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1 Introduction

By the definition of [13], [14] a real Bott manifold is the total space Bn of a
sequence of RP 1-bundles starting with a point:

Bn → Bn−1 → · · · → B2 → B1 → {a point}.

Each RP 1-bundle Bi → Bi−1 is the projectivization of the Whitney sum of
a real line bundle Li and the trivial line bundle over Bi−1. Futhermore in
[13], [14] it was explained that from the viewpoint of group actions, an n-
dimensional real Bott manifold (n-RBM) is the quotient of the n-dimensional
torus T n = S1× · · · × S1 by the product (Z2)

n of cyclic group of order 2. The
free action of (Z2)

n on T n can be expressed by an n-th upper triangular matrix
A whose diagonal entries are 0 and the other entries are either 1 or 0. The
orbit space M(A) = T n/(Z2)

n is the n-dimensional the real Bott manifold and
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we call A a Bott matrix of size n. The real Bott manifold M(A) also provides
an example of a flat Riemannian manifold.

Let f : M → M be a diffeomorphism of a flat manifold M . We say f is
an affine diffeomorphism of M if the lifting of f to universal covering Rn of
M belongs to Aff(Rn) = RnoGL(n,R) the group of affine transformation of
Rn. Such a lifting then automatically belongs to the normalizer NAff(Rn)(π) of
the fundamental group π = π1(M) of M . An affine diffeomorphism f of M is
hyperbolic if and only if f lifts to an affine transformation (d,D) ∈ Aff(Rn)
with D hyperbolic (i.e. having no eigen-values of absolute value 1). As to the
denition of Anosov diffeomorphism, you defined for any Riemannian metric
df decomposes the tangent space into expansion-part and contraction-part. It
had better mention that if df satises the Anosov property, then df satisfies for
any Riemannian metric. So we take the euclidean metric (flat metric) on a flat
manifold M to show that f is an Anosov diffeomorphism.

Note that each hyperbolic diffeomorphism of a flat Riemannian manifold
M defines an Anosov diffeomorphism on M . Conversely, K. Dekimpe et al. [6]
proved the following lemma.

Lemma 1.1 ([6]). If f : M → M is an Anosov diffeomorphism of a flat Rie-
mannian manifold M , then f is homotopic to a hyperbolic diffeomorphism
g : M →M .

Recall that if π is any crystallographic group, then π satisfies an exact
sequence

0→ Λ→ π → Φ→ 1

where Λ = π ∩Rn is a lattice of rank n, and Φ = pr(π) is a finite group. Here
pr : E(n)→O(n) is a homomorphism defined by pr(d,D) = D, (d,D) ∈ E(n).
We call Φ, the holonomy group of π (see [7]).

Flat Riemannian manifolds supporting Anosov diffeomorphisms can be
characterized by the following theorem:

Theorem 1.2 ([5]). An n-dimensional flat manifold M with holonomy group F
and associated holonomy representation T : F → GL(n,Z) admits an Anosov
diffeomorphism if and only if each Q-irreducible component of T of multiplicity
one is reducible over R.

Here, ”multiplicity” means the number of times a component appears in
the decomposition of T .

In [13] it was introduced three operations, which are called moves, to a Bott
matrix A under which the diffeomorphism class of M(A) does not change. By
an iteration of the moves, M(A) is diffeomorphic to T k×(Z2)s

M(B). That

is, there is a k-torus action on M(A) whose quotient space is an (n − k)-
dimensional real Bott orbifold M(B)/(Z2)

s by some (Z2)
s-action (1 ≤ s ≤ k).
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Here M(B) is an (n − k)-dimensional real Bott manifold corresponding to a
Bott matrix B of size (n − k). In addition, each of such M(A) has the first
Betti number b1(M(A)) = k, 1 ≤ k ≤ n. This result also implies that the Bott
matrix A reduces to  Ok−s 0 0

0 Os ∗
0 0 B

 . (1)

It follows that
M(A) = T n/(Z2)

n = Rn/π(A).

Here π(A) is the fundamental group of M(A).
On the other hand, an n-RBM is a small cover over an n-cube (see [10]).

(See definition of a small cover in [8].) Choi [9] showed that small covers over
cubes are strongly related to acyclic digraphs. If D is an acyclic digraph then
its adjacency matrix AD with respect to its acyclic ordering (i.e. , if (vi, vj) is
an arc in D then i < j) is an upper triangular matrix with zero diagonals. Choi
and Oum [10] introduced two operations, the so-called local complementation
and slide, on acyclic digraphs and proved that two acyclic digraphs D and
H are Bott equivalent (i.e. , one has an isomorphic digraph that is obtained
from the other by successively applying the two operations) if and only if the
corresponding real Bott manifolds M(AD) and M(AH) are diffeomorphic.

In this paper we provide the characterization of real Bott manifolds admit-
ting Anosov diffeomorphisms in terms of acyclic digraphs.

