USER	
Username	
Password	
Remember me Log In	1

JOURNAL CONTENT Search All Search

Browse

- By Issue
- By Author
- By Title
- Other Journals

KEYWORDS

5-FU Aceclofenac Bioavailability Chitosan Dextran Dissolution Drug Delivery HPLC In situ gel Ofloxacin Pharmaceutical Sciences Pharmaceutics Piroxicam Solid

dispersion Solubility Sustained release Taste masking Transdermal chitosan

compressibility flowability

CURRENT ISSUE

1.0 2.0 5 1.0

FONT SIZE

INFORMATION

- For Readers
- For Authors
- For Librarians

Home > Vol 6, No 3 (2014)

International Journal of Drug Delivery

Vol 5 Issue 3; Page жиж-жиж ISSN: 0975-0215 ICV=5.28, IF=1.02

Vol 6, No 3 (2014): International Journal of Drug Delivery

Table of Contents

Review

CHITOSAN NANOPARTICLES - AN EMERGING TREND IN NANOTECHNOLOGY Rajalakshmi R, Indira Muzib Y, Aruna U, Vinesha V, Rupangada V, Krishna moorthy S.B NOVEL STRATEGY IN CONTROLLED GASTRORETENTIVE DRUG DELIVERY: IN-SITU FLOATING GEL Ashwini Ashok Jamdhade, Raosaheb Sopanrao Shendge, Vishal Vijay Pande

Original Research Articles

Formulation and Evaluation of Anti-Ulcer Floating Tablet Using Swellable Polymers

Atul Mansing Kadam, Shashikant Upadhye, Sandip Honmane, Sachin Patil, Shitalkumar Patil

Development and In vivo evaluation of immediate release amlodipine besylate and nebivolol hydrochloride coated pellets using 32 full factorial design by novel liquid technology

Yerra Roopa Rani, P Vijavalakshmi, J. Venkateswara Rao

Immunomodulatory effect of Ocimum gratissimum Linn, leaf extract on a Common Fish Clarias batrachus Linn,

Gayatri Nahak, Rajani Kanta Sahu

Impact of PLA/PEG ratios on Curcumin solubility and encapsulation efficiency, size and release behavior of Curcumin loaded poly(lactide)-poly(ethylenglycol) polyme Ha Phuong Thu, Phan Quoc Thong, Nguyen Hoai Nam, Nguyen Xuan Phuc, Do Hung Manh

Comparison of Freeze Drying and Spray Drying Methods of Haruan Extract

febriyenti febriyenti, Noratigah Mohtar, Nornisah Mohamed, Mohammad Razak Hamdan, Shahrizan Najib Md Salleh, Saringat bin Bai @ Baie FORMULATION AND IN VITRO CHARACTERIZATION OF ACECLOFENAC SUSTAINED RELEASE PELLETS PREPARED BY SUSPENSION LAYERING TECHNIQUE USING SUGAI Suresh Kumar, Suggula Sai Ratan, YAkkala Anil Raju

Effect of Freeze Drying and Spray Drying Processes to Amino Acids and Fatty Acids Contents in Haruan (Channa striatus) Extract

febriyenti febriyenti, Nornisah Mohamed, Mohammad Razak Hamdan, Shahrizan Najib Md Salleh, Saringat bin Bai @ Baie

Ternary Blends of some Hydrophilic and Hydrophobic Polymers in Colon Targeted Delivery of Metronidazole

Clement Jackson, Martins Emeje, Sabinus Ofoefule

Development and Statistical optimization of mucoadhesive drug delivery system of famotidine using Hibiscus esculentus polysaccharide

Pulak Deb, Suvakanta Dash, Padala Narsimha Murthy

One-Pot Multicomponent Synthesis of β-Acetamido Ketones Using BF3-Et2O as Catalyst

Pinki Rawat, Preeti Rawat, Piyush Kumar

(CC) BY

This work is licensed under a Creative Commons Attribution 3.0 License.

Impact Factor 1.29

Calculation based on average number of citations in Last two years, till December 2013.

Indexing and Abstracting

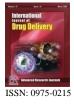
Scopus, Elsevier, CAS, EMBASE, DOAJ, Crossref, Index Copernicus, Worldcat, Google Scholar, Open J-Gate, ScopeMed, Science Central, EBSCO, Proquest, New Jour, Scirus, Scivee, Proquest, Academic resources, Citeseer, OAlster, Library Intelligencer, University of Nevado, University of Tsukuba Library, York University, Journalseek.

