

ISMPP International Conference on "Plant Health for Human Welfare"

(1st o 4th November, 2017)

Department of Botany University of Rajasthan, Jaipur (Rajasthan) India

Certificate

This is to certify that Prof./Dr./Ms./Mr. H. Manggis No. 35 D. Pwus Bau,	Indonesia has actively particip	pated and presented oral paper	poster titled
Marshological and biological		= and	their
pathogenicity in so	ection Plant dis	ease diagnostics	
during the ISMPP International Conferen	nce on "Plant Health for H	uman Welfare" organised by D	epartment of
Botany, University of Rajasthan, Jaipur	and Indian Society of Mys	ology & Plant Pathology, MPU	AT, Udaipur
from 1"to 4" November, 2017.	la l	W/L	

Or P.K.Chakrabarty President, ISMPP Dr Pokhar Rawal Secretary, ISMPP Prof Kailash Agrawal
Organizing Secretary &
Head, Department of Botany
University of Rajasthan, Jaipur

Morhological and biological characteristics of Fusarium species associated with ear rot disease of corn and their Pathogenicity

Darnetty ¹ Baharuddin salleh ²

¹Department of Plant Pests and Diseases, Faculty of Agriculture, Andalas University, Limau Manis 25163, Padang, Indonesia ²School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.

Corresponding author: E-mail: darnetty_06@yahoo.com

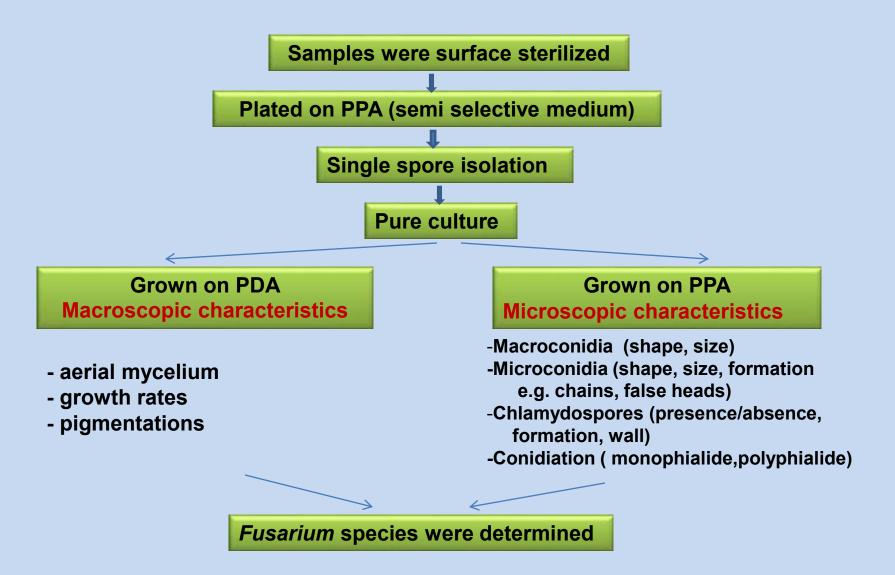
I. INTRODUCTION

- 1. Corn is one of the important crops used as foods and feeds
- Fusarium ear rot is the most common fungal disease on corn all over the world, including southeast Asia
- 3. The disease not only reduces the quantity and quality of corn yield but also affects animal and human health because of mycotoxin production by fungus *Fusarium* (FUM, MON, ZEN, BEA)
- 4. So far, the research on the disease has been done intensively in the temperate countries but not in the tropical countries, including Indonesia, Malaysia and Thailand.
- 5. The climate is the important factor that influences the growth and spread of Fusarium
- 6. The disease is caused by several species of *Fusarium*. *F verticillioides* formerly known as *F. moniliforme*, is the most frequently occurring species. Others such as *F. proliferatum* and *F. subglutinans* and *F. graminearum*

