = 1. Put D = K[x, y](x) ∩K[x, y](y), which is a semi-local Dedekind domain with
only two maximal ideals m1 = xD, and m2 = yD and σ(mi) = mi (i = 1, 2).

We end the paper with an example mentioned of after Corollary 2.4 ([6, Example 5.2]) : Let
R = K[t, y] be the polynomial ring over a field K of characteristic zero in indeterminates t, y
and δ = 2y ∂∂t + (y2 + t) ∂∂y , a derivation of R. Then the only height-1 prime ideals are p1[x; δ]

and p2[x; δ], where p1 = (y2 + t+ 1)R and p2 = tR+ yR which are only non-zero δ-prime ideals
of R. Since (p2[x; δ]v) = (p2)v[x; δ] = R[x; δ] (see the proof of [11, Lemma 3]), it follows that
p2[x; δ] is not invertible. Hence R[x; δ] is not satisfied the assumption in Corollary 2.4. By [1,
Proposition 3.1], R[x; δ] is a UFR in the sense of [1] and so it is a G−Dedekind prime ring.
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