		Editorial Board
	PDF	Editor in Chief
	204-229	Pending for approv
	230-243	Board Member
	200 240	Dr. Erdal Cevher, Tu
		Dr. Raid Alany, Nev
	PDF	Dr. Joseph A. Nicola
	244-253	Dr. Anthony A. ATTA
d layering	PDF	Prof. Thierry Vanda
	254-267	Dr. Jörg Breitenbach
	PDF 268-278	Dr Gamal El Maghra
eric micelles	PDF	Dr. Srisagul Sungtho
	279-285	Prof. Alvaro F. Jimer
	PDF	Dr. Daniel Alberto A
DEDUCDEE	286-291	Dr. Anuj Chauhan, l
RSPHERES	292-300	
	PDF	Dr. Shivanand P. Pu
	301-304	
	PDF	
	305-310	NOTIFICATIONS
	PDF	View
	311-325	Subscribe / Un
	PDF	
	326-328	Jauraal Hala

ditorial Board
ditor in Chief
ending for approval
oard Member
n Erdal Cevher, Turkey
n, Raid Alany, New Zealand
n Joseph A. Nicolazzo, Ph.D. Australia
r, Anthony A. ATTAMA, Ph.D. Nigeria
rof. Thierry Vandamme, France
n Jörg Breitenbach, Germany
r Gamal El Maghraby, Saudi Arabia
n Srisagul Sungthongjeen, Thailand
rof, Alvaro F. Jimenez Kairuz, Argentine
ir. Daniel Alberto Allemandi, Argentina
n Anuj Chauhan, USA
r, Shivanand P. Puthli, Japan

NS

Unsubscribe


Journal Help

International Journal of Drug Delivery 6 (2014) 301-304 http://www.arjournals.org/index.php/ijdd/index

ntp://www.arjournais.org/index.pnp/ijdd/index

Original Research Article

Effect of Freeze Drying and Spray Drying Processes to Amino Acids and Fatty Acids Contents in Haruan (*Channa striatus*) Extract

Febriyenti^{1,2*}, Noratiqah Mohtar², Nornisah Mohamed², Mohammad Razak Hamdan³, Shahrizan Najib Md Salleh⁴, Saringat bin Bai @ Baie²

*Corresponding author:

Febriyenti

¹Faculty of Pharmacy, Universitas Andalas, Padang-Indonesia; ²School of Pharmaceutical Sciences, Universiti Sains Malaysia, ³Centre for Drug Research, Malaysia, ⁴YKNTech Enterprise

Abstract

Haruan extract was dried using two methods of drying namely freeze drying and spray drying. The drying principles of these two methods are different where freeze drying is a dehydration process by sublimation of the frozen water in the materials while spray drying is a drying process that involves heat. Haruan extract contains amino acids and fatty acids that may be damaged during the aforemention drying processes. Therefore, the aim of this study was to determine the amino acids and fatty acids contents in the dried Haruan extract obtained from these two methods. The amino acids were determined using HPLC while fatty acids were analyzed using GC-MS. The study showed that the amount of amino acids in freeze dried Haruan extract (FDHE) was less than in spray dried Haruan extract (SDHE). Conclusively, some fatty acids were damaged by heat in spray drying process but SDHE still showed a higher total amount of fatty acids when compared to FDHE. **Keywords:** Haruan, freeze drying, spray drying, amino acids and fatty acids

Introduction

(cc) BY

Haruan (*Channa striatus*) is a freshwater fishes that native to South and Southeast Asia. It is rich in protein [1, 2], amino acids and fatty acids [3, 4, 5] and has been long used traditionally for wound healing especially in postpartum and post-operative wound [6, 7]. Haruan is also proven efficacious as antinociceptive, antiinflammatory, anti-microbial, anti-cancer [4, 6, 8] and in treating pain for osteoarthritis [9]; giving its potential use as active pharmaceutical ingredient. Unfortunately, the liquid extract of Haruan was unstable when stored at room temperature where the changes in the odor and color of the extract could be seen within 24 hours. These changes were indicating the degradation of the contents. Therefore the present study was conducted to produce dried Haruan extract to address this instability issue of the extract.

