

COPYRIGHT ISAHP 2013 PROCEEDINGS

Online 7 meeedings IZZDT 1558-57356

CI / Thashd fire Yersina 7 mceedings IEEE 1558-850X

Likewy of Congress Jukliestion Data Janesztings of the 13¹⁴ International Symposium on the Analytic Hersenky Janess for Multimizia Desirion Making Date 35 – 38 June, 3015 Hotel Istana, Kuala Lumpur, Malaysia

Copyzight () 2015 by Clearing Desinion Toundation on behalt at the 13th International Symposium on the Andylis Researchy Inseen

4933 Mawath Arenac Kitabangh, JA 19341 Jhane 443483148548 Jac: 44348314540 Contact Roman Saty managemetic eleminant, and

All Nights an averal. The generatings of the IZ AHP meeting of 2015 are smallable online at mentiodate. 10.

No pat of this publication may be appareduced, stand in active all system, or bansmitted, in any hear at by any means, destancie, mechanical, photocopying, researing, or otherwise, without the prior written promission of the publicher. Department of Euciness Administration Eulisysch of Sconomics and Management Escinces International Islamic University Malaysia Islan Gombale, 55100 Eucla Lumpur, Malaysia Emel: sialamitikium.estu.my.

CONTACTS

bZum: Zalutions No. 55-3, Jalan Wangsa Delima S Jusat Bander Wangsa Meju (BLEC) Zestion S, Wangsa Meju S5500 Zuala Lumpur, Helsysia Smelt melli hursin@buurdenisions.com

Back

Exit

AUGUST 4 – AUGUST 7, 2016 / LONDON, UK

International Symposium on the Analytic Hierarchy Process

✓ Follow @isahp2016

Divide, compara, aggrega et impera Divide, compare, pool and rule

ISAHP2013

Copyright of ISAHP 2013 Proceedings

Online Proceedings ISSN 1556-'8296

CD/Flashdrive Version Proceedings

ISSN 1556-830X

Library of Congress Publication of Data Proceedings of the 12th International Symposium on the Analytic Hierarchy Process for Multicriteria Decision Making Date : 23-36 June 2013 Hotel Istana, Kuala Lumpur, Malaysia

Copyright © 2013 by Creative Decision Foundation on behalf of the 12th International Symposium on the Analytic Hierarchy Process

4922 Ellsworth Avenue Pittsburgh, PA 15213 Phone : 412-621-6546 Fax : 412-681-4510 Contact : Rozann Saaty rozann@creativedecisions.net

All Right reserved.

No part of this publication may be reproduced, stored in retrieve systems, or transmitted, in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

© 2016 CREATIVE DECISIONS FOUNDATION. ALL RIGHTS RESERVED. / CONTACT US

Kuala Lumpur, Malaysia

About ISAHP

The International Symposium on the Analytic Hierarchy Process (ISAHP) takes place every two years. It brings together researchers, teachers and users of AHP and ANP to share their research and experiences in decision making. The symposium organizing and scientific committees represent all five continents, bringing the research, applications and perspectives of their areas of the world to this truly international forum.

The First International Symposium on the Analytic Hierarchy Process (ISAHP) was organized in Tianjin, China way back in 1988. The locations of the subsequent ten ISAHPs were Pittsburgh, USA; Washington DC, USA; Vancouver, Canada; Osaka, Japan; Bern, Switzerland; Bali, Indonesia; Hawaii, USA; Viña del Mar, Chile; Pittsburgh, USA; and Sorrento, Italy. The twelfth ISAHP is organized in Kuala Lumpur in 2013.

Petronas Twin Towers, Kuala Lumpur

Genting Highland, Malaysia

Edited & Published By

Edited and Compiled by:

Rafikul Islam Rozann Saaty Fabio De Felice Razali Husain

Published by:

Department of Business Administration Kulliyyah of Economics and Management Sciences International Islamic University Malaysia

> and bSure Solutions Sdn Bhd Kuala Lumpur, Malaysia

Prime Minister's Office, Putrajaya

Back

Our world today is more and more moving from fragmentation to integration becoming better unified and interactive in its economics, information sharing, travel, diplomacy, and in medical instruments and the importance of health and even in waging wars. There is more freedom for individuals to express themselves. It is by having a one world view that we will be able to make the best decisions. As more people express themselves, they need a way to make decisions together. Conflicts can be resolved rationally and peacefully if concessions can be traded off and by using the Analytic Hierarchy Process (AHP) which allows for the measurement of intangibles alongside tangibles, better decisions can be made about the tradeoffs. Seeing the big picture and being able to combine pieces of thinking, including positive and negative aspects of the problem, are made possible by combining analysis and synthesis scientifically in a manner that makes sense to our brain. In making group decisions, by building the model together we can incorporate different expertise and allow varying levels of authorities to be represented.

Overall change and the acceleration of change influences human psychology. We as individuals and as groups seem unable to cope with the unpredictable change and growing complexity in the world. Stress, uncertainty and fustration increase, minds are overloaded with information and knowledge fragments and values erode. Negative developments are consistently overemphasized, while positive ones are ignored. The resulting climate is one of nublism, anxiety and despair. While the wisdom gathered in the past has lost much of its validity, we don't have a clear vision of the future either. As a result, we need something new to guide our actions. We don't have works to embrace that lay out the society of the future and how it needs to be to accommodate both technological changes and worldwide integration of cultures and mores. That would be a big positive step to overcome of the challenges of today and tomorrow. Nationalistic politics also needs to be more world-oriented than for each country to increase its influence and power. But the world still does not operate with national freedoms and still works with many oppressive regimes. Decision making at such high levels could be valuable to inculcate in our educational system so people can better judge what the priorities should be.

According to the Swiss born French philosopher Jean-Jacques Rousseau (1712 - 1778), original ("Natural") man had no language, no abstract thought, no moral ideas and no society. He was self-centered but not cruel and felt compassion for his kind. Social living brought about radical psychological changes. Rousseau's view is that self-love turned into aggressive competitive hostility and a state of war among men. Social life is characterized by the alienation of men from nature, from each other and from authentic selves. The conflicting demands of instinctual nature are constantly at war with the impositions of society. The cure requires the fibrication of a new man and the proper political institutions. It is not enough formen to obey the laws. Their minds and wills must also be engaged.

Someone wrote about "Changing the World" as follows: Yesterday I was clever so I wanted to change the world. Today I am wise, so I want to change myself.

These proceedings have been edited by able scholars which makes them officially valuable like any professional journal. I wish all the participants an enriching symposium. The excellent efforts engaged by the international scientific committee and the local organizing to organize this symposium are laudable.

Next

Back

Prof. Dr. Thomas L. Saaty Honorary Founding Chairman

Praise be to Allah (subhānahu wata āla), the Most Beneficent, the Most Merciful for His divine bounty to organize and host the 12th International Symposium on the Analytic Hierarchy Process and Analytic Network Process (ISAHP 2013).

