Applied Mechanics and Materials (Detail)

More details of this periodical:

About: "Applied Mechanics and Materials" is a peer-reviewed journal which specializes in rapid publication of proceedings of international scientific conferences, workshops and symposia as well as special volumes on topics of contemporary interest in all areas which are related to:

1) Research and design of mechanical systems, machines and mechanisms;
2) Materials engineering and technologies for manufacturing and processing;
3) Systems of automation and control in the areas of industrial production;
4) Advanced branches of mechanical engineering such as mechatronics, computer engineering and robotics.

"Applied Mechanics and Materials" publishes only complete volumes on given topics, proceedings and complete special topic volumes. We do not publish stand-alone papers by individual authors.

Authors retain the right to publish an extended, significantly updated version in another periodical.

Indexing: indexed by
Index Copernicus Journals Master List www.indexcopernicus.com.
Google Scholar scholar.google.com.
Chemical Abstracts (CAS) www.cas.org.
Zetoc zetoc.jisc.ac.uk.
CiteSeerX citeseerx.ist.psu.edu.
Thomson Reuters (WoS), all volumes are submitted and selected ones will be indexed.

Additional Information: Please ask for additional information: amm@scientific.net

Editors: Editorial Board

<< Back to our library Volumes published in this periodical...
Applied Mechanics and Materials: Editorial Board

AMM Editor(s) in Chief

Prof. Xu, X. P. Send email
Huaqiao University, Research Institute of Manufacturing Engineering at Huaqiao University
No.668, Jimei Road, Xiamen, China, 361021

AMM Editorial Board

Prof. Cadoni, E. Send email
University of Applied Sciences of Southern Switzerland, Department for Construction, Environment and Design, DynaMat Laboratory, SUPSI-DACO
Campus Treuca, Canobbio, 69952, Switzerland

Dr. Cheng, Y. S. Send email
Harbin Institute of Technology, School of Materials Science and Technology
P.O. Box 435, Harbin, China, 150001

Dr. Chinkichev, D.A. Send email
National Research Tomsk Polytechnic University, Yurga Institute of Technology (Branch)
Leningradskaya 26, Yurga, Russian Federation, 652665

Prof. Dodun, O. Send email
Gheorghe Asachi Technical University of Iasi, Department of Machine Manufacturing Technology
D. Mangenon Blvd, 39A, Iasi, 70050, Romania

Prof. Gogu, G. Send email
Institut Français de Mécanique Avancée, Campus de Clermont-Ferrand les Cézeaux, CS 20265
Clermont-Ferrand, 63175, France

Prof. Karama, M. Send email
Université de Toulouse, INP - Ecole Nationale d'Ingénieurs de Tarbes (ENIT), LGIP (Laboratoire Génie de Production)
47 Avenue d'Azenas, BP1629, Tarbes Cedex, 65016, France

Dr. Krenciky, T. Send email
Technical University of Košice, Faculty of Manufacturing Technologies with a Seat in Prešov
Rayskova 1, Prešov, 086 31, Slovensko

Dr. Zulkifli, R. Send email
Universiti Kebangsaan Malaysia, Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment
Bangi, Malaysia, 43600
Recent Decisions in Technologies for Sustainable Development

ISBN-13: 978-3-03835-504-5

Authors / Editors: A. Ghuri, N.P.G. Suardana, N.N. Pujanik, I.N. Arya Thamaya, A.A. Dini Parami Dewi, I.N. Budiana, I.W. Widhiasto, I.P. Agung Bayuspati and I.N. Satiy Kumara

Category: Selected, peer reviewed papers from the 3rd International Conference on Sustainable Technology Development (ICSTD 2014), October 30-31, 2014, Bali, Indonesia

Pages: 496

Year: 2015

Periodical: Applied Mechanics and Materials Vol. 776

All papers are available online at www.scientific.net

Description:

The 72 papers are grouped as follows:

- Chapter 1: Technologies of Sustainable Development in Civil Engineering, Transportation and Urban Planning;
- Chapter 2: Materials and Technologies for a Sustainable Development;
- Chapter 3: Advanced Decisions in Mechanical Engineering;
- Chapter 4: Application of Alternative Energy and Information Technologies