2 Bott equivalence of acyclic digraphs

In this section we review the terminology in graph theory, and recall two
operations on acyclic digraphs and some results in [10].

A directed graph (or just digraph) D = (V,E) consists of a non-empty
finite set V := V (D) of elements called vertices and a finite set E := E(D)
of ordered pairs e = (u, v) of distinct vertices called arcs. We call V (D) the
vertex set and E(D) the arc set of D. The order of D (denoted by |D|) is the
number of vertices in D. An ordering v1, v2, . . . , vn of vertices of a digraph D
is an acyclic ordering if i < j for each arc (vi, vj) in D. A digraph is acyclic if
it admits an acyclic ordering.

If (u, v) is an arc of D, we say that a vertex u is adjacent to a vertex v in
D, v is called an out-neighbor of u and u is called an in-neighbor of v. For a
vertex v ∈ D, we use the following notation:

N+
D (v) = {u ∈ V \{v}|(v, u) ∈ E}, N−D (v) = {u ∈ V \{v}|(u, v) ∈ E}.

deg+D(v) = |N+
D (v)| is the number of out-neighbors of v, and deg−D(v) = |N−D (v)|

is the number of in-neighbors of v.



4868 Admi Nazra

For two graphs D = (V,E) and D′ = (V ′, E ′), a bijection f : V → V ′ is
called an isomorphism when (u, v) ∈ E if and only if (f(u), f(v)) ∈ E ′. Two
digraphs are isomorphic if there is an isomorphism.

For a graph D = (V,E) with a fixed ordering {v1, v2, . . . , vn} of V , the
adjacency matrix of D is an n× n matrix AD = (aij)i,j∈1,2,...,n such that

aij =

{
1 if (vi, vj) ∈ E,

0 otherwise.

An acyclic digraph H is Bott equivalent to an acyclic digraph D if H has
an isomorphic digraph that is obtained from D by successively applying local
complementations and slides. In the following, Choi and Oum[10] introduced
local complementations and slides.

For a vertex v of a digraph D, let D ∗ v be a digraph obtained by adding
an arc (u,w) if (u,w) 6∈ E, or removing the arc (u,w) otherwise, for each pair
(u,w) ∈ N−D (v)×N+

D (v) with u 6= w. This operation to obtain D ∗ v from D
is called a local complementation at v. A local complementation on digraphs
was first introduced by Bouchet[1].

For two sets X and Y , we write X4Y = (X \Y )∪(Y \X). For two distinct
vertices v, w having the same set of in-neighbors in a digraph D, we define
D4vw to be a digraph obtained by replacing N+

D (w) with N+
D (w)4N+

D (v).
This operation to obtain D4vw from D is called a slide.

It is easy to observe that if D is an acyclic digraph, then so are D ∗ v and
D4xy (assuming N−D (x) = N−D (y)).

If D is an acyclic digraph, then its adjacency matrix AD with respect to
its acyclic ordering is an upper-triangular square matrix with zero diagonals,
i.e, AD is a Bott matrix. So, there is a bijection from the set of Bott matrices
of size n to the set of acyclic digraphs on vertices {v1, . . . , vn}. Therefore we
can study real Bott manifolds in terms of acyclic digraphs.

Theorem 2.1 ([10], Theorem 4.4). Two acyclic digraphs D and H are Bott
equivalent if and only if the corresponding real Bott manifolds M(AD) and
M(AH) are diffeomorphic.

3 Anosov diffeomorphisms on real Bott man-

ifolds and acyclic digraphs

In this section, we study the relation between an Anosov diffeomorphism of a
real Bott manifold M(A) and an acyclic digraph D corresponding to a Bott
matrix A as the adjacency matrix of D.

Given an n-RBM M(A) = T k ×(Z2)s M(B). Let {v1, . . . , vn} be the set of
vertices of an acyclic diagraph D corresponding to the adjacency matrix A.
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By definition, if an entry aij = 1 in A then there is an arc (vi, vj) ∈ E(D).
This means, vi ∈ N−D (vj) and vj ∈ N+

D (vi).
Since each Bott matrix A can be reduced to (1), N−D (vi) = ∅ for i = 1, . . . , k

and N−D (vj) 6= ∅ for j = k + 1, . . . , n. Note that {vk+1, . . . , vn} is the set of
vertices of an acyclic diagraph H corresponding to the adjacency matrix B.

Theorem 3.1. Given a real Bott manifold M(A), and let D be the acyclic
digraph corresponding to the adjacency matrix A. M(A) supports an Anosov
diffeomorphism if and only if for each v ∈ V (D) there is a w ∈ V (D) (v 6= w)
such that N−D (v) = N−D (w).

Proof. Let F be the holonomy group of M(A) and T : F → GL(n,Z) be
the associated holonomy representation. It is easy to see that the holonomy
representation T of M(A) has the diagonal form:

T (x) =


Ik 0

1̂

0 . . .