On behalf of the International Islamic University Malaysia and bSure Solutions Ehd, I would like to extend heattiest welcome to all the presenters and participants to the ISAHP 2013 and welcome also to Malaysia! We are deeply honoured by your strong support and patronage to ISAHP 2013 to make it a reality and hopefully a success.

The task of decision-making is intimately associated with our lives. It plays a very important role to shape our careers, to shape our lives, and consequently to shape the whole world. Right decisions made by politicians, government machineries, leaders-managers and the social activists will make the world better and worth-living. Researchers have tirelessly and continuously pursued developing methods that people can use to make meaningful decisions. Two such methods are Analytic Hierarchy Process or AHP and its extension Analytic Network Process or ANP developed by Professor Thomas L. Saaty of University of Pittsburgh, USA. Over the last five decades numerous people all over the world have used these methods to come up with their decisions. The methods have been embraced by social activists, business leaders, and politicians alike. The common goal has been to make this world a better place of living. Therefore, ISAHP 2013 theme "Better world through better decision making" has been a fitting tribute to AHP and ANP.

We have received over hundred papers from more than 25 countries on various aspects of AHP and ANP – theory as well as applications. The applications cover varieties of areas such as, supply-chain management, environmental management, information systems, banking and finance, logistics and transportation, risk management, group decisions making, education, sustainable development, Project management, healthcare, performance evaluation, strategic planning, etc. I hope that the participants will find the presentations, discussions, and deliberations on varieties of areas of AHP and ANP interesting and useful. We also hope that this ISAHP will be able to generate more new ideas on further development of theory and applications of AHP and ANP that would further enhance the quality of decision making. I wish all the participants a beneficial, fulfilling and enlightening symposium.

Appreciation goes to the HUM top management, Kulliyyah of Economics and Management Sciences and Department of Business Administration of HUM, and the Bsure Solutions for their approval and all the necessary support to organize this symposium. I thank wholeheattedly Professor Thomas L. Saaty of University of Pittsburgh and Rozam Saaty of Creative Decisions Foundation for supporting us in all possible ways. I take this opportunity to thank the international scientific committee members, my deputy, the secretary, and all other local organizing committee members for their hard work, commitment and dedication in organizing this symposium. Profuse thanks to all the presenters, participants, sponsors, student volunteers and well-wishers and all other people who have directly or indirectly contributed to make ISAHP 2013 a success. May God bless us all! Ameen!

Back

Next

Prof. Dr. Rafikul Islam Chaiuman 12ª International Symposium on the AHP/ANP

LOCAL ORGANIZING COMMITTEE

Patron Prof. Dato' Dr. Zaleha Kamaruddin Rector, IIUM

Advisor

Prof. Dr. Khaliq Ahmad Dean, KENMS, IIUM

Honorary Chairman

Prof. Dr. Thomas L. Saaty University of Pittsburgh, USA

> **Chairman** Prof. Dr. Rafikul Islam IIUM

Deputy Chairman Mr. Razali Husain bSure Solutions Sdn Bhd.

Secretary

Selim Ahmed IIUM

Treasurer

Mdm. Sharifah Hazam bSure Solutions Sdn Bhd.

-		-
	ATTA	bers
		DELO

A CONTRACTOR OF			
Name	University	Name	University
Prof. Dr. Moussa Larbani	IIUM	3 r. Suhaimi Mhd Sarit	пон
Dr. Anisah Abdullah	IIUM	Dr. Nurita Juhdi	IIUM
Dr. Naail Mohd. Kamil	IIUM	Mr. Asnyat Asmat	IIUM
Dr. Mohamad Rizza Othman 👘	UMP	Dr. Mohd. Shukri Abdul Hamid	UUM
Dr. Latifah Abd. Manaf	UPM	Dr. Muhammad Tahir Jan	IIUM
Dr. Wan Rohaida Wan Husain	IIUM	Dr. Abdul Jalil	IIUM
Mr. Armi Abu Samah	UPM	Mr. Philip Kang Wee Siang	UPM
Ms. Nuruljanah Kharuddin	UPM	Mdm. Azilah Anis	UiTM

A Dan Martin Allowed

ABOUT ISAHP

FOREWORD

ISf

COMMITTEE

CONTENTS (AUTHORS & PAPERS)

COPYRIGHT & CONTACT

2

INTERNATIONAL SCIENTIFIC COMMITTEE

Name	University	Country
Alberto De Toni	AilG – Italian Association of	Italy
Alberto De Ioni	Management Engineering	пацу
	IP SERA-International	
Alessandro Ancaran	Purchasing and Supply Education	Italy
	and Research Association	
Alessio Ishizaka	The instance in the Prophers and b	United
Alessio Isnizaka	University Portsmouth	Kingdom
Aido Ventre	University of Naples "SUN"	Italy
Anna Florek-	Charles The boundary of Francisco	Poland
Paszkowska	Cracow University of Economics	Poland
	AGH University of Science and	Poland
Anna Ostrega	Technology	Poland
Antonella Petrillo	University of Cassino	Italy
Antonio Maturo	University of Chieti	Italy
		Sæidi
Asma Bahormuz	King Abdul Aziz University	Arabia
Azizan bin Ramii	Universiti Malaysia Pahang	Malaysia
Birsen Karpak	Youngstown University	USA
Carlos Remero	Technical University of Madrid	Spain
Claudio Garuti	Fulcum Ingenierla Ltda	Chile
Diederik Wijnmalen	TNO Company	Netherlands
Edgar Osuna	IESA Caracas	Venezuela
Eizo Kinoshita	Meijo University	Japan
Elio Padoano	University of Trieste	Italy
Emilio Esposito	University of Naples 'Federico II'	Italy
Fabio De Felice	University of Cassino	Italy
Fusco Girard	University of Naples "Federico II"	Italy
Giovanni Mummolo	Polytechnic of Bari	Italy
Giuseppe Bruno	University of Naples "Federico II"	
Grzegorz Ginda	University of Bielsko-Biala	Poland
Jennifer Shang	University of Pittsburgh	USA
	and a second second	Czech
Josef Jabionsky	University of Economics	Republic
Juan Pascual Pastor	University of Valencia	Spain
	-	Czech
Karel Mis	University of Hradec Kralove	Republic
Keyu Zhu	Hefei University of Technology	Chima
Kirti Peniwati	PPM Institute of Management	Indonesia

Name	University	Country
Kostantinos Kirytopoulos	University of the Aegean	Greece
Leandro Pecchia	University of Nottingham	United Kingdom
Livia D'Apuzzo	University of Naples 'Federico II'	Italy
Luis Vargas	University of Pittsburgh	USA
Massimilano Schiraridi	University of "Tor Vergata"	ltaly
Massimo Squillante	University of Sannio	Italy
Min Suk Yoon	Chonnam University	Korea
Mingzhe Wang	Huazhong University of Science and Technology	China
Miroslaw Dytczak	Bialystok University of Technology	Poland
Monica Garcia- Melon	University of Valencia	Spain
Mujgan Sagir	Eskisehir Osmangazi University	Turkey
Oliver Mebmer	University of natural resources and applied life sciences (Vienna)	Austria
Umberto Gori	University of Firenze	Italy
Patrizia Lombardi	Polytechnic of Torino	Italy
Peter Bath	University of Sheffield	United Kingdom
Peter Fiala	University of Economics	Czech Republic
Rainer Haas	University of natural resources and applied life sciences (Vienna)	Austria
Rozann W. Saaty	Creative Decisions Foundation	USA
Shashi Bhattarai	Development Dynamics Pvt. Ltd.	Nepal
Sibs von Solms	University of Zubuland	South Africa
Stefano Testa	MBDA-Missile System	Italy
Thomas L. Saaty	University of Pittsburgh	USA
Umberto Gori	University of Firenze	Italy
Wiktor Adamus	Jagiellonian University	Poland
William Adams	Decision Lens	USA
William Wedley	Simon Fraser University	Canada
Yong Shi	Academy of Science in China	China
Contraction and participation of the	An and the second state of the	A COLORADOR NO.