Keyword: Sustainable, Development, Construction, Green Technology, Emission, Environment Friendly Material, Composite, Alternative Energy

Review from Ringgold Inc., ProtoView:

Editors Ghuri, Suardana, Pujanik, Thamaya, Dewi, Budiana, Widhiasto, Bayuspati, and Kumara present students, academics, researchers, and professionals working in a wide variety of contexts with a collection of peer reviewed academic papers selected from research presented at the third International Conference on Sustainable Technology Development, held in October of 2014 in Bali, Indonesia. The editors have organized the contributions that make up the main body of the text in four chapters devoted to technologies of sustainable development in civil engineering, transportation, and urban planning, materials and technologies for sustainable development, advanced decisions in mechanical engineering, and the application of alternative energy and information technologies.

Ringgold Subjects:

- Engineering
- Materials science
- Sustainability

Buy this volume

<table>
<thead>
<tr>
<th>Versions</th>
<th>ISBN</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print</td>
<td>978-3-03835-504-5</td>
<td>1</td>
<td>€ 220.00</td>
</tr>
<tr>
<td>CD</td>
<td>978-3-03835-289-1</td>
<td>1</td>
<td>€ 220.00</td>
</tr>
<tr>
<td>Print + CD</td>
<td>978-3-03835-504-5</td>
<td>1</td>
<td>€ 308.00</td>
</tr>
<tr>
<td>eBook **</td>
<td>978-3-03826-874-8</td>
<td>1</td>
<td>€ 220.00</td>
</tr>
</tbody>
</table>

If you buy both versions (Print + CD), you save 39%

See an example

[Add to Cart](http://www.ttp.net/978-3-03835-504-5.html)
Recent Decisions in Technologies for Sustainable Development

Edited by
Preface

This volume was selected from papers presented at the 3rd International Conference on Sustainable Technology Development (ICSTD Bali 2014), which have been held in Udayana University Bali during October 30-31, 2014. The conference was organized by Faculty of Engineering, University of Udayana Bali Indonesia. This conference covered wide range of engineering issues toward the achievement of sustainability.

In order to meet high standard of Applied Mechanics and Materials, the organization committee has made their efforts to do the following things. Firstly, all submitted papers have been reviewed by 2 anonymous expert reviewers, poor quality papers have been rejected after reviewing. Secondly, periodically review meetings have been held around the reviewers about three times for exchanging reviewing suggestions. Finally, the conference organization had several preliminary sessions before the conference. Through efforts of the scientific committee and Editors team, the volume will be the best collected papers.

We would like to thank the Faculty of Engineering, University of Udayana, the member of organizing and scientific committees, and also to TTP publisher.

Editors
Ainul Ghurri
N.P.G. Suardana
Ni Nyoman Pujianiki
I Nyoman Arya Thanaya
A.A. Diah Parami Dewi
I Nyoman Budiarsa
I Wayan Widhiada
I Putu Agung Bayupati
I.N. Satya Kumara
Table of Contents

Preface

Chapter 1: Technologies of Sustainable Development in Civil Engineering, Transportation and Urban Planning

Sustainable Development of Concrete Using GGBS: Effect of Curing Temperatures on the Strength Development of Concrete
G. Turu'allo 3

Properties of Sand Sheet Asphalt Mixture Incorporating Waste Plastic
I.N.A. Thanaya, I.G.R. Purbanto and I.G. Wikarga 9

Asphalt Pavement Temperature Profile for Tropical Climate in Indonesia
I.M.A. Ariawan, B.S. Subagio and B.H. Setiadiji 17

The Development of Slurry Seal Design with Ordinary Portland Cement Replacement by Low Calcium Fly Ash
A. Setyawan, D. Sarwono and M.S. Adnan 24

The Structural Properties Assessment of Thin Hot Mixture Asphalt for Pavement Preservation
A. Setyawan, A.H. Mustafa Elshawesh and S. As'a'd 30

Mechanical Strength of Hydraulic Binder Made by Blending Type I Portland Cement and Pozzolan
I.M.A.K. Salain 36

