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Abstract. Bird flu infection processes within a poultry farm are formulated mathematically. A spatial effect is taken into
account for the virus concentration with a diffusive term. An infection process is represented in terms of a traveling wave
solutions. For a small removal rate, a singular perturbation analysis lead to existence of traveling wave solutions, that
correspond to progressive infection in one direction.
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INTRODUCTION

Avian influenza or bird flu has been documented since the last decade of the 19th century when E. Perroncito reported
on outbreaks of a severe and highly contagious new poultry disease in Northern Italy. Within the last 130 years,
more than 30 outbreaks of fowl plague have been reported worldwide [2]. These outbreaks, which are associated
with significant economic losses and animal suffering, are most commonly referred to as "high pathogenic avian
influenza" or "HPAI" [1]. The infection with highly pathogenic form is transmitted rapidly over a poultry farm and
causes domestic birds serious symptoms that eventually lead to death. In practice, spot-check is often conducted to
detect infection with H5N1. Even if infection is detected only from one bird, all the birds in the farm are disposed of,
which have been causing immense damage to the poultry industry.

Various mathematical models have been proposed in studies of avian influenza. A SI-SIR model was analyzed for
infection processes of birds and humans [4]. The transmission dynamics and spatial spread pattern of HSN1-Avian
Influenza were studied [5]. The spatial spread of avian flu among flock and human were studied with diffusive terms
[3]. The SI-SIR epidemic model describing the transmission of avian influenza among birds and human was proposed
[6]. Mathematical models for bird flu infection within a poultry farm were proposed [7, 9, 10, 11].

Bird flu transmission processes involve influenza virus as source of disease, domestic birds as host, and the
environment as medium. In a production process of a poultry farm, the entire population of domestic birds is
maintained at the manageable capacity for profitable production by supply of new healthy birds for vacancies. Once
bird flu intrudes into a poultry farm, some infected birds die at an early stage, and some others live longer. Regardless
of being alive or dead, infected birds are the hosts of the virus, unless they are completely removed from the entire
population. Mathematical models based on those factors were proposed in study of bird flu infection processes within
a poultry farm. The population of susceptible birds and the population of infected birds were formulated [7]. The
population of susceptible birds, the population of infected birds, and the virus concentration were modeled [9]. Those
models are systems of ordinary differential equations. Spatial effects were incorporated into mathematical modeling
[10].

The mathematical study of bird flu infection processes within a poultry farm is continued. In this paper, the
mathematical models proposed in [11] are reformulated by considering spatial effect. A singular perturbation analysis
lead to existence of traveling wave solutions, that correspond to progressive infection processes in one direction.
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MATHEMATICAL MODELS OF BIRD FLU INFECTION PROCESS WITHIN A
POULTRY FARM

The bird flu virus transmits through dirt and air, and the virus concentration was incorporated into modeling. Let X,
Y, and Z be the population of susceptible birds, the population of infected birds, and the virus concentration in the
medium, respectively. The number of susceptible birds to become infected birds per unit time is proportional to the
virus concentration in the medium, and it is also proportional to the number of susceptible birds. The decreasing rate
of susceptible birds due to infection is cXZ and

ax
ar :a{c‘—(X+Y)}—GXZ (D
holds, where o is a positive constant, a is the rate of supply of new healthy birds for vacancies and c is the capacity of
the farm.
The decreasing rate in the population of susceptible birds due to infection is the increasing rate in population of
infected birds, and the number of infected birds removed from the entire population is proportional to the number of

lnfected blrdS ltself and

holds, where m is the removal rate. Infected birds are the hosts of influenza virus. The increasing rate of the virus
concentration is proportional to the number of infected birds, and the decreasing rate of virus concentration is
proportional to the virus concentration itself and
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holds, where p and ¢ are positive constants. The equations (1), (2), and (3) lead to the following system of equations
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where r = ¢/p and @ = o /r [9]. Under the assumption that vacancies due to infection are replaced instantly and that
the total population always balances with the capacity of the farm, X +Y = ¢ and

dX dy

—=——=—0wrXZ -X 5

ar ar rXZ+m(c—X) (5)
holds, the system (6) for the populations of the susceptible birds X and the virus concentration in the medium Z is
obtained from the system (4).