Back

Lather the share in the	deadle a Ch
ISFILLE 20	3
ABOUT ISAHP FOREWORD COMMITTEE (AUTHORS & PAPE	COPYRIGHT & CONTACT

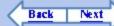
S.L. No.	Title	Authors
1	Better World through Better Decision Making	Thomas L.Saaty
2	The Analytic Hierarchy Process without the Theory of Os kar Perron	Thomas L.Saaty
3	A Validation of the Effectiveness of Inner Dependence in an ANPModel	Rozann Saaty
4	Voting with Intensity of Preferences	Luis G. Vargas
5	Deriving Priorities from Partially-Filled Reciprocal Comparison Matrices	Ami Arbel and Luis G. Vargas
6	Application of Analytic Network Process in the Performance Evaluation of Local Black-Soybean Supply to Unilever Indonesia's Soy-Sauce Product	Anggi Gayatri Setiawan, Didit Herawan and Bamb ang Purwoko Kusumo Bintoro
7	Evaluation of Alternative Construction Sites with Analytic Network Process Method	Li-Chung Chao
8	An Integrated Approach for Prioritizing Projects for Implementation Using AHP	Christian Tabi Amponsah
9	An Integrated Mental Workload Assessment Method by Using AHP	Ergün Eras lan
10	A Novel Approach For Implementing of a Log-Sigmoid Function on a FPGA Device Using the Sfloat24 Math Library – An Modelling	M. C. Miglionico and F. Parillo
n	ISR ExploitationCells Readiness Assessment	Rahim Jassemi-Zargari
12	Reference Objects-Based Real Estate Valuation with MDAHP	Mirosław Dytezak and Grzegorz Ginda
13	<u>Social Network Analysis in Participatory Environmental Decision Making: The Case of Spanish Wetland La Albufera</u>	Mónica García Melón, Vicent Estruch Guitart, Pablo Aragonés Beltrán and Beatriz Monterde Roca
14	Valuating Patents Generated by Public Research Centers with the AHP Technique	Mónica García Melón, Rafael López, Pablo Aragonés Beltrán and Etrrique San Ambrosio
15	About Some Features of AHD/AND Applications	Olga Andreichicova md Alexander Andreichicov

S.L. No.	Title	Authors
16	The Fiction of a Factual Approach to Decision-Making	Sibs Von Solms
17	Ranking Non-Dominated Solutions in Automated Highway Design Using the Analytic Network Process (ANP)	Solmath Mil and Monglout Piantanakulchai
18	Development of a Two-Stage AMT Option Selection Modelto Use in Turkish Manufacturing Companies	Vusuf Tansel İç and Mustafa Vurdabu
19	Prioritization of Strategic Guidelines as Part of the Strategic Plan 2010-2014 for a Venezuelan University Using AHP	Aidaelena Smith-Perera and Xavier Figarella
20	Coevaluation and Grading of Engineering Students in Venezuela Using AHP	Aidaelena Smith-Perera and Carmen Lucía Rojas-Lima
21	AHP Model for Primary School Teaching and Learning ICT Appraisal: User Perception	Astrid Oddershede, Francia Farías, Jorge Donoso and Patricia Jarufe
22	The Application of GIS-AHP to Develop a Strategic Planning for an Urban Farming, Fishery and Aquaculture	Bagiyo Suwasono and Nurul Rosana
23	Application of AHP to Determine Consumers 'Perceptions of CSR Strategy for Organizations in the Nigerian GSM Telecommunication Industry	Bolajoko Nkendinim Dixon-Ogbechi and Sikuade Oladimeji Jagm
24	Usage of Group AHP Approach in Sport Shoes Selection	Mohammad Ebrahim Marjani, Majid Mojahed and Soheil Marjani
25	A Hybrid AHP/FST Model for Regional Aircraft Evaluation	Giuseppe Bruno, Enilio Esposito and Andrea Genovese
26	An Induction Based on a Hybrid of DRSA and DEMATEL for Analyzing Competitiveness 2012	Va-Chien Ko, Chao Hsien-Wen and Gwo- Hshiung Tzeng
27	A Conceptual Design of a Mobile Healthcare Device - An Application of Three-Stage QFD with ANP and TRIZ	Hsu-Shih Shih and Szu- Hua Chen
28	An Analytic Hierarchy Process (AHP) Modelto Articipate Logistics Organization's Preference for Operations Research (OR) Tools adoption	Wan Fei Lai, Miang Hong Ngung and Min Yoong Ho
29	Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making in Corporate Enterprises – a New AHP Excel Template with Multiple Inputs	Klaus D. Goepel

S.L. No.	Title	Authors
30	Material Selection of Thermoplastic Matrix for Hybrid Nahmal Fiber/Glass Fiber Polymer Composites Using Analytic Hierarchy Process Method	Mansor M.R., Sapuan S.M., Zainudin E.S., Nuraini A.A., Hambali A. and Azaman M.D
31	Brahuating Business-to-Business M-Commerce in SMEs by Using MCDM Approach	Ming Tang Lu, Gwo- Hshing Tang Shu- Kung Hu and Ving- Chang Lin
32	Solutions for a Disjoint Supermatrix in ANP Decision Models	Orrin Cooper and Guoqing Liu
33	Accuracy Improvement of Object Oriented Software Design Measurement Using Analytic Network Process	Petrus Minsanto
34	The Analytic Hierarchy Process: Application to the Election of the Chief Minister of Perak, Malaysia 2013	Datin Margarita Sergeorna Peredaryenko and Dato 'Hj Rais Hussin Hj Mohamed Ariff
35	Analytic Hierarchy Process and Agent-based Simulation for Traffic Modeling	Richard Cimler
36	AHP Based Academic Performance Scoresheet (APS) for Holistic Assessment of Academician Achievements	Mohamad Rizza bin Othman and Syamsul Bahari bin Abdullah
37	Operator Allocation Selection in Labor-Intensive Manufacturing System Using AHP/DEA and DEA	Ruzanita Mat Rani and Wan Rosmanira Ismail
38	Puzzy-ANP Based Research on the Risk Assessment of Biogas Production from Agriculture Biomass	Sandija Zeverte-Rivza, Peteris Rivza and Jelgava
39	AHP Application in Contemporary Nepalese Issues	Shashi Bhattarai and Prabal Sapkota
40	Post Evaluation of Medical Decision Using AHP	Shashi Bhattarai and Kirshna Sharma
41	Assessing the Sustainability of Grazing in Protected Natural Areas by Means of the ANP: A Case Study in the Cotopaxi National Park (Ecuador)	Wilson Jácome- Enríquez, Tomás Gómez- Navarro and Ricardo Pachamama-Méndez