Laboratory Tests on Failure of Retaining Walls Caused by Sinusoidal Load
A.M. Hidayati, R.W. Sri Prabandiyani and I.W. Redana 41

Deformation Behavior of Concrete due to the Influence of the Steel Ring Width Variations as the External Confinement
E. Safitri, I. Imran, Nuroji and S. Asa'ad 47

Evaluation of High Grade Recycled Coarse Aggregate Concrete Quality Using Non-Destructive Testing Technique
N.N. Kencanawati, J. Fajrin, B. Anshari, Akmaluddin and M. Shigeishi 53

Experimental and Theoretical Investigation of Bolted Bamboo Joints without Void Filled Material
G.M. Oka, A. Triwiyono, A. Awaludin and S. Siswosukarto 59

The Significant Importance to Measure Road Safety
S.A. Caroline 66

Accessibility to Location of Activities in Denpasar City, Bali-Indonesia
P.A. Suthanaya 74

Travel Time Estimation Based on Spot Speed with Instantaneous and Time Slice Model
A.M.H. Mahmudah, A. Budiarto and S.J. Legowo 80

Port Location Selection Model: Case Study of Tourism Sector in Bali
R.M.N. Budiartaha, T. Achmadi and D. Manfaat 87

Determining Passenger Car Equivalent for Motorcycle at Mid-Block of Sesetan Road
I.G.R. Purbanto 95

Readiness Criteria: Indonesia's New Initiative to Ensure Sustainable Development Program
A. Merthayasa 101

Conceptual Framework of Bidding Strategy in Order to Improve Construction Project Performance
I.N.Y. Astana, H.A. Rusdi and M.A. Wibowo 108

The Conceptual Framework of Design Change Effects in Some Project Delivery Systems
A.A.G.A. Yana, H.A. Rusdi and M.A. Wibowo 114

An Identification of Construction Project Overheads for Sustainable Cost Management and Controlling Practices (CMCPs)
N.M. Jaya and A. Frederika 121

Risk Analyses for Riau Regional Water Supply Projects (SPAM), Indonesia
A. Sandhyavithri 127
Chapter 2: Materials and Technologies for a Sustainable Development

The Property and Applicability to Auto Industry of Natural Fiber Reinforced Composites

Fracture Parameters of Short Carbon Fiber Reinforced Polycarbonate Composite Fabricated by Injection Molding Process

Effect of Polar Extract of Cocoa Peels Inhibitor on Mechanical Properties and Microstructure of Mild Steel Exposed in Hydrochloric Acid
Gunawarman, Y. Yetri, Emradi, N. Jamarun, Ken-Cho, M. Nakai and M. Niinomi 193

Hardness Distribution and Effective Case Depth of Low Carbon Steel after Pack Carburizing Process under Different Carburizer

The Effect of Solidification on Acoustical of Tin Bronze 20Sn Alloy
I.K.G. Sugita and I.G.N. Priambadi 208

Morphological Analyses and Crystalline Structures of Anodic TiO$_2$ Thin Film on Ti6Al4V Alloy Using Phosphate and Calcium Containing Electrolyte under Different Voltage and Calcium Molarity

Determination of Optimal Clinker Factor in Cement Production by Chemical Grinding Aids Addition
T. Eryanto and E. Amrina 223

Wear of Carbon Steel (0.65%C) in Rolling-Sliding Contact with Creep Ratio
M. Widiyarta, T.G.T. Nindhiha and H. Mudiastrawan 229

Hardness Prediction Based on P-h Curves and Inverse Material Parameters Estimation
I.N. Budiarsa 233

The Influence of Austenitisation Temperature and Holding Time on Mechanical Properties, Scale Thickness, and Microstructure in Alloy Steel
A. Aziz, M. Hidayat and I. Hardiyanti 239

Hardness, Density and Porosity of Al/(SiCw+Al$_2$O$_3$p) Composite by Powder Metallurgy Process without and with Sintering
K. Suarsana and R. Soenoko 246

Development of Fiberglass Woven Roving Composite as an Alternative Material for the Hull of Fishing Boat
Winarto, W. Eddy, R. Liza and H. Syamsul 253

Tensile Strength of Banana Fiber Reinforced Epoxy Composites Materials
A.P. Irawan and I.W. Sukania 260