II. Objectives

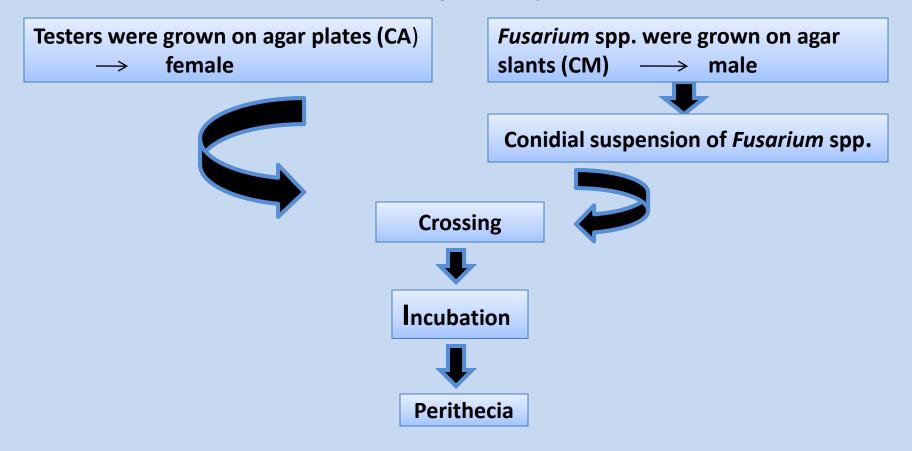
- 1. To identify *Fusarium* species from corn showing typical ear rot symptoms based on morphological characteristics (Morphological identification)
- 2. To determine the mating population (MPs) of *Fusarium* in Section Liseola i.e. based on their ability to produce perithecia (Biological identification)
- 3. to determine whether or not the identified *Fusarium* species isolated from corn showing typical ear rot symptoms are pathogenic.

III. MATERIALS AND METHODS

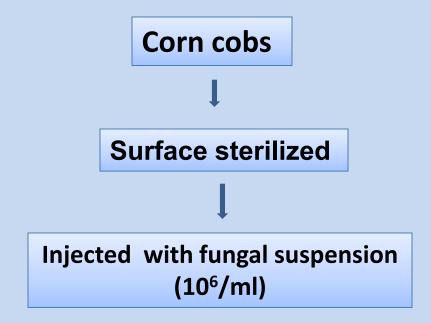

1. Fusarium strains

143 strains of *Fusarium* species associated with ear rot disease of corn were collected from different locations in Indonesia, Malaysia and Thailand

2. Mating Population testers


Nine Mating Population testers (MP-A to MP-I) were obtained from the Fusarium Stock Collection Section, School of Biological Sciences, USM

3. Morphological characteristics

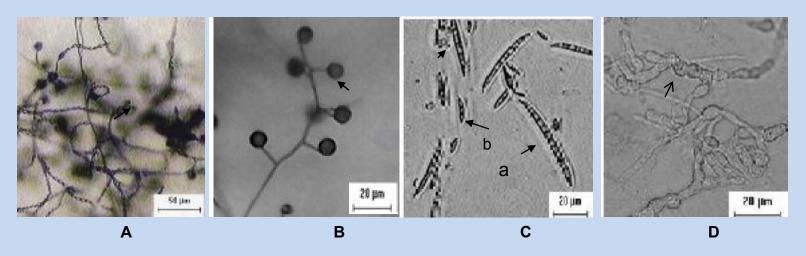


4. Mating populations (MPs)

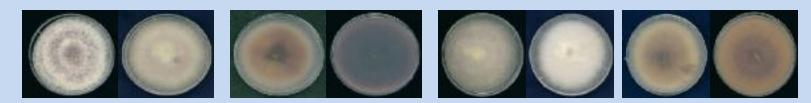
Before crosses performed, mating type *MAT-1* and *MAT-2 of Fusarium* strains had been diagnosed by molecular methods