Back

S.L. No.	Title	Authors
42	Assessingthe Corporate Social Responsibility Reports Based on Communication Indicators : an ANP Aproach	Tomás Gómez-Navarro, Amparo Baviera-Puig and Gabriel García- Martínez
48	Using AHP for the Evaluation of the Development of Career Education in Latvia	Veronika Bikse, Una Libkovska, Peteris Rivza and Baiba Rivza
44	On the Aggregation of Individual Priorities in Incomplete Hierarchies	Daniel Kunzler De Souza Carmo, Fernando Augusto Silva Marins, Valerio A. P. Salomon and Carlos Henrique Pereira Mello.
45	Path Algebraic AHP Eigenvector Based on Max and Min Operators	Masaaki Shinohara
46	A Correct Approach on Adding Criteria in the Analytic Hierarchy Process	Min-Suk Yoon and Young-Woo SOHN
47	Risk Management Decision Making	Rabihah Md.Sum
48	How to Optimize the Specification of Buik-to-Order Technology System : A Case of Wastewater Treatment System	Vuji Sato
49	Building an Brahustion of Performance Model for the Cloud E-Learning Service Using Hybrid MCDM	Chin-HingSu, Hao-Lin Tzengand Gwo- HshingTzeng
50	An AHP Based-Model for Sustainable Manufacturing Performance Evaluation in Automotive	Elita Amrina and Sha bi
	(Industry	Mohd Vusof
51	A New Approach to Eyewiness Police Identification	Enrique Mu and Rachel Chung
52	Characterization of the AHP with Adjustments of Weights of Alternatives as an Optimal Solution	Youichi lida
53	A Statistical Hypothesis Testing Method for the Rank Ordering of the Priorities of the Alternatives in Analytic Hierarchy Process	Indrani Basak
54	Adaptive Credit Scoring with Analytic Hierarchy Process	Kwang Yong Koh, Muphy Choy and Michelle L.F. Cheong
55	<u>Solid Waste Management: Development of AHP Modelfor Application of Landfill Sites Selection in Kuantan, Pahang, Malaysia</u>	Noor Suraya Binti Romali, Nadiah Binti Mokhtar, Wan Faizal Wan Ishak and Mohd Armi Abu Sanah


000

S.L. No.	Title	Authors
56	Methodology for Assessment Activity of the Technology Transfer Office Based on ANP	Rocío Poveda-Bautista, Juan Pascual Pastor- Ferrando, Pablo Aragonés-Beltrán and Fernando Jiménez Saéz
57	<u>Halal Global Analytic Hierarchy Parameters : A Conceptual Assessment</u>	Rohana Kamaruddin, Hadijah Iberahim, Norlida Abdul Hamid, Rahana Abdul Rahman and Nurol Ain Mustapha
58	Quantifying Task Output and Project Value in Knowledge-Work Contexts	Sam Sharp
59	Group Decision Making Approach in Karate Agility Test Selection	Mohammad Ebrahim Marjani, Soh Kim Geok, Majid Mojahed, Nur Surayyah M. Abdullah and Soheil Marjani
60	Preference Matrices in Tropical Algebra	Hana Tomášková and Martin Gavalec
61	Design of Performance Evaluation Tools for Drainage of Roads System in Developing Country (Case Study: Drainage System for City Roads in Padang Indoresia)	hsannul Kamil Buarg Alias Abdul Hakin Mohammed Nilda Tri Putri and Cresti Kalani
62	Assessing Systems of Systems 'Performance Using a Hierarchical Evaluation Process	Rahim Jassemi-Zargani and Nathan Kashyap
63	Objectives of Islamic Banks in the Management of Asset and Liability. A Decision Process of Deriving Priority	Kamila Hanim Kamil, Abdul Ghafar Ismail and <u>Shahida Shahimi</u>
64	Using Electre-AHP as a Mixed Method for Personnel Selection	Majid Mojahed, Mohammad Ebrahim Marjani, Alireza Afshari and Soheil Marjani

Back

S.L. No.	Title	Authors
65	The Use of Analytical Hierarchy Process (AHP) in Product Development Process	Mohd Azroy Mohd Razikin, Hambali Arep @Ariff, Ab Rahman Mahmood and Isa Halim
66	Insurance Tender Selection Using Multiple Criteria Decision Making	Poshitha Ratnayake and Eranjan Padumadasa
67	Purchase Order Selection Model at CV. Rooesman Indonesia UsingAnalytic Network Process	Ririn Diar Astanti, Elizabeth Lucia Febriyanti and The Jin Ai
68	Selecting a Profound Technical Service Provider to Perform a Technical Field Development Study From Given Multiple Criteria	Slamet Riyadi, Lohman Effendi and Rafikul Islam
69	Sustainable Decision-Making Model Based on Analytical Hierarchy Process and SWOT Analysis	Fabio De Felice, Antonella Petrillo and Claudio Autorino
70	Multi-Criteria Assessment to Automate Water Treatment Plants Using the Analytical Hierarchy Process	Claudio Macuada, Rubén Alarcón and Astrid Oddershede
71	The Analytic hierarchy Process (AHP) and the User need elicitation in the Health Technology Assessment (HTA)	Leandro Pecchia and Stephen Morgan
72	Integrating Analytic Hierarchy Process (AHP) and Geographical Information Systems (GIS) for Prioritising and Planning Conservation Choices in Wales	Marcello Di Bonito, John Clarkson, Michelle L. Wienhold and Leandro Pecchia
73	Market Risk Management for Public Utilities through AHP	Massimo Fuccaro, Patrizia Simeoni and Fabio De Felice
74	Change Management Strategy Development in Information Systems / Information Technology Using Analytic Hierarchy Process	Riri Satria
75	Strategic Foresight Using an Analytic Hierarchy Process: Environmental Impact Assessment of the Electric Grid in 2025	Ronald Mac-Ginty, Raúl Carrasco, Astrid Oddershede and Manuel Vargas
		and the second se