Several methods are commonly used in the drying process of materials, namely sun-drying, air-drying, vacuum thermal drying, oven drying, freeze drying and spray drying [10, 11]. Freeze drying and spray drying are the two most widely used methods to preserve natural products and foods. Freeze drying, also known as lyophilisation, is a drying process involving freezing of the material following by reducing the surrounding pressure to allow the direct sublimation of the frozen water in the material from the solid to the gas phase. This method is suitable for heat sensitive and perishable materials as it uses low processing temperature [12]. On the other hand, spray drying is a drying method of producing a dry powder from a liquid or slurry by rapid drying using a hot air [10, 13, 14]. These two methods of drying may caused damage to

the amino acids and fatty acids content in the Haruan extract. Therefore in this study, we evaluated the effect of drying methods on the amino acids and fatty acids contents in the Haruan extract and we also determine which amino acids and fatty acids that degraded by both the drying methods.

Materials and Methodology

Materials

Water extract *of Channa striatus* was obtained from Major Interest (M) Sdn. Bhd. (Malaysia).

Freeze Drying Method

Liquid Haruan extract was freezed at -20 ^oC prior to the freeze drying process. The sample was dried using Vacuum Freeze Dryer (Labconco, USA) and the dried Haruan extract was kept in desiccator until further analysis.

Spray Drying Method

Spray drying process was carried out in the spray dryer machine, manufactured by Yakin Gigih Sdn. Bhd. (Malaysia). Ultrasonic frequency was applied which was 40 kHz. The liquid sample was run at 70-80 $^{\rm 0}C$ with a flow rate of 100 ml/hour.

Amino Acids Analysis

Amino acids in dried Haruan extract were determined using a method by Henderson et al. [15] using HPLC Agilent Technologies

1200 series containing Diode Array Detector (DAD) UV 338 nm (for OPA-amino acids), 262 nm (for FMOC-amino acids) and Zorbax Eclipse-AAA 4.6x150 mm (3.5 µm) column. The Agilent 1313A auto sampler was used to automate the precolumn derivatization procedure resulting in a speedy and reproducible reaction with minimal operator intervention. Phosphate buffer pH 7.8 and acetonitrile : methanol : water (45:45:10 v/v) were used as eluents. Derivatization was carried out using reagents Borat buffer Agilent PN 5061-3339, OPA reagent Agilent PN 5061-3335, FMOC reagent Agilent PN 5061-3337 and deionized water HPLC grade. Two hundred milligram of the sample (FDHE and SDHE) were weighed accurately and filled into a hydrolysis tube followed by an addition of 12 ml HCl 6 M. The tube was then aerated for 1 minute with nitrogen gas and immediately sealed with a Teflon-lined cap.

The tube was placed in an electric oven for 24 hours at 110 0 C for sample hydrolysis and was then cooled to room temperature. The content of the tube was quantitatively transferred to a 50 ml clean volumetric flask and diluted to 50 ml with distilled water. After thorough mixing, 1 ml of diluted sample was filtered and 100 µl filtrate was placed in a limited volume insert (LVI) of an auto-sampler vial.

Fatty Acids Analysis

Fatty acids in dried Haruan extract were determined using a method by Febriyenti et al. [3] with slight modification. Analysis was run using GC-MS 6890.

	•					
Column	Capillary Column Agilent 19091S-433 HP-5MS, 60 meters, ID 0.250 mm, film 0.25 µm					
	Initial flow 1.2 mL/min Initial pressure 10.36 psi Average velocity 40 cm/sec					
Inlet temperature	280 C					
Injection volume	1µl					
Carrier gas	Helium					
Oven temperature	60 C for 2 min, 12 C /min to 225 C hold on 2 min, 10 C /min to 300 C hold on 0.5 min					
Detector temperature	250 C					
Detector gases	Hydrogen, flow 2.0 mL/min Air, flow 60.0 mL/min					
Makeup gas type	Helium 30.0 mL/min					

Table 1. Experimental condition of GC-MS

Results and Discussion

The amounts of amino acids in FDHE and SDHE from 6 batches were tabulated in Table 2.

Amine Asid Ar				mino acid (mg) / 1 g of dried Haruan extract						
Amino Acid		FDHE	±	SD	SDHE	±	SD			
ASP	Aspartate*	3.59	±	0.36	6.02	±	0.69			
GLU	Glutamate*	11.39	±	1.07	18.93	±	1.92			
SER	Serine*	4.76	±	0.47	8.07	±	0.88			
HIS	Histidine*	4.12	±	0.35	6.13	±	0.65			
GLY	Glycine*	64.13	±	5.20	95.67	±	5.77			
THR	Threonine	2.61	±	0.23	1.51	±	1.95			
ARG	Arginine*	17.86	±	1.46	28.21	±	2.37			
ALA	Alanine*	11.17	±	1.04	16.68	±	0.93			
TYR	Tyrosine*	0.82	±	0.35	1.57	±	0.38			
VAL	Valine*	3.36	±	0.32	5.50	±	1.04			
MET	Methionine*	3.13	±	0.35	5.47	±	0.84			
PHE	Phenylalanine*	3.54	±	0.27	5.14	±	0.86			
ISO	Isoleucine*	1.67	±	0.21	2.97	±	0.90			
LEU	Leucine*	5.02	±	0.53	9.64	±	1.97			
LYS	Lysine*	8.15	±	0.82	13.77	±	2.35			
PRO	Proline	0.00	±	0.00	0.61	±	0.86			
SUM		145.22			225.91					