4. Pathogenicity Test

IV. RESULTS

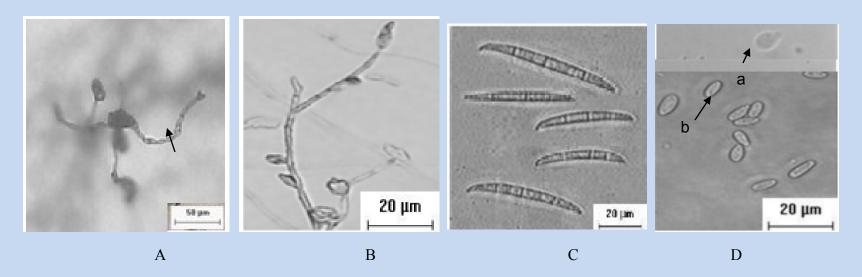

1. Morphological characteristics

143 Fusarium strains


8 Fusarium species

- 1. F. verticillioides (79, 55.24%)
- 2. F. proliferatum (24, 16.76%) Section Liseola (106 strains, 74.13%)
- 3. F. subglutinans (3, 2.1%)
- 4. F. graminearum (9.79%)
- 5. F. oxysporum (5.59%)
- 6. F. solani (0.7%)
- 7. F. semitectum (9.09%)
- 8. F. chlamydosporum (0.7%)

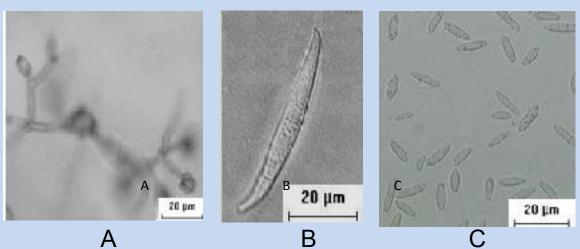
F. verticillioides



Morphological characteristics of *F. verticillioides*. A-B. Microcondia *in situ*, C.Macroconidia (a), Microconidia (b), D. Swollen hyphae

Colony features of some strains of *F. verticilioides*

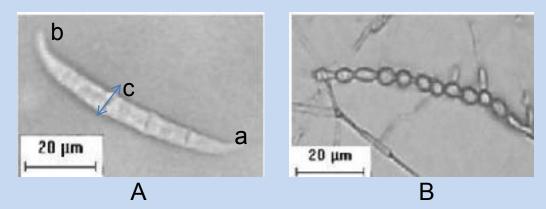
F. proliferatum



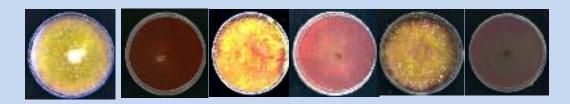
Morphological chcracteristicistics of *F. proliferatum*. A-B. Microcondia *in situ*, C. Macroconidia, D.Microconidia: Peer shape (a). Obovoid (b)

Colony features some strains of *F. proliferatum*

F. subglutinans

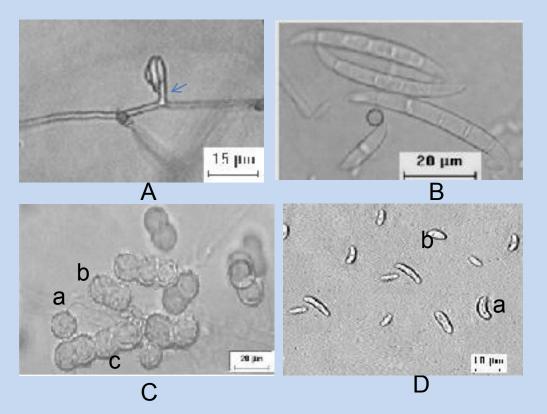


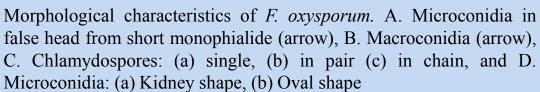
Morphological characteristics of *F. subglutinans*. A. Microconidia *in situ*, B. Macroconidia and C. Microcondia