Green Composites Based on Recycled Plastic Reinforced Local Sisal Fibers
N.P.G. Guardana, N.M. Suaniti and I.P. Lokantara 264

Cement Bonded Sol-Gel TiO$_2$ Powder Photocatalysis for Phenol Removal
N. Hafizah and I. Sopyan 271
Recent Decisions in Technologies for Sustainable Development

Review on Zn-Based Alloys as Potential Biodegradable Medical Devices Materials
M.S. Dambatta, D. Kurmiawan, S. Izman, B. Yahaya and H. Hermawan 277

Bone Implant Materials from Eggshell Waste
I. Sopyan 282

Boiling Phenomenon of Tabulate Biomaterial Wick Heat Pipe
W.N. Šeptiadi and N. Putra 289

Fluidization Characteristic of Sewage Sludge Particles
I.N.S. Winaya, R.S. Hartati and I.N.G. Sujana 294

Design of Fluidized Bed Co-Gasifier of Coal and Wastes Fuels
I.N.S. Winaya, R.S. Hartati, I.P. Lokantara, I.G. Subawa and I.M.A. Putrawan 300

Chapter 3: Advanced Decisions in Mechanical Engineering

Magnetic Camera and its Applications in Aging Aircraft, Express Train and Pipelines for Green Technology
J.Y. Lee and J.M. Kim 309

Buckling Analysis on Pechiko Field of Fixed Offshore Platform in Makassar Strait
M.Z.M. Alie, Y.R. Palentek and D.G. Sesa 313

Simulation of a Differential-Drive Wheeled Mobile Lego Robot Mindstorms NXT
I.W. Widhiada, C.G.I. Partha and Y.A.P. Wayan Reza 319

Design and Simulation of Five Fingers Gripper for Dexterous Pick-Up Various of Components
I.W. Widhiada, E. Pitowarno, C.G.I. Partha and Y.A.P. Wayan Reza 325

Tar Balls Collector for Mechanical Recovery in Combating Oil Spill on the Marine Environment
C.P. Mahandari, M. Yamin and D.S.A. Asandi 331

Three Wheel Bike as Physical Therapy Equipment for Post-Stroke Patient
I.M.L. Batan, Rodika and M. Riva’i 337

Geometric Progression Application in Design Transmission Gear Ratio

Role of Risk Management in Effective Maintenance
H.A. Yuniarto and P.F. Paristiawati 349

Redesign Combustion Air Shelter of the Furnace to Improve the Performance in Melting Bronze for Manufacturing Gamelan

Model of Carbon Dioxide (CO₂) Emission from Motorcycle to the Manufactures, Engine Displacement, Service Life and Travel Speed
A.M. Mulyadi and S. Gunarta 361

Experimental Study of Heat Transfer Characteristics of Condensed Flow on the Vertical Wave Plates
W.H. Piarah and Z. Djafar 371

Forces Analysis on a Spherical Shaped Delivery Valve of Hydram Pump
M. Suarda 377

The Influence of Distance Variation between Rings with Sloping Position on the Cylinder Surface to Drag Coefficient
S.P.G.G. Tista, A. Ghurri and H. Wijaksana 384

Auto PID Tuning of Speed Control of DC Motor Using Particle Swarm Optimization Based on FPGA
H. Tayara, D.J. Lee and K.T. Chong 390

Mobile Robot Motion Planning to Avoid Obstacle Using Modified Ant Colony Optimization
N. Habib, A. Soeprirjanto, D. Purwanto and M.H. Purnomo 396

Mobile Robot Motion Control Using Laguerre-Based Model Predictive Control
M. Chipofya, D.J. Lee and K.T. Chong 403

