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original work is properly cited. Abstract This paper discusses the relationship of second homotopy module for
two different presentations defining a similar group. These two presentations can be transformed to each other
using Tietze transformation. This relationship was determined by considering the generators of second homotopy
module for both presentations. Mathematics Subject Classification : 14F35, 14H30, 20F05, 20M05 Keywords:
Second homotopy module, Tietze transformation, Generator 1 Introduction Let be a presentation for a group G.
Then we have the first fundamental group () over . The elements of () are equivalent

 700 Yanita and Abdul Ghafur Ahmad classes of words n. Moreover, we can have a picture over .A picture over
is an object consist of disjoint arcs labelled by element of x, discs labelled by element of r, and a boundary disc
with a basepoint. A picture over is a spherical picture if all arcs in do not touch the boundary disc. Then we have
the second homotopy module r (). The elements of r () are equivalent classes of spherical picture []. Let a group
defined by two group presentation, say and r . There are some alternations one can make to presentation 2 which
result in presentation of a group isomorphic to the original 1 (see [1] and [5]). These are called Tietze
transformations. Tietze transformation are simply the obvious ways of transforming a finite presentation . Tietze
transformation are useful in special cases for showing that two given presentations define isomorphic group,
and, in particular, for simplifying a given presentation. We describe this transformations as follows. Let dan r be
two presentations of the group . Then there are the following Tietze transformations which may be performed
upon the group presentations: (T1) If the word S is derivable from , then add S to the list of relators. (T2) If the
word S is derivable from , remove S from the list relators. (T3) If R is word in the x, and y is some symbol not in
the generating set, add y to the generating set and add word to the relator set. (T4) If there is a relator of the form
, with y not appearing in R, delete this relator and delete y from the generating set, replacing all order occurences
of y in the relator words with . The problem of r () is to compute its generator (see [4]). Suppose that P is set of
spherical pictures over . If all spherical pictures are equivalent to the empty picture (relative to P) then we say
that P generates r (). In this paper we are going to determine the relationship between generators of r (1) and r (2)
if 1 and 2 define the same group. We are going to prove: Theorem 1. Let 1 and 2 be a presentation define a group
, where is a cyclically reduced word define and (relative to ). If r (1)is generated by then r (2) is generated by ,
where is spherical picture having a T-disc joining to a picture over 1. Theorem 2. Let 1 and 2 be a presentation
define a group , where S a word on . Then r (1) has same generator with r (2). Proof of these theorem by using
operations on picture and van Kampens Lemma and will be given on section 3.

 Computing generators of second homotopy module 701 2. Picture and Operation on Picture A picture in is an
object consist of disjoint arcs labeled by element of xdiscs labeled by element of r and a boundary disc with a
basepoint (see [4] and [2]). A picture in is a spherical picture if all arcs in do not touch the boundary disc.
Certain basic operation can be applied to a picture (spherical picture) as follows: deletion and insertion floating
circle, deletion and insertion floating semicircle, deletion and insertion folding pair and bridge move (see [3]), as
depicts below. Two spherical pictures 1 and 2 are said to be equivalent if either: (a) both are spherical and one
can be transformed to the other by a finite number of operation deletion and insertion floating circle, deletion
and insertion folding pair and bridge move; or (b) both are not spherical and one can be transformed to the other
by a finite number of operation deletion and insertion floating circle, deletion and insertion semicircle, deletion
and insertion folding pair and bridge move. The equivalent class containing the spherical picture is denoted by
[]. The equivalent class containing the empty picture (null) is denoted by [4]. The mirror image for the spherical
picture is denoted by !. The addition 1 + 2 is defined by drawing 1 and 2. Set of equivalent classes of spherical
picture with binary operation [1] + [2] = [1 + 2] form a abelian group under this operation and this abelian group
is right "-module, where the action is given by []n#n (n# denotes the element of represented by n). This module
is called the second homotopy module of , denoted by r (). A set P of spherical pictures over will be called a
generating set of pictures if generates the "-module r () (see [6]) . It follow [4], that P is generating set if and
only if every spherical picture over can be transformed to empty picture by operations: bridge moves,
insertion/deletion of floating circles, insertion/deletion of folding pairs, insertion/deletion of pictures from $.
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Consider a collection % of spherical pictures. Now, we define two extended operation on pictures as follows : 1).
(Deletion of an %-picture) If there is a simple closed path in a picture such that