179.4
— = m(c—X)—orXZ,
dt
(6)
dz (c—X—r2)
— = c—X—rZ).
dt P

There are two stationary points of the system (6), one of which corresponds to the state free of infection and
the other corresponds to an endemic state in which part of the populations is infected. The state free of infection is
assymptotically stable and the endemic state is unstable for wc —m < 0, while the state free of infection is unstable and
endemic state is assymptotically stable for wc —m > 0. Those two stationary points coincide for wc —m = 0. Stability
of stationary points were analyzed in the previous study [11]. Figures 1 and 2 show the solutions of the system (6) with
initial values (Xo,Zp) = (1.0,0.2), (Xo,Zo) = (1.0,0.4), (Xo,Zy) = (1.0,0.6), (Xo,Zp) = (1.0,0.8). Figure 1 shows that
solutions converge to the stationary point which corresponds to the state free of infection for m = 1.5. Figure 2 shows
that solutions converge to the stationary point which corresponds to the endemic state for m = 0.5.
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FIGURE 1. Solutions of the ODE system (6) for @c —m < 0

c=10 omega=1.0,r= 10, p=1.0,m =05

FIGURE 2. Solutions of the ODE system (6) for wc —m > 0

The viruses diffuse through the medium. In what follows, the effect of virus diffusion is taken into account. In order
to take the spatial change into consideration, let x be the one dimensional coordinate variable. It is approriate to assume
that the medium is one dimensional because bird cages are lined up in one direction. When a diffusive term is added
to the right-hand side of the second equation, the system (6) becomes

0X

— = m(c—X)—orXZ,

dt 7
Z _ pe-x-1z)+a? v
o PeTATremaga

where d is the diffusion constant. The unknown variables X and Z of the system (6) are now functions of x and .
Solutions X (x,) and Z (x,7) are defined for 0 < x <[ and > 0, and they satisfy the initial conditions

X (x,0) =Xo(x) and Z(x,0) =Zp (x) (0<x<I)

b
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and the boundary conditions

X 0Z 0X 0Z
TX(OJ):X(OJ)Zg(ZJ):y(ZJ):O (t>0).

X

Note that stationary points of the system of ODE’s (6) are solutions of the system of PDE’s (7).

TRAVELING WAVE SOLUTIONS OF HOST VIRUS MODEL

Traveling waves are solutions that represent the transportation of information in a single direction [8]. Those solutions
often exist in dynamical systems with spatial diffusion, which are represented in a mathematical model. In this study,
traveling waves of virus transmission are investigated. Assumed that the solutions of diffusive equation (7) have the
shape of a traveling wave as it propagates, let

X (x,r) =U(s) and Z (x,r) =V (s), s=x—kt, (8)

where k is a positive constant. We seek function U and V with the property that they approach constant value at
s — ®oo. The wave speed k is a priori unknown and must be determined as apart of the solution problem. Subtituting
(8) into (7) leads to the system of the second order ordinary differential equations

—kU'" = m(c—U)—orUV,
/ &)
—kV' = plc—=U—=rV)+dV".
We write (9) as a simultaneous system of first order equations by defining V/ = W
1
U = % {m(c—U)—wruv},
Vo= W, (10)
W = —W-p(c—U-rV),
where P
P
6=- =-=.
a P74
In the (U,V, W) phase space, there are two stationary points for the system (10)
(U,V,W) =(c,0,0), (11
m @Wc—m
Uvw)=|—, ,0). 12
w.vw) = (2.2 0) (12)
The stability of the stationary points (11) and (12) depend on the eigen values of the Jacobian matrix
- o -
o0
Ai=1 0 0 K (13)
L P pr =0 |
- -
T ox "
Ay = 0 0 1 . (14)
L P pr =06 |