S.L. No.	Title	Authors
76	Enhancing Malaysian Graduate Employability Skills: Quality Function Deployment Approach	Mohamad Shukri Abdul Hamid, Rafikul Islam and Noor Hazilah Abd Manaf
77	The Root Causes of Financial Crisis in Islamic Economic Perspective	Ascarya and Dudy Iskandar
78	Solutions to Prevent Financial Crisis in Islamic Economic Perspective: ANP Approach	Ascarya
79	A Novel Model Integrating the Processes of Selection and Behavioral Evaluation of Supplies in a Supply Chain through Analytical Hierarchy Process (AHP)	Mohamed Khendek and Moussa Larbani
80	Prioritizing Suitable Locations of Bike Sharing Station by Using the Analytic Hierarchy Process (AHP)	Tharathom Kanjanakom and Monglout Piantanakulchai
81	Car's Dashboard Improvement Design Concepts through Integration of AHP and TRIZ	Mohd Uzair Mohd Rosli
82	Rating BBA and MMP in Their Stages of Product. Development Based on Magasid Framework	Syahidawati Shahwan and Mustafa Omar Muhammad
83	Estimating the From insure of AHP in Subscribed Online Databases	Visof Ismail, Mohd Hasbullah B Mohamad Faudzi and Muhammad Hamidi Bin Zamri
84	Estimating the Prominence of AHP in a Selected Internet Search Engine	Yusof Ismail
85	An Overview Use of Analytic Hierarchy Process (AHP) in Design for Remanufacturing Activities	Tajul Ariffin Abdullah, Dzuraidah Abd. Wahab and <u>A. A. Lashlem</u>
86	Integrating AHP, SWOT and QSPM in Strategic Planning an Application to College of Business Administration in Saudi Arabia	Syed Abdul Malik, Nasser Saad Al Khatani and Mohammad Naushad
87	A Feedback-Aware Valuation of Construction Project Execution Time	Mirosław Dytczak, Grzegorz Ginda, Barbara Jastrząbek and Tomasz Wojtkiewicz

Back

S.L. No.	Title	Authors
88	Multicriteria Decision Makingfor Project Schedulingunder Resource Constraints	Rokou Elena and Kirytopoulos Konstantinos
89	Prioritization of Playability Heuristic Evaluation for Educational Computer Games (PHEG) Technique using Analytic Hierarchy Process	Hasiah Mohamed and Azizah Jaafar
90	Exterprise Brolition Strategy Analysis by Unearthing Superiority in ANP Supermatrix	Xing Yin Xiaomeng Yin
91	Optimization Strategy of Cloud Computing Service Composition Research Based on ANP	XingXu Hexi Guo
92	QoS Evaluation of Cloud Service Architecture Based on ANP	Mingzhe Wang Vu Liu

AN AHP BASED-MODEL FOR SUSTAINABLE MANUFACTURING PERFORMANCE EVALUATION IN AUTOMOTIVE INDUSTRY

Elita Amrina* Department of Industrial Engineering Andalas University Padang, Indonesia E-mail: elita@ft.unand.ac.id

Sha'ri Mohd Yusof Department of Manufacturing and Industrial Engineering Universiti Teknologi Malaysia Johor, Malaysia E-mail: <u>shari@fkm.utm.my</u>

ABSTRACT

Sustainable manufacturing has become a critical issue for industries worldwide. In order to survive in today's competitive business environment, adopting sustainable manufacturing practices has become a necessity. A performance evaluation system is crucial for achieving a successful sustainable manufacturing in the automotive industry. Hence, an AHP based-model for sustainable manufacturing performance evaluation was developed in this study. Firstly, a set of initial key performance measures for sustainable manufacturing evaluation has been identified and derived from the literature. The measures were developed based on the triple bottom line of sustainability of environmental, economic, and social, consisting of nine criteria and further divided into a total of 41 subcriteria. Secondly, a survey was conducted to confirm the adaptability of the initial measures with industry practices. The results indicated that all the initial measures are highly important and thus proposed as the key performance measures of sustainable manufacturing evaluation for automotive industry. Finally, Analytic Hierarchy Process (AHP) is applied to sustainable manufacturing performance evaluation based on the measures. Relative importance weight of all the measures is determined by summarizing the opinions of experts. Quality and cost were found to be the top two important measures in evaluating sustainable manufacturing performance, while emission and supplier were the least important measures. It indicated that the automotive industry is still focusing more on the economic factor. The proposed model was then evaluated using a case study company from the automotive industry. The results show the existing performance level on strengths and weaknesses and provide directions for companies to take appropriate actions in improving their performance. It is hoped that the model enables and assists automotive companies in achieving the higher performance and so as increasing the competitiveness.

Keywords: AHP, evaluation, measures, sustainable manufacturing

1. Introduction

The increasing concerns to sustainability driven by legislation, public interest, and competitive opportunity (Linton *et al.*, 2007) have forced manufacturing companies to consider sustainability into their strategies and activities. Achieving sustainability in manufacturing activities have been recognized as a critical need due to diminishing non-renewable resources, stricter regulations related to environment and occupational safety, and increasing consumer preference for environmentally-friendly products (Jayal *et al.*, 2010). The adoption of sustainable manufacturing offers companies a cost effective route to improve their economic, environmental, and social performance as the three pillars of sustainability (Pusavec *et al.*, 2010). Companies that adopt sustainable practices are able to achieve better product quality, higher market-share, and increased profits (Nambiar, 2010). Therefore, developing sustainable manufacturing is becoming a critical global concern (Ijomah *et al.*, 2007).

^{*} Corresponding author

Proceedings of the International Symposium on the Analytic Hierarchy Process 2013

Sustainable manufacturing is certainly one of the critical issues for the automotive industry. The automotive industry has made remarkable positive contributions to the world economy and people's mobility, but its products and processes are a significant source of environmental impact (Nunes and Bennett, 2010). The automotive industry constitutes a product system that directly and indirectly relates to economic wealth creation as well as impacts on the natural and human environment along all phases of the product life cycle (Warren *et al.*, 2001). Thus, evaluating sustainable manufacturing performance has become a necessity for this industry.

This paper proposes an AHP based-model for sustainable manufacturing performance evaluation in automotive industry. A set of initial key performance measures for sustainable manufacturing evaluation was identified and derived from the literature based on the triple bottom line of sustainability of environmental, economic, and social. Then, a survey was conducted to confirm the adaptability of the initial measures with industry practices. Finally, Analytic Hierarchy Process (AHP) was applied to sustainable manufacturing performance evaluation based on the measures. The evaluation model enables and assists automotive companies to achieve the higher performance and increase the competitiveness.

2. Methodology

The methodology has three interrelated stages. First, the initial key performance measures for sustainable manufacturing evaluation were identified and derived from the literature. The initial measures were developed based on the triple bottom line of sustainability of environmental, economic, and social, and constructed by integrating the manufacturing performance measures and the sustainable manufacturing measures. Second, a survey through questionnaire was conducted to Malaysian automotive companies in order to confirm the adaptability of the initial measures with industry practices. Finally, a sustainable manufacturing performance evaluation based on the measures was developed using Analytic Hierarchy Process (AHP) methodology. The details are presented in the following sections.

2.1 Stage 1: Identification of key performance measures

This study starts with the development of initial key performance measures for sustainable manufacturing evaluation in automotive companies through literature review. The initial measures have been constructed by integrating the manufacturing performance measures and the sustainable manufacturing measures. The initial measures have adopted the triple bottom line of sustainability consisting of environmental, economic, and social performance factors. As a result, the initial measures consist of three factors divided into nine criteria and further divided into a total of 41 subcriteria were identified as shown in Table I.