 702 Yanita and Abdul Ghafur Ahmad the part of the picture enclosed by the simple closed path is a copy of a
spherical picture. 2). (Insertion of an %-picture) The opposite of 1). Two pictures will be said to be equivalent
(relative %) if either: a). the pictures are both spherical and one can be transformed to the other by a finite
number of operation deletion and insertion floating circle, deletion and insertion folding pair, bridge move, and
deletion and insertion %-picture; or b). the picture are not both spherical and one can be transformed to the other
by a finite number of operations deletion and insertion floating circle, deletion and insertion floating semicircle,
deletion and insertion folding pair, bridge move and deletion and insertion %-picture (see [3]). 3. Proof of
Theorem 1.1 and Theorem 1.2 Proof of Theorem 1.1 Suppose that is generated by & . Consider that: ' (

 )
 )
 *
 r (*) is a one of operation Tietze transformation. From (*) we know that is a relator which is add on r and . Based

on van Kampen Lemma, there is a picture + over where n,+-. Then picture Figure 1. Spherical picture n,+- is a
spherical picture. Since + has T-disc, then it could not be got + of picture in . Therefore, + is one of generator of
r . From this, we have generator of r is generator of 1 and picture +. Let spherical picture in r . We consider two
case, i. e. 1). has no -disc, and 2). has -disc. If has no -disc, then is picture in . So 1 (relative 1). If has -disc,

 Computing generators of second homotopy module 703 Figure 2. Spherical Picture has -disc and picture has no -
disc. then we may put the picture on Figure 1. on left side Figure 2. We apply bridge move operation to delete
the inverses pair -disc. The operation is applied until there is no -disc in . So we deduce that r , r - is generated
by , where is spherical picture having a -disc joining to a picture over .. Proof of Theorem 1.2 Suppose that is
generated by P. Consider that / (

 )
 )
 *
 r is one of Tietze transformation operations. Recall that if with generator P is spherical picture with labeled . By

using (T3) operation is added a new generator in , say , where y is labeled by , so we have a new presentation,
that is r . Suppose that Q is generator of r , r -, but it isnt generator of r , -. So Q must have disc . Since spherical
picture arc is related to a disc which is inverses pair, so we can use bridge move operation. We use this operation
until there are no disc . Therefore, generator of r is labeled by , thus we have generator of r , r - is P.. Corrolari 1.
Let and r be a presentation define a group , where is a cyclically reduced word define and (relative to ). Let r , -
is generated by P then r , r - is generated by all disc are labeled by changed with a picture in is labeled . Corrolari
2. Let and r be a presentation define a group , where S a word on . Let r (1) is generated by P then r , r - is
generated by same pictures in P with arc changed by arc .
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 1 Introduction Let be a presentation for a group G . Then we have the first fundamental group b ( ) over . The
elements of b ( ) are equivalent

 classes of words tn . Moreover, we can have a picture f over . A picture f over is an object consist of disjoint arcs
labelled by element of x , discs labelled by element of r , and a boundary disc with a basepoint. A picture f over
is a spherical picture if all arcs in do not touch the boundary disc. Then we have the second homotopy module r (
). The elements of r ( ) are equivalent classes of spherical picture [ f ]. Let a group defined by two group
presentation, say b and r . There are some alternations one can make to presentation 2 which result in
presentation of a group isomorphic to the original 1 (see [1] and [5]). These are called Tietze transformations.
Tietze transformation are simply the obvious ways of transforming a finite presentation . Tietze transformation
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are useful in special cases for showing that two given presentations define isomorphic group, and, in particular,
for simplifying a given presentation. We describe this transformations as follows. Let b dan r be two
presentations of the group . Then there are the following Tietze transformations which may be performed upon
the group presentations: (T1) If the word S is derivable from , then add S to the list of relators. (T2) If the word
S is derivable from , remove S from the list relators. (T3) If R is word in the x , and y is some symbol not in the
generating set, add y to the generating set and add word b to the relator set. (T4) If there is a relator of the form b
, with y not appearing in R , delete this relator and delete y from the generating set, replacing all order
occurences of y in the relator words with . The problem of r ( ) is to compute its generator (see [4]). Suppose that
P is set of spherical pictures over . If all spherical pictures f are equivalent to the empty picture (relative to P )
then we say that P generates r ( ). In this paper we are going to determine the relationship between generators of
r ( 1 ) and r ( 2 ) if 1 and 2 define the same group. We are going to prove: Theorem 1. Let 1 and 2 be a
presentation define a group , where is a cyclically reduced word define and ( relative to ). If r ( 1 ) is generated
by b then r ( 2 ) is generated by b tf , where f is spherical picture having a T-disc joining to a picture f over 1 .
Theorem 2. Let 1 and 2 be a presentation define a group , where S a word on . Then r ( 1 ) has same generator
with r ( 2 ) . Proof of these theorem by using operations on picture and van Kampens Lemma and will be given
on section 3.