Chapter 4: Application of Alternative Energy and Information Technologies
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Investigation of Micro-Hydro Waterwheel Models to Determine Optimal Efficiency</td>
<td>L. Jasa, A. Priyadi and M.H. Purnomo</td>
<td>413</td>
</tr>
<tr>
<td>Understanding Peak Average Power Ratio in VFFT-OFDM Systems</td>
<td>N.M.A.E.D. Wirastuti</td>
<td>419</td>
</tr>
<tr>
<td>Fusing Multiple Inexpensive GPS Heading Data via Fuzzified Ad-Hoc Weighing</td>
<td>F.P. Vista IV, D.J. Lee and K.T. Chong</td>
<td>425</td>
</tr>
<tr>
<td>Tree Data Structure Implementation in Android Base System of E-Ulambebanan</td>
<td>A.A.K.O. Sudana and A.A.G. Brampramana Putra</td>
<td>431</td>
</tr>
<tr>
<td>Design and Implementation of Web-Based Geographic Information Systems on Mapping Hindu’s Temple</td>
<td>N. Piarsa and K. Adi Purnawan</td>
<td>437</td>
</tr>
<tr>
<td>Improving Biogas Quality through Circulated Water Scrubbing Method</td>
<td>H.S. Tira, Y.A. Padang, Mirmanto and Hendriono</td>
<td>443</td>
</tr>
<tr>
<td>An Experimental Study on the Thickness of Stainless Steel as an Electrode in Alkaline Fuel Cell</td>
<td>M. Sucipta, I.M. Suardamana, I.K.G. Sugita, M. Suarda and K. Astawa</td>
<td>455</td>
</tr>
<tr>
<td>Transient Thermal Efficiency of Natural Hybrid Dryer System on Chimney Height Variation of Exhaust Moist Air</td>
<td>M.R. Murti and C.W. Park</td>
<td>461</td>
</tr>
</tbody>
</table>
Determination of Optimal Clinker Factor in Cement Production by Chemical Grinding Aids Addition

Titut Eryanto1,2,a and Elita Amrina2,b

1PT Semen Padang, Indonesia
2Department of Industrial Engineering, Andalas University, Padang, Indonesia
atitut.eryanto@gmail.com, belita@ft.unand.ac.id

Keywords: cement, clinker factor, grinding aids, Agglomerate

Abstract. The cement industry has remarked as an intensive consumer of energy. The amount of energy consumed in the cement manufacturing has a correlation to the increasing of CO\textsubscript{2} emission. It is reported that the cement Industry has contributed to 5–7\% of the total CO\textsubscript{2} emission in the world. Thus, there is a need to make an innovation in order to overcome the environmental problem. One of effort can be made is by using chemical grinding aids (CGA) as an additive material in the cement production process. This study aimed to determine the optimal clinker factor of the cement production by the addition of chemical grinding aids (CGA). The experiments are conducted in PT Semen Padang consisting of four variable of the clinker factor without CGA and with CGA addition 300 ppm. The clinker factor varies from 78.3\% to 72.9\%. The results show that the optimal clinker factor is at 74.5\% with the CGA addition 300 ppm. It can improve the cement fineness to 3848\text{cm}^2/\text{gr} and decrease the sieving R45\mu to 10\%. In addition, the strength of the cement produced is higher than the standard. The findings show the chemical grinding aids (CGA) addition in the cement production process can reduce the clinker factor as well as reducing the CO\textsubscript{2} emissions. It can aid the cement industry to achieve the higher performance in green manufacturing and so as to increase the competitiveness.

Introduction

Sustainability has become an important issue amongst industries worldwide. Many industries are directing their resources to minimize the environmental impact of their products and operations. Achieving sustainable manufacturing has been regarded as a critical need due to diminishing non-renewable resources, stricter regulations related to environment and occupational health and safety, and increasing consumer preference for environmental-friendly products \cite{1}. It has been reported that those industries adopting sustainable practices are able to achieve better product quality, higher market share, and increased profits \cite{2}. Sustainable manufacturing implementations have also been seen to be positively associated with competitive outcomes \cite{3}. Therefore, developing sustainable approaches to manufacturing industries have been regarded as a critical global concern \cite{4}.