Factors	Criteria	Subcriteria		
Environmental	Emission	Air emission, Water pollution, Land contamination		
	Resource utilization	Energy utilization, Water utilization, Fuel consumption, Land used		
	Waste	Solid waste, Hazardous waste, Waste water		
Economic	Quality	Product reliability, Product durability, Conformance to		
		specification, Customer complaint, Scrap and rework, Reject rate		
	Cost	Material cost, Setup cost, Overhead cost, Inventory cost, Labor		
		cost, Rework cost		
	Delivery	On time delivery, Delivery lead time, Delivery speed, Cycle time, Due date compliance, Schedule attainment		
		L ·		
	Flexibility	Volume flexibility, Product flexibility, Process flexibility,		
		Technology flexibility, New product development		
SocialEmployeeTraining and development, Occupational		Training and development, Occupational health & safety, Turn over		
rate, Job satisfaction, Community		rate, Job satisfaction, Community satisfaction		
	Supplier	Supplier certification, Supplier commitment, Supplier initiative		

Table 1. Initial key performance measures for sustainable manufacturing evaluation

Elita Amrina and Sha'ri Mohd Yusof/ An AHP based-model for sustainable manufacturing performance evaluation in automotive industry

2.2 Stage 2: Conducting industry survey

In order to validate the initial measures, a survey was conducted to automotive companies which manufacture parts and accessories for motor vehicles and their engines listed in Proton Vendor Association (PVA) directory year 2010. Of the 118 questionnaires mailed, a total of 54 responses were received. Three of the responses were not useable due to incomplete answer, resulting in a response rate of 43.2 percent. The respondents were asked to rate the importance level of each measure of sustainable manufacturing evaluation in their companies. A five-point scale ranging from 1 (not important at all) to 5 (very important) was used to rate the perspective of respondents to the importance level of the performance measures. The mean importance values ranged from 3.902 to 4.431 as presented in Table 2.

Table 2. Mean important level of the initial measures for sustainable manufacturing evaluation

Rank	Measures	Mean
1	On time delivery	4.431
2	Material cost	4.373
3	Product reliability	4.314
4	Supplier initiative	4.294
5	Supplier commitment	4.294
6	Product durability	4.275
7	Conformance to specification	4.255
8	Occupational health and safety	4.235
9	Delivery lead time	4.216
10	Training and development	4.216
11	Fuel consumption	4.216
12	Energy utilization	4.216
13	Overhead cost	4.196
14	Volume flexibility	4.176
15	Reject rate	4.176
16	Customer complaint	4.157
17	Water utilization	4.157
18	Supplier certification	4.137
19	New product development	4.118
20	Job satisfaction	4.118
21	Due date compliance	4.118
22	Water pollution	4.118
23	Labor cost	4.098
24	Cycle time	4.098
25	Setup cost	4.098
26	Scrap and rework	4.078
27	Delivery speed	4.078
28	Turnover rate	4.078
29	Air emission	4.059
30	Inventory cost	4.059
31	Product flexibility	4.039
32	Land contamination	4.000
33	Process flexibility	4.000
34	Solid waste	4.000
35	Schedule attainment	4.000
36	Rework cost	3.980
37	Community satisfaction	3.980
38	Hazardous waste	3.980
39	Land used	3.961
40	Technology flexibility	3.941
41	Waste water	3.902

Proceedings of the International Symposium on the Analytic Hierarchy Process 2013

From the table, it can be seen that on time delivery had the highest value of 4.431. This is followed by material cost with importance mean of 4.373. The next sequences of importance are product reliability, supplier initiative, supplier commitment, product durability, and conformance to specification with importance mean of 4.314, 4.294, 4.294, 4.275, and 4.255 respectively. Those top measures included in the criteria of delivery, cost, quality, and supplier; and the factors of economic and social. On the other hand, land used, technology flexibility, and waste water, were ranked the least important, but their mean values are at an importance level. Therefore, it can be concluded from the results that all the initial measures are perceived at high important level, and thus, three factors with a total of nine criteria and 41 subcriteria have been proposed as the key performance measures for sustainable manufacturing evaluation in automotive companies.

2.3 Stage 3: Developing sustainable manufacturing performance evaluation model

An evaluation model for sustainable manufacturing performance in automotive industry was developed based on the proposed measures. Analytic Hierarchy Process (AHP) methodology was applied in the developing of the model consisting of constructing the hierarchy, calculating the relative weight, rating the measures, and computing the scores of companies, and ranking the companies. Details are given in the following section.

3. Development of sustainable manufacturing performance evaluation model

Analytic Hierarchy Process (AHP) first introduced by Thomas L. Saaty in 1971 has become one of the most widely used methods for multiple criteria decision making (MCDM) problems. It is a decision approach designed to aid in making the solution of complex multiple criteria problems to a number of application domains (Saaty, 2008). It has been known as an essential tool for both practitioner and academics to conduct researches in decisions making and examining management theories (Cheng *et al.*, 2002). AHP as a problem solving method is flexible and systematic that can represent the elements of a complex problem (Chan *et al.*, 2006). Cheng *et al.* (2002) pointed out several benefits of AHP methodology. First, it helps to decompose an unstructured problem into a rational decision hierarchy. Second, it can elicit more information from the experts or decision makers by employing the pair-wise comparison of individual groups of elements. Third, it sets the computations to assign weights to the elements. Fourth, it uses the consistency measure to validate the consistency of the rating from the experts and decision makers. The following steps show the development of an AHP-based model for sustainable manufacturing performance evaluation in automotive companies.

3.1 Construct the hierarchy

The proposed key sustainable manufacturing performance measures are used in constructing a hierarchy. The five groups were defined and constructed in the hierarchy including goal, factors, criteria, subcriteria, and alternatives. In the hierarchy, evaluating sustainable manufacturing performance is set to be the goal. The next level consists of three factors of environmental, economic, and social. At the third level, there are nine criteria of emission, resource utilization, waste, quality, cost, delivery, flexibility, employee, and supplier. The fourth level consists of the subcriteria that described each of criteria with a total of 41 subcriteria. Finally, the alternatives that the decision maker needs to evaluate are presented at the bottom of the hierarchy consisting of the companies to be assessed and compared. The overall hierarchy is depicted in Figure 1 as shown in Appendix 1.

3.2 Calculate the relative weight

Once the hierarchy has been constructed, the importance weight of the measures should be calculated. For that purpose, the Analytic Hierarchy Process (AHP) methodology was applied. AHP methodology was utilized to determine the importance weights of sustainable manufacturing performance measures. A pairwise comparison questionnaire was then designed and mailed to thirteen senior managers from the automotive companies in Malaysia. Those managers were carefully selected based on their experience in automotive industry. A total of 10 responses were received. The Consistency Ratio (CR) was used to check the consistency test. If it is not yet consistent, the comparison has to be repeated again.