 2. Picture and Operation on Picture A picture f in is an object consist of disjoint arcs labeled by element of x
discs labeled by element of r and a boundary disc with a basepoint (see [4] and [2]). A picture f in is a spherical
picture if all arcs in f do not touch the boundary disc. Certain basic operation can be applied to a picture
(spherical picture) f as follows: deletion and insertion floating circle , deletion and insertion floating semicircle ,
deletion and insertion folding pair and bridge move (see [3]), as depicts below. Two spherical pictures f 1 and f 2
are said to be equivalent if either: (a) both are spherical and one can be transformed to the other by a finite
number of operation deletion and insertion floating circle, deletion and insertion folding pair and bridge move;
or (b) both are not spherical and one can be transformed to the other by a finite number of operation deletion and
insertion floating circle, deletion and insertion semicircle, deletion and insertion folding pair and bridge move.
The equivalent class containing the spherical picture f is denoted by [ f ]. The equivalent class containing the
empty picture (null) is denoted by [4]. The mirror image for the spherical picture f is denoted by !f . The addition
f 1 + f 2 is defined by drawing f 1 and f 2 . Set of equivalent classes of spherical picture with binary operation [ f
1 ] + [ f 2 ] = [ f 1 + f 2 ] form a abelian group under this operation and this abelian group is right " -module,
where the action is given by [ f ] n # tfn ( n # denotes the element of represented by n ). This module is called the
second homotopy module of , denoted by r ( ). A set P of spherical pictures over will be called a generating set
of pictures if t generates the " -module r ( ) (see [6]) . It follow [4], that P is generating set if and only if every
spherical picture over can be transformed to empty picture by operations: bridge moves, insertion/deletion of
floating circles, insertion/deletion of folding pairs, insertion/deletion of pictures from $ . Consider a collection %
of spherical pictures. Now, we define two extended operation on pictures as follows : 1). (Deletion of an % -
picture) If there is a simple closed path in a picture such that

 spherical picture. 2). (Insertion of an % -picture) The opposite of 1). Two pictures will be said to be equivalent
(relative % ) if either: a). the pictures are both spherical and one can be transformed to the other by a finite
number of operation deletion and insertion floating circle, deletion and insertion folding pair, bridge move, and
deletion and insertion % -picture; or b). the picture are not both spherical and one can be transformed to the
other by a finite number of operations deletion and insertion floating circle, deletion and insertion floating
semicircle, deletion and insertion folding pair, bridge move and deletion and insertion % -picture (see [3]). 3.
Proof of Theorem 1.1 and Theorem 1.2 Proof of Theorem 1.1 Suppose that b is generated by & . Consider that: b
'b (

 )
 )
 *
 r (*) is a one of operation Tietze transformation. From (*) we know that is a relator which is add on r and . Based

on van Kampen Lemma, there is a picture + over b where n , + - . Then picture Figure 1. Spherical picture n , + -
is a spherical picture. Since + has T- disc, then it could not be got + of picture in b . Therefore, + is one of
generator of r . From this, we have generator of r is generator of 1 and picture + . Let f spherical picture in r . We
consider two case, i. e. 1). f has no - disc, and 2). f has - disc. If f has no -disc , then f is picture in b . So b 1
(relative 1 ). If f has - disc,

 the part of the picture enclosed by the simple closed path is a copy of a
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Figure 2. Spherical Picture f has -disc and picture has no -disc. then we may put the picture on Figure 1. on left
side Figure 2. We apply bridge move operation to delete the inverses pair -disc. The operation is applied until
there is no - disc in f . So we deduce that r , r - is generated by tf , where f is spherical picture having a -disc
joining to a picture f over b . . Proof of Theorem 1.2 Suppose that b is generated by P . Consider that b / (

 )
 )
 *
 r is one of Tietze transformation operations. Recall that if b with generator P is spherical picture with labeled .

By using (T3) operation is added a new generator in b , say , where y is labeled by , so we have a new
presentation, that is r . Suppose that Q is generator of r , r - , but it isnt generator of r , b - . So Q must have disc
b . Since spherical picture arc is related to a disc which is inverses pair, so we can use bridge move operation.
We use this operation until there are no disc . Therefore, generator of r is labeled by , thus we have generator of r
, r - is P . . Corrolari 1. Let b and r be a presentation define a group , where is a cyclically reduced word define
and ( relative to ). Let r , b - is generated by P then r , r - is generated by all disc are labeled by changed with a
picture in is labeled . Corrolari 2 . Let b and r be a presentation define a group , where S a word on . Let r ( 1 ) is
generated by P then r , r - is generated by same pictures in P with arc changed by arc .
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