The cement industry is one of the most strategic industries since cement, as the most important ingredient of concrete, is a fundamental building material for society’s infrastructure construction around the world \cite{5}. However, its products and processes are a significant source of environmental impact. Cement plants are characterized as an intensive consumer of natural raw materials and fossil fuels, and has remarked as emitters of pollutants \cite{6, 7}. Furthermore, the cement industry has been regarded as one of the most energy intensive consumers amongst industries in the world \cite{8}. The milling process of cement production needs the electrical supply about 2\% of the total electrical consumption in the global scale. Of those, the clinker grinding process need 1/3 of the total electrical used to produce pertonne of cement. It can be concluded that the average electrical consumption of the cement production is 57 kWh/ton \cite{9} and the CO\textsubscript{2} emission released from the power generator is 9.1 CO\textsubscript{2}/ton \cite{10}. Thus, the amount of energy consumption has a proportional correlation with the CO\textsubscript{2} emission produced in the cement production. The cement Industry has contributed to 5–7\% of the total CO\textsubscript{2} emission in the world \cite{11}.
Nowadays, the cement industry is become one of target industries in reducing the CO$_2$ emission globally. Many efforts have been conducted to reduce the CO$_2$ emission of the cement production, such as using alternative renewable fuel, and developing eco-efficiency technology [12]. However, it still limited to reduce CO$_2$ emission only. Hence, it is needed an innovation to optimize the CO$_2$ emission reduction. In this study, the chemical grinding aids are used to reduce the clinker factor. Clinker factor is one of the parameter of the cement quality. In the cement production, if the clinker factor is decreased, then the energy consumed is also reduced. The reduction of energy consumption indicates the reduction of CO$_2$ emission produced. This paper analyzed the effect of the chemical grinding aids addition of the cement production in PT Semen Padang in order to determine the optimum clinker factor and so as to reduce CO$_2$ emission.

Chemical Grinding Aid

The grinding aid used in the cement production aimed to degrade the particles (ball coating) of clinker which attach in the grinding media (steel balls) during the clinker mill process. The particles attached at the grinding balls are proved that there are electrostatic force between the cement particles and the steel balls. As the results, the cement particles will bonds together, which effected to decrease the efficiency of mill process. The phenomena are shown by the increasing of energy consumption in order to maintain the fineness constant [13].

There are several kind of grinding aids are commonly used in the mill process such as amine alifatic like triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and aminealcohols called dietanolamine (DEA), trietanolamine (TEA) and triisopropanolamine (TIPA); glycol compounds like ethyleneglycol (EG), diethyleneglycol (DEG) [14]. Besides, there are more complex compounds such as aminoethylethanolamine (AEEA) and hydroxyethyl diethylenetriamine (HDETA). Fenol and its generations are also can be used as the grinding aids. Generally, the concentration of grinding aids added is 50–500 ppm [15]. In the cement Industry, tertier amine (TIPA) is commonly used as the grinding aids. The addition of several amount of TIPA in the cement production will significantly increase the cement strength level [13].

The addition of grinding aids in order to remove the ball coating in the cement mill can increase the effectivity of mill process, so that the cement fineness can be achieved and the cement quality will increase. Subsequently, the higher cement quality produced then the clinker factor can be reduced, so that the production cost can be lower, the CO$_2$ emissions can be decrease, and the company can achieve the concept of green industry according to company’s vision.

Green Industry

Green industry is a term introduced at International Conference on Green Industry in Asia held in Manila, Philippine in 2009, conducted by United Nations Industrial Development Organization (UNIDO), United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP), United Nations Environment Program (UNEP), International Labour Organization (ILO), and participated by 22 countries including Indonesia. One of the outcomes of the conference is a document of Manila Declaration on Green Industry in Asia. The document is nonlegally binding, and is the commitment of all Asian countries in order to overcome the environmental problem through the efficiency of natural resources utilization and the reduction of carbon emissions especially in the industrial sector. The efficiency of natural resources can be conducted by applying the 3R (reduce, reuse, and recycle) which are the concept of the cleaner production. The low carbon can be achieved by applying the CO2 emissions reduction which is similar to Clean Development Mechanism (CDM), energy efficiency, and diversification to develop the renewable energy. Green industry is a commitment of all industry to reduce the effects into environmental resulted from the production processes and the products produced through the efficiency of natural resources utilization continuously, and applying the low carbon into the raw material selection, the production processes, and the products and services of the all industry activities.
Green industry is an environmental management program in the industry which considers the environmental aspect at every company’s activities, products and services, and causing the continual important environmental effect. It related to the efforts to overcome the environmental contaminations and to conduct the environmental protections for the purpose of environmental balancing in the present and the future.