Numerical results show that eigenvalues of the matrices are all real-valued, and those are one negative eigenvalue and
two positive eigenvalues, or two negative eigenvalues and one positive eigenvalue. In any case the stationary points
are unstable for any positive value of k.
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Considering a new time scale r = k7 in (10) gives

U = —{m(c-U)—oruv},
Vo= W, (15)
W = kK{-6W-p(c—U-rV)},

where . denotes the derivative with respect to T while ’ denotes the derivatives with respect to s. In the limit k — 0,
the the system (15) becomes

U = —{m(c-U)—orUuv},
vV = 0, (16)
W = o
This is the center manifold of system (10) in the limit, that is
mc
u = ————
m+orV’
V. = Constant, (17)
W = Constant.
On the center minifold, the system (10) reduces to
V. = W,
(18)
mc
W o= —8W-— - =7V .
p (C m+ orV " >
The system (18) has two stationary points
(V.W) =(0,0), (19)
wc—m
VW)= 0). 20
)= (2 ".0) 20)
The Jacobian matrices J; and J, associated with stationary points (19) and (20) are
0 1
h=| _pocr o 5 1)
m
0 1
= e s (22)
wc

respectively. The eigenvalues of J; are

_ &, JOKa? —&(pr/dm)(c—m)
li_—ﬂj: 3 .

(23)

The eigenvalues of J, are

k n V(=k/d)? —4(pr/dcw)(m— wc)
He= " 2 '
For wc —m < 0, A_ is negative and A is positive, but ty are both negative. Under this condition, the stationary
point (19) is unstable and the stationary point (20) is asymptotically stable. Conversely, for @c —m > 0, A, are both
negative, but 11— is negative and (i is positive. Under this condition, the stationary point (19) is asymptotically stable
and the stationary point (20) is unstable.

Figures 3 and 4 show solutions of the system (18) with initial values (Vy, Wy) = (0,0.5). Figure 3 shows that solutions
converge to the stationary point (19) for m = 0.5, which confirms that the stationary point (19) is asymptotically stable
for wc —m > 0. Figure 4 shows that solutions diverge to the stationary point (20) for m = 1.5. The stasionary point
(20) is practically insignificant for wc —m < 0. So, traveling waves of the system (7) exist for wc —m > 0. Figure 5
and 6 show the vector fields of the ODE system (18) and progressive waves of bird flu infection respectively.

24
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FIGURE 3. Solutions of the ODE system (18) for wc —m >0
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FIGURE 4. Solutions of the ODE system (18) for wc —m < 0

DISCUSSION

It has been shown in Section 3 that the stationary points of the system (10) correspond to the state free of infection.
After perturbation, the stationary points of the system (10) leads to convergence to the stationary point (19) when
m = 0.5 and it is practically insignificant to the stationary point (20) when m = 1.5. For wc —m > 0, there is a unique
heteroclinic orbit of system (18) connecting the stationary points (19) and (20). This shows that the system (10) has a
heteroclinic orbit for @wc —m > 0 for all small k, which leads to a conclusion that the system (17) admits a traveling
wave solution for all small positive k. This result leads to the conclusion that intrusion of bird flu leads to infection
of the entire population for a small removal rate of. The removal of infected birds is essential for maintenance of the
state free of infection. In a typical bird house of a poultry farm, birds are kept in cages lined up in one direction. The
host-virus model (7) is appropriate. Our analysis has shown that an infection process of bird flu within a poultry farm

is interpreted as a traveling wave solution. This should be taken into consideration of strategies for prevention of bird
flu outbreak within a poultry farm.
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FIGURE 5. Vector fields of the ODE system (18)
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FIGURE 6. Progressive waves of bird flu infection (0):t=0, (1):t=5, (2):t=10, (3):t=15, (4):t=20, (5):t=25
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