Answers to each question were geometrically averaged before calculating the importance weights. The 1 to 9 scale of Saaty was used to reflect the preferences and a pairwise comparison matrix then constructed. The consistency test was performed to all the combined pairwise comparison matrixes. The results show that the Consistency Ratio (CR) values ranged from 0.0000 to 0.0328, which means that all the pairwise comparisons are consistent since the values

Elita Amrina and Sha'ri Mohd Yusof/ An AHP based-model for sustainable manufacturing performance evaluation in automotive industry

are within the acceptable level recommended by Saaty (2008). It indicates that the experts have assigned their preferences consistently in determining the importance weights of the measures to evaluate sustainable manufacturing performance in automotive companies. Table 3 presents a summary of the result of the importance weights of the sustainable manufacturing performance measures. The importance weights show the importance value of one measure over another measure. In term of factors, economic is the most important factor with an importance value of 68.02%. Resource utilization (46.23%) is regarded to the highest important dimension to environmental performance. With regard to economic performance, quality is the most important dimension with an importance value of 50.06% over another. Employee (79.02%) is considered much more important dimension than suppliers to social performance.

Factors	Weight	Criteria	Weight	Subcriteria	Weight
Environmental	0.1450	Emission	0.2276	Air emission	0.4323
				Water pollution	0.2939
				Land contamination	0.2738
		Resource	0.4623	Energy utilization	0.4046
		utilization		Water utilization	0.1549
				Fuel consumption	0.2996
				Land used	0.1409
		Waste	0.3101	Solid waste	0.2461
				Hazardous waste	0.4060
				Waste water	0.3480
Economic	0.6802	Quality	0.5006	Product reliability	0.1194
				Product durability	0.0674
				Conformance to specification	0.2322
				Customer complaint	0.2826
				Scrap and rework	0.1582
				Reject rate	0.1402
		Cost	0.2365	Material cost	0.3653
				Setup cost	0.1229
				Overhead cost	0.1621
				Inventory cost	0.1165
				Rework cost	0.1078
				Labor cost	0.1254
		Delivery	0.1753	On time delivery	0.3587
		5		Delivery lead time	0.1630
				Delivery speed	0.0921
				Cycle time	0.0839
				Due date compliance	0.1664
				Schedule attainment	0.1359
		Flexibility	0.0877	Volume flexibility	0.2039
		5		Product flexibility	0.0891
				Process flexibility	0.2612
				Technology flexibility	0.2742
				New product development	0.1716
Social	0.1748	Employee	0.7902	Training and development	0.2760
				Occupational health & safety	0.1916
				Turnover rate	0.1273
				Job satisfaction	0.2511
				Community satisfaction	0.1540
		Supplier	0.2098	Supplier certification	0.1393
				Supplier commitment	0.6176
				Supplier initiative	0.2432

Table 3. The importance weights of sustainable manufacturing performance measures

3.3 Rating the sustainable manufacturing performance measures

The next step in evaluating the sustainable manufacturing performance is to rate the measures. In this study, a scale range from 1 to 10 (where 1 = highly poor, 2 = moderately poor, 3 = lowly poor, 4 = lowly fair, 5 = moderately fair, 6 = highly fair, 7 = lowly good, 8 = moderately good, 9 = highly poor, and 10 = excellent) was utilized to assess performance of each of the measures.

3.4 Computing the companies score

The next step is to compute the company score. The values generated from the performance rating are combined with the corresponding importance weights of the measures to obtain the company score. The company score is calculated for the overall score and as well as for individual score of each factor and each criteria. The overall score and individual score of each factor and each criterion of companies are then classified into four performance levels based on the following rules:

If $1 \leq \text{scores} \leq 4$ then performance level is poor,

If $4 < \text{scores} \le 7$ then performance level is fair,

If $7 < \text{scores} \le 9$ then performance level is good,

If scores > 9 then performance level is excellent.

3.5 Ranking the companies based on the score

The overall score and the individual score of factor and criteria of the companies evaluated are then ranked in descending order. The company with the highest score can be considered as attaining best practice.

4. Case study result

The proposed model has been applied to a case of automotive manufacturing company in Malaysia. The production managers were asked to evaluate their supplier using the 1 to 10 scale on each of 41 sustainable manufacturing performance measures. The rating values are used to calculate the company score consisting of the overall score and the individual score of each factor and each criterion. The overall score and individual score of each factor and each criteria of the companies compared are presented in a final result. The results of four suppliers compared are shown in Table 4. From the results, the company is able to know the performance level of their suppliers on their strengths and weaknesses.

Measures	Supp	lier-1	Sup	plier-2	Sup	plier-3	Supp	lier-4
wieasures	Score	Level	Score	Level	Score	Level	Score	Level
Overall Score	7.184	Good	9.332	Excellent	7.793	Good	6.215	Fair
Individual score of fa	actors							
Environmental	5.926	Fair	8.280	Good	8.778	Good	4.505	Fair
Economic	7.073	Good	9.479	Excellent	7.415	Good	6.292	Fair
Social	8.444	Good	9.470	Excellent	8.605	Good	7.064	Good
Individual score of c	riteria							
Emission	5.293	Fair	8.991	Good	8.707	Good	3.269	Poor
Resource utilization	6.442	Fair	7.845	Good	8.845	Good	5.299	Fair
Waste	5.752	Fair	8.351	Good	8.751	Good	4.349	Fair
Quality	6.758	Fair	9.430	Excellent	7.484	Good	6.412	Fair
Cost	7.592	Good	9.415	Excellent	7.288	Good	6.484	Fair
Delivery	7.086	Good	9.757	Excellent	7.522	Good	5.976	Fair
Flexibility	7.319	Good	9.537	Excellent	7.261	Good	5.580	Fair
Employee	8.516	Good	9.597	Excellent	8.804	Good	7.330	Good
Supplier	8.165	Good	9.011	Excellent	7.842	Good	6.070	Fair

Table 4. The scores of suppliers

Elita Amrina and Sha'ri Mohd Yusof/ An AHP based-model for sustainable manufacturing performance evaluation in automotive industry

Those scores are then used to rank the sustainable manufacturing performance of each supplier relative to others. The suppliers ranking for overall score and individual score of factor are shown in Table 5. It can be seen from the table, supplier-2 is at the highest for the overall score with a total score of 9.332 and performance level of excellent.

Score	Supplier Name	Score	Performance Level	Ranking
Overall score	Supplier-2	9.332	Excellent	1
	Supplier-3	7.793	Good	2
	Supplier-1	7.184	Good	3
	Supplier-4	6.215	Fair	4
Individual scor	e of factor			
Environmental	Supplier-3	8.778	Good	1
	Supplier-2	8.280	Good	2
	Supplier-1	5.926	Fair	3
	Supplier-4	4.505	Fair	4
Economic	Supplier-2	9.479	Excellent	1
	Supplier-3	7.415	Good	2
	Supplier-1	7.073	Good	3
	Supplier-4	6.292	Fair	4
Social	Supplier-2	9.470	Excellent	1
	Supplier-3	8.605	Good	2
	Supplier-1	8.444	Good	3
	Supplier-4	7.064	Good	4

Table 5. Ranking of overall score and individual factor score of companies

The ranking and performance level of companies obtained are quite varied. It can be seen that supplier-2 has attained the highest score on factors of economic and social, but at the second rank of environmental factor with a score of 8.280 and performance level of good. The top rank for environmental factor is company-3 with a score of 8.778 and performance level of good. It can be seen from the results that the company with the highest overall score might be not the best in all the factors. In order to make a quality decision making, these things need to be viewed in detail to prioritize the company's performance criteria when evaluating sustainable manufacturing performance level.