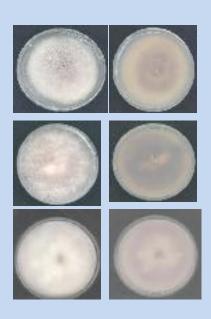


Colony features of some strains *F. subglutinans*

F. graminearum

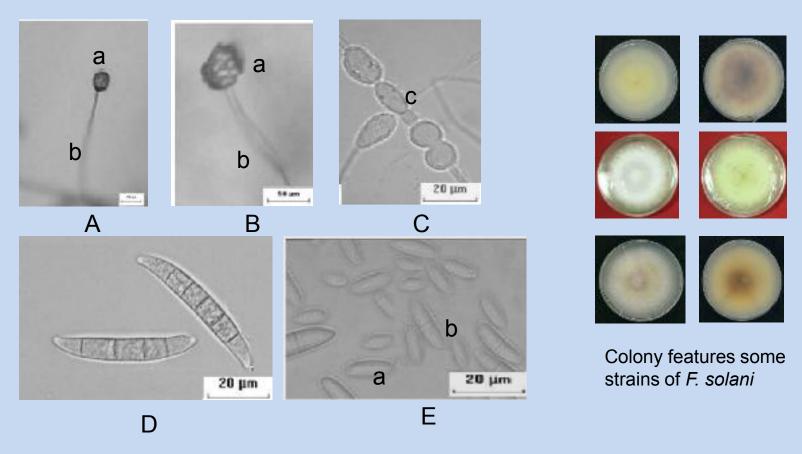


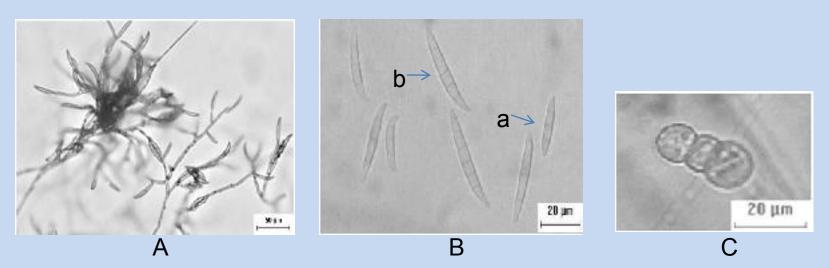

Morphological characteristics of *F. graminearum*. A. Macroconidium: (a) food-shaped basal cell, (b) tapered apical cell, (c) widest part of macroconidia at the upper region B. Chlamydospores in chain (arrow)



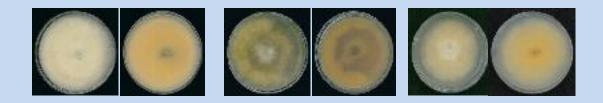
Colony features some strains of *F. gramnearum*

F. oxysporum




Colony features some strains of *F. oxysporum*

F. solani



Morphological characteristics of *F. solani.* (A-B) Microconidia in false head (a) with long monophialide (b), C. Chlamydospore in chain, D. Macroconidia and E. Microconidia; (a) 1 cell, (b) 2 cells.

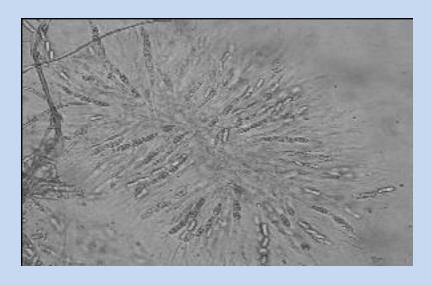
F. semitectum

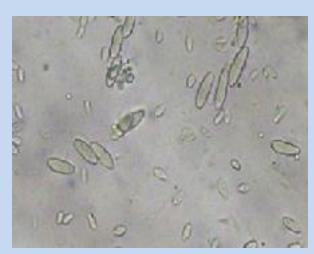
Morphological characteristics of *F. semiectum*. A. Mesoconidia *in situ*, B. Macroconidia (a). Mesoconidia (b), C. chlamydospores (arrow)

Colony features some strains of *F. solani*

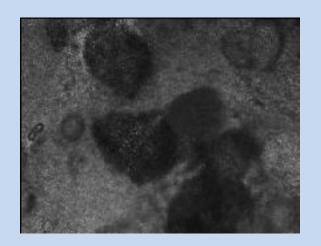
F. chlamydosporum

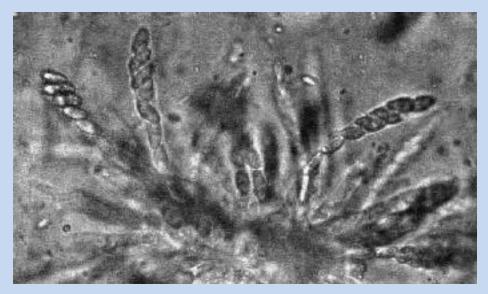
Morphological characteristics of *F. chlamydosporum*. A. Microconidia *in situ* (arrow), B. Macroconidia, C. Oval microconidia; (a) 1 cell, (b) 2 cells and D. Chlamydospores in pair