1̂

 , ∀x ∈ F, 1̂ ∈ {1,−1}.

The diagonal entries of T (x) correspond to the entries in a row of A where
the entries 1 and −1 in T (x) correspond to 0 and 1 respectively in a row of
A. By Maschke’s theorem[11], since F is finite, the holonomy representation
T is completely reducible over Q and so T decomposes as a direct sum of
Q-irreducible components:

T (x) = T1(x)⊕ · · · ⊕ Tn(x) ∀x ∈ F,
Ti(x) ∈ {1,−1} ∀i = 1, . . . , n.

So each Q-irreducible component Ti of T has dimension one. Obviously, such
components are not reducible over R. By definition, Ti is equivalent to Tj
(Ti ∼ Tj, i 6= j), if there exists m ∈ GL(1,Z) such that mTi(x) = Tj(x)m,
∀x ∈ F .
(⇒) Assume that M(A) admits an Anosov diffeomorphism. Since each Q-
irreducible component Ti is not reducible over R, by Theorem 1.2, there is
no Q-irreducible component of T of multiplicity one (i.e. , each 1-dimensional
Q-irreducible component of T has at least multiplicity two). Hence for each
Ti, there is Tj (i 6= j) such that Ti ∼ Tj (i.e., for each column x of A, there is
a column y such that x = y). So, in terms of the acyclic digraph D, for each
v ∈ V (D) there is w ∈ V (D) such that N−D (v) = N−D (w).
(⇐) Assume that M(A) does not support an Anosov diffeomorphism. Again
by Theorem 1.2, there is a Q-irreducible component of multiplicity one which
is not reducible over R. Since each Q-irreducible component Ti is not reducible
over R, there is v ∈ V (D) such that N−D (v) 6= N−D (w) for any w ∈ V (D). So
we have a contradiction.
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Ishida [4] proved that an n-RBMM(A) is symplectic if and only if |{k|N−D (vk)
= N−D (vj)}| is even for every j ∈ {1, . . . , n}, with V (D) = {v1, . . . , vn}. This
means each symplectic real Bott manifold admits an Anosov diffeomorphism.

Corollary 3.2. If a real Bott manifold M(A) admits an Anosov diffeomor-
phism then

a) The source of D is not unique.

b) For every pair {v, w} ⊂ V (D), |N+
D (v) ∩N+

D (w)| 6= 1.

c) For every pair {v, w} ⊂ V (D), |N+
D (v) \ {N+

D (v) ∩ N+
D (w)}| 6= 1 and

|N+
D (w) \ {N+

D (v) ∩N+
D (w)}| 6= 1.

d) For each vj ∈ V (D), |N+
D (vj) \ {

⋃n
i=1
i 6=j

N+
D (vi)}| 6= 1.

Proof. Recall that v ∈ V (D) is a source of D if deg−D(v) = 0. If the source of
D is unique, then the corresponding M(A) admits a maximal S1-action (i.e. ,
b1(M(A)) = 1). Hence M(A) does not admit an Anosov diffeomorphism ([5]).
For b), assume that there exists a pair {v, w} ∈ V (D) such that |N+

D (v) ∩
N+

D (w)| = 1. Let u ∈ N+
D (v) ∩ N+

D (w). Then N−D (u) 6= N−D (x) for any x ∈
V (D). We have a contradiction. For c) and d), the proofs are similar to b).

Since each Bott matrix A can be reduced to (1), as a consequence we obtain
the following corollary.

Corollary 3.3. If an n-RBM M(A) = T k×(Z2)s M(B) admits an Anosov
diffeomorphism then the (n − k)-dimensional real Bott manifold M(B) also
admits an Anosov diffeomorphism.

This corollary coinsides with Nazra’s result (Theorem 2.1 in [3]) which is
proved by using topological method.

In order to determine the number of distinct diffeomorphism classes of
M(A) supporting Anosov diffeomorphisms, we can apply Theorem 3.1 together
with Theorem 2.1.

Example 3.1. Here we give an example that if a real Bott manifold M(B)
admits an Anosov diffeomorphism then a real Bott manifold M(A) = T k×(Z2)s

M(B) obtained from M(B) by (Z2)
s-action does not necessarily admit an

Anosov diffeomorphism.
Consider the 2-dimensional torus T 2. The corresponding Bott matrix is

B =

(
0 0
0 0

)
. It is well known that every diffeomorphism on T n (n ≥ 2)

admits an Anosov diffeomorphism ([12]).
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Now we obtain a 4-dimensional real Bott manifold M(A) with (Z2)
2-action

on M(B) where the corresponding Bott matrix A =

 0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

. By The-

orem 3.1, it is clear that M(A) does not admit an Anosov diffeomorphism.

4 Conclusion

Related to the acyclic digraph which correspond to a real Bott manifold, we
obtain necessary and sufficient conditions for the real Bott manifold to admit
an Anosov diffeomorphism.
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