5. Conclusions

This paper has presented the development of an AHP-based model for sustainable manufacturing performance evaluation in automotive companies. The tool was developed using Analytic Hierarchy Process (AHP) methodology. The hierarchy structure was established based on the proposed key measures of sustainable manufacturing performance evaluation for automotive companies. Then, the importance weights of the measures were assigned by pairwise comparisons and calculated using AHP methodology. Values of the measures were also rated using a scale of 1 (highly poor) to 10 (excellent). The company's score was computed to assess sustainable manufacturing performance against the measures. Finally, the companies rank was determined based on their scores.

The model enables and assists companies to know and understand their existing performance level on their strengths and weaknesses. It provides suggestions and directions for companies to take appropriate actions in improving their sustainable manufacturing performance. The model aids companies in achieving the higher performance and so as increasing the competitiveness. While the proposed model provides a systematic approach for sustainable manufacturing performance evaluation, it is not entirely automated. Future work will further develop a softwarebased tool of sustainable manufacturing performance evaluation for automotive companies. Proceedings of the International Symposium on the Analytic Hierarchy Process 2013

REFERENCES

Chan, F. T. S., Chan, H. K., Lau, H. C. W., and Ip, R. W. L. (2006). An AHP approach in benchmarking logistics performance of the postal industry. *Benchmarking: An International Journal*, 13(6), 636-661.

Cheng, E. W. L., Li, H., and Ho, D. C. K. (2002). Analytic Hierarchy Process: A defective tool when used improperly. *Measuring Business Excellence*, 6(4), 33-37.

Ijomah, W. L., McMahon, C. A., Hammond, G. P., and Newman, S. T. (2007). Development of design for remanufacturing guidelines to support sustainable manufacturing. *Robotics and Computer-Integrated Manufacturing*, 23, 712–719.

Jayal, A. D., Badurdeen, F., Dillon Jr. O.W., and Jawahir, I. S. (2010). Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. *CIRP Journal of Manufacturing Science and Technology*, 2(3), 144–152.

Linton, J. D., Klassen, R., and Jayaraman, V. (2007). Sustainable supply chains: an introduction. *Journal of Operations Management*, 25(6), 1075–1082.

Nambiar, A. N. (2010). Challenges in sustainable manufacturing. *Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management*. January 9-10. Dhaka, Bangladesh, 1-6.

Nunes, B., and Bennett, D. (2010). Green operations initiatives in the automotive industry: an environmental reports analysis and benchmarking study. *Benchmarking: An International Journal*, *17(3)*, 396 – 420.

Pusavec, F., Krajnik, P., and Kopac, J. (2010). Transitioning to sustainable production – part I: application on machining technologies. *Journal of Cleaner Production*, 18, 174–184.

Saaty, T. L. (2008). The analytic hierarchy and analytic network measurement processes: application to decisions under risk. *European Journal of Pure and Applied Mathematics*, 1(1), 122-196.

Warren, J. P., Rohdes E., and Carter, R. (2001). A total product system concept - a case study of the smart (tm) automobile. *Greener Management International*. 35, 89-104.

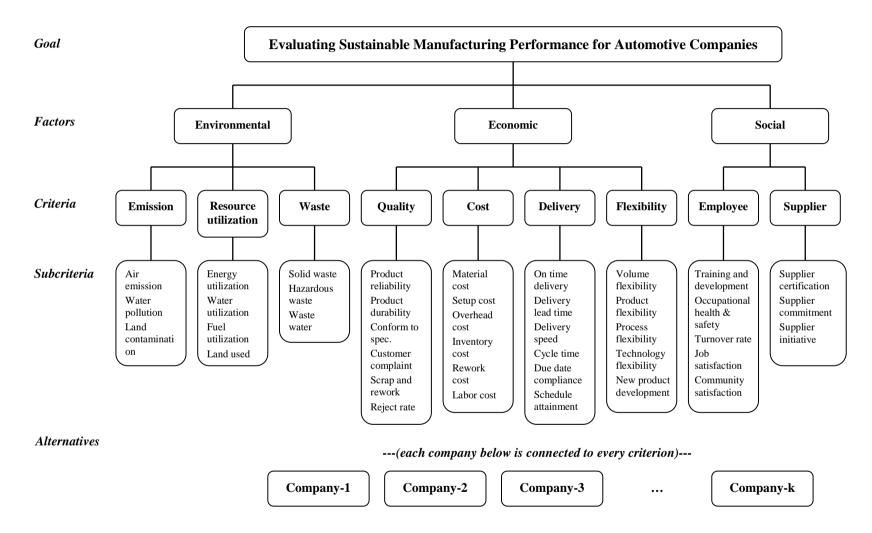


Figure 1. The hierarchy structure of sustainable manufacturing performance evaluation for automotive companies

CERTIFICATE OF ATTENDANCE

COKED COX

This is to certify that

Elita Amrina

attended ISAHP 2013 - 12 thInternational Symposium on the AHP which was held in Hotel Istana, Kuala Lumpur, Malaysia 23rd- 26thJune, 2013

Prof. Rafikul Islam CHAIRMAN International Islamic University Malaysia

Razali Husain DEPUTY CHAIRMAN 6Sure Solutions SDN NHD

June 25th 2013

CEN RESERT

Kementerian Pendidikan dan Kebudayaan FAKULTAS TEKNIK UNIVERSITAS ANDALAS

Kampus Limau Manis, Padang 25163, Sumatera Barat Telp. : 0751- 72497, Fax : 0751 - 72566 Website : ft.unand.ac.id, e-mail : sek.dekan@ft.unand.ac.id

SURAT TUGAS

Nomor: 171 /XIII/I/FT/Unand-2013

Dekan Fakultas Teknik, Universitas Andalas menugaskan nama berikut:

NO	NAMA	NIP	STATUS
1	Dr. Elita Amrina	19770126 200501 2 001	Dosen Jurusan Teknik Industri

untuk mengikuti workshop dan seminar oral di the 12th International Symposium of the Analytic Hierarchy, di Kuala Lumpur, Malaysia pada tanggal 23-26 Juni 2013. Segala biaya yang digunakan untuk itu dibebankan kepada anggaran yang relevan.

Demikian surat tugas ini dibuat untuk dapat digunakan sebagaimana mestinya.

Padang, 13Juni 2013 Dekan, Prof. Dr.-Ing KULTAS MP. 19660817 199212 1001

Tembusan:

- 1. Dosen ybs
- 2. Kajur T. Industri FT-Unand
- 3. Arsip