PT Semen Padang

This study conducted in a cement manufacturing company located in Padang, Indonesia. Established in 1910, PT Semen Padang is the first cement manufacturing plant in Indonesia. Currently, the company has four plants with a total of production capacity of 7,300,000 tons per year. The raw materials used in the cement production processes consisting of lime stones, silica stones, clays, and iron sands in a determined composition are mixed into raw mill to produce raw mix which homogenized in a cement silo. The raw mix is fed into the kiln system for the purpose of calcinations, and clinkering process at $\pm 1450^\circ C$ and subsequently be cooled (quenching) in a cooler until the clinker temperature decrease to $\pm 100^\circ C$. The clinker is then milled in the cement mill with the another additive materials (gypsum, lime stone, and pozzoland) to produce cement.

The cement demand is increase as the population increment. It is estimated that the cement consumption of the world especially in the developing countries will be highly increased in year 2050 [12]. If the cement productions increase, then the requirement of natural and energy resources will be increased. It will become a challenge for the cement industry, in order to increase the cement production with the more limited availablity of the natural and energy resources.

PT Semen Padang has a highly commitment to develop the concept of green industry, which reflected in the company’s vision and mission. The vision of PT Semen Padang is to become a great, preminent, and environmentally benign cement company in West Region of Indonesia and South East Asia Region. The mission of PT Semen Padang is powering, developing, and sinergizing the company resources environmentally benign. In order to achieve the company’s vision and mission, PT Semen Padang develop an integrated management system as the guidance for all company’s activities, and transformed into nine aspects consisting of effectivity and efficiency, sustainability and innovation, quality, occupational health and safety; environmental, security, legally, data accuration, and corporate social responsibility. These nine aspects become the requirements for all business process applied in the company.

Methodology

Materials. The experiments are conducted in the cement mill of PT. Semen Padang. The materials used consisting of clinker, gypsum, and the additional materials consist of lime stone, and pozzoland.

Experimental Variables. The independent variable used in the experiment is the clinker factor. The experiments are conducted in four variable of the clinker factor consisting of one experiment without CGA and three experiments with CGA. The first experiment is conducted without the CGA addition with the clinker factor of 77.8%. The subsequent three experiments are conducted with the clinker factor varies from 78.3% to 72.9%. The details can be seen in Table 1.

<table>
<thead>
<tr>
<th>Type</th>
<th>Clinker factor</th>
<th>CGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77.8 %</td>
<td>(-)</td>
</tr>
<tr>
<td>2</td>
<td>78.3 %</td>
<td>(+)</td>
</tr>
<tr>
<td>3</td>
<td>74.5 %</td>
<td>(+)</td>
</tr>
<tr>
<td>4</td>
<td>72.9 %</td>
<td>(+)</td>
</tr>
</tbody>
</table>

Note: (-) : Without CGA
(+) : With CGA

Table 1. Independent variables of experiment
The controlled variables used in the experiment consisting of CGA, lime stone, pozzoland, gypsum. The descriptions of the controlled variables can be seen in Table 2.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGA</td>
<td>300 ppm (1 L/minute)</td>
</tr>
<tr>
<td>Limestone : Pozzoland</td>
<td>1 : 1</td>
</tr>
<tr>
<td>Gypsum</td>
<td>3 %</td>
</tr>
<tr>
<td>Feeding</td>
<td>200 tph</td>
</tr>
</tbody>
</table>

Experiment Procedures.

The main material required in the experiment is the clinker at the determined composition (as shown in Table 1). The clinker is grinded with gypsum and the additional materials of lime stone and pozzoland at the determined composition (as shown in Table 2). During the grinding process, the CGA is added with 300 ppm (1 L/minute). The results of the experiment is analized for every one hour and then accumulated for one day in order to check the product quality.

Results and Discussions

The Fig.1 shows the results of experiment. The first experiment with the clinker factor of 77.8% and the sample without CGA, resulting the cement fineness at 3525 cm²/gr and the sieving R45µ at 18%. The results show that the sample with the factor clinker of 74.5% (lower than sample without CGA) and with the CGA addition 300 ppm has optimized to improve the cement fineness at 3848 cm²/gr and decrease the sieving R45µ at 10%. In addition, the strength of the cement is still higher than the standard.