2. Mating Populations (MPs)

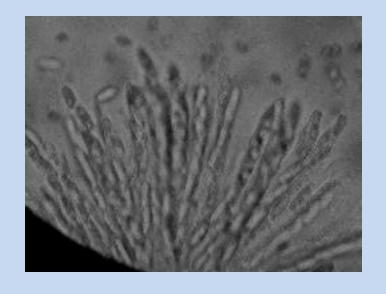

Fusarium spp	MP-A	MP-D	MP-E	ND
F. verticillioides	68			10
(78 strains)				
F.proliferatum		19		6
(25strains)				
F. subglutinans			3	0
(3 strains)				

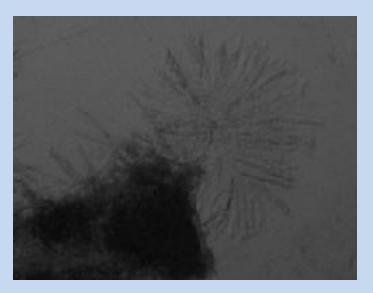
ND: Not Detected


MP- A *G. moniliformis*



MP- D *G. intermedia*





MP-E *G. subglutinans*

3. Pathogencity Test

Disease severity (DS) of corn ear rot at two weeks after inoculation with strains of *Fusarium* spp.

Fusarium species	Strain	Location	DS (%))
F. verticillioides	Q5569O	Sarawak, Malaysia	18.57	ef
	OLN0200O	East Java, Indonesia	20.03	def
	OLN0215O*	West Sumatra, Indonesia	22.00	de
	OLN0229O	North Sumatra, Indonesia	29.13	c
	HLN0155O	Tak Fa, Thailand	17.30	efg
	OLN0282O	West Sumatra, Indonesia	25.17	cd
F. proliferatum	S5273O	Sabah, Malaysia	11.43	hij
	HLN0151O*	Buri, Thailand	17.20	efg
	OLN0295O	West Sumatra, Indonesia	15.20	fgh
	OLN0280O	North Sumatra, Indonesia	9.17	ij
F. subglutinans	S4895O*	Sabah, Malaysia	7.33	jk
	OLN0319O	West Sumatra, Indonesia	13.20	ghi
	OLN0339O	West Sumatra, Indonesia	15.63	fgh
F. graminearum	OLN0301O	West Sumatra, Indonesia	98.67	a
	OLN0305O	West Sumatra, Indonesia	96.83	a
	OLN0311O	West Sumatra, Indonesia	94.27	a
	OLN0312O	West Sumatra, Indonesia	97.50	a
	OLN0313O	West Sumatra, Indonesia	96.60	a
F. oxysporum	R473O	Perlis, Malaysia	2.07	1
	OLN0382O	Aceh, Indonesia	1.57	1
F. solani	HLN0069O*	Takhli,Thailand	1.23	1
	OLN0228O	North Sumatra, Indonesia	0.93	1
F. semitectum	OLN0294O	West Sumatra, Indonesia	3.33	1
F. chlamydosporum	OLN0283O	West Sumatra, Indonesia	79.23	b NO
Control	OLN0320O	West Sumatra, Indonesia	0.00	1

Ear rot symptom on corn cobs at 2 weeks after inoculation with *F. raminearum*

V. CONCLUSSIONS

- 1. Ear rot disease on corn have been distributed in Indonesia, Malaysia and Thailand
- Eight Seven species of Fusarium with ear rot disease on corn were identified
 (F. verticillioides, F. proliferatum, F. subglutinans, F. graminearum, F. oxysporum, F.solani, F. semitectum, F. chlamydosporum.
- 3. Three mating population (MP-A, MP-D and MP-E) were discovered in Section Liseola
- 4. MP-A (*F. verticillioides*) was the most dominant species associated with ear rot disease of corn
- 5. F. graminearum is the most virulent and followed by F. chlamydosporum and F. Verticillioides

.

Thank you