From the results, it can be concluded that the grinding aids addition has affected the clinker factor. The addition of chemical grinding aids (CGA) into the clinker mill is aimed to reduce the hydrostatic force and to minimize the agglomeration of cement particles which occur during the cement production process [8,16]. Grinding aids used in this experiment can increase the cement fineness and the cement strength. In this research, the CGA has added at the same concentration. The results show that the clinker factor is decrease as the CGA addition. The correlation between the clinker factor with the cement strength is vice versa. Furthermore, the higher clinker factor is reduced, the cement strength produced will be increased. Fig. 1 shows that the optimal value of cement strength is at 74.5% of the clinker factor, which is at the maximum range of the clinker factor referred to Indonesian National Standard (SNI).

In the clinker grinding process, most of the grinding media (cement mill) have a low efficiency. The cement particles can attached at the wall of the cement mill, covering the amour plating and can affect the agglomeration of cement particles. It needed the higher energy to destroy the agglomerated particles inside the cement mill. With the addition of grinding aids into the cement mill can reduce the agglomeration inside the cement mill and improve the effectivity of the mill process, so that the cement fineness can be increased and the cement quality produced can be improved. The higher cement quality produced, the clinker factor can be reduced and so as the CO₂ emission can be reduced.
Conclusions

This study has determined the clinker factor of the cement production by chemical grinding aids addition. The results show that the optimal clinker factor is at 74.5% with the CGA addition. The findings suggest the CGA addition in the cement production process can improve the grinding quality which affect to the decreasing of clinker factor but the cement quality produced remain as the standard. The clinker factor is one of the parameter influencing the quality of cement product. The lower of the clinker factor is utilized then the cement quality produced will be higher. From the results, it can be concluded that the grinding chemical aids (CGA) addition can reduce the agglomeration occurs during the cement production process. The lower agglomeration can increase the cement fineness and have linear correlation with the cement quality. Subsequent, at the higher cement quality, the clinker factor can be reduced and the CO₂ emissions are also decreased.

Acknowledgments

The authors would like to thanks to PT Semen Padang, Andalas University, Padang, Indonesia and Ministry of Education and Culture, Republic of Indonesia.

References

Recent Decisions in Technologies for Sustainable Development

Journal Search

Search query

- Exact phrase

Applied Mechanics and Materials

Country: Germany

Subject Area: Engineering

Category: Engineering (miscellaneous)

Quartile (Q1 means highest values and Q4 lowest values)

H Index: 15

SJR indicator vs. Cites per Doc (2y)

In order to view charts, you need to upgrade your Flash Player

The SJR indicator measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is. Cites per Doc. (2y) measures the scientific impact of an average article published in the journal, it is computed using the same formula that journal impact factor ™ (Thomson Reuters).

Citation vs. Self-Citation

In order to view charts, you need to upgrade your Flash Player

Evolution of the total number of citations and journal's self-citations received by a journal's published documents during the three previous years.

Cites per Document vs. External Cites per Document

In order to view charts, you need to upgrade your Flash Player

Evolution of the number of total cites per document and external cites per document (i.e. journal self-citations removed) received by a journal's published documents during the three previous years.

Cites per Document in 2, 3 and 4 years windows

In order to view charts, you need to upgrade your Flash Player

Evolution of Citations per Document to a journal's published documents during the two, three and four previous years. The two years line is equivalent to journal impact factor ™ (Thomson Reuters) metric.

International Collaboration

In order to view charts, you need to upgrade your Flash Player

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country.

Journal's Citable vs. Non Citable Documents

In order to view charts, you need to upgrade your Flash Player

Not every article in a journal is considered primary research and therefore "citable", this chart shows the ratio of a journal's articles including substantial research (research articles, conference papers and reviews) in three year windows.

Journal's Cited vs. Uncited Documents

In order to view charts, you need to upgrade your Flash Player

Ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.

ScimagoLab, Copyright 2007-2016. Data Source: Scopus®