Table 2. Amount of amino acid in FDHE and SDHE, mean ± SD, n = 6

*Amount values of amino acid are significantly different (p<0.05) between FDHE and SDHE

The 16 quantified amino acids in the extract showed a significant different amount of amino acids between FDHE and SDHE except for threonine and proline. The SDHE showed a higher total amount of amino acids when compared to FDHE indicating the degradation of some amino acids in freeze drying method [16, 17]. Protective agents (lyoprotectants) were usually added to the sample before the freezing process. Typically polyhydroxy compounds such as sugars (trehalose and sucrose), and surfactants are usually used to overcome this problem [18]. Heat also affects and degrades the amino acids but the effect is not as severe as the freezing process.

Table 3 shows the amount of fatty acids in FDHE and SDHE from 6 batches. The total amount of fatty acids in SDHE is more than in FDHE as previously reported by another researcher [19]. Many long-chain fatty acids in the Haruan extract were undetectable when using spray drying method. These fatty acids were likely to turn into short-chain fatty acids that are more stable such as palmitic acid and stearic acid. It can be confirmed by the increment in the concentration of both fatty acids in the SDHE. Some fatty acids showed the amount values that were significantly different between FDHE and SDHE sample. Fatty acids in Haruan extract could be damage by heat in the spray drying process.

FATTY ACID		Fat	Fatty Acid (µg) / 1 g dried Haruan extract						
		FDHE	±	SD	SDHE	±	SD		
C12:0	Lauric Acid	0.025	±	0.062	0.000	±	0.000		
C13:0	Tridecanoic Acid	0.009	±	0.022	0.000	±	0.000		
C14:0	Myristic Acid	1.003	±	0.490	0.890	±	0.251		
C14:1	Myristoleic Acid	0.007	±	0.016	0.000	±	0.000		
C15:0	Pentadecanoic Acid	0.472	±	0.149	0.483	±	0.216		
C16:0	Palmitic Acid*	10.497	±	6.027	19.214	±	1.448		
C16:1	Palmitoleic Acid*	2.168	±	0.767	0.096	±	0.179		
C17:0	Heptadecanoic Acid	0.790	±	0.194	1.000	±	0.335		
C17:1	Heptadecenoic Acid*	0.468	±	0.130	0.114	±	0.200		
C18:0	Stearic Acid*	4.608	±	1.122	10.499	±	0.845		
C18:1n-9	Elaidic Acid (trans)*	0.000	±	0.000	10.468	±	1.413		
C18:1n-9	Oleic Acid (cis)*	10.694	±	2.449	0.000	±	0.000		
C18:2n-6t	Linolelaidic Acid (trans)	0.013	±	0.031	0.000	±	0.000		
C18:2n-6c	Linoleic Acid (cis)*	1.459	±	1.600	0.000	±	0.000		
C18:3n-6	gamma-Linolenic Acid *	0.231	±	0.211	0.000	±	0.000		
C20:0	Arachidic Acid*	0.244	±	0.057	0.000	±	0.000		
C20:1	Eicocenoic Acid*	0.564	±	0.350	0.000	±	0.000		
C20:3n-3	Eicosatrienoic Acid*	0.467	±	0.299	0.000	±	0.000		
C20:3n-6	Eicosatrienoic Acid*	0.397	±	0.219	0.000	±	0.000		
C20:4n-6	Arachidonic Acid*	1.729	±	0.360	0.895	±	0.251		
C20:5n-3	Eicosapentaenoic Acid*	0.965	±	0.259	0.000	±	0.000		
C21:0	Heneicosanoic Acid*	0.023	±	0.019	0.000	±	0.000		
C22:0	Behenic Acid*	0.103	±	0.060	0.000	±	0.000		
C22:1n-9	Erucic Acid	0.013	±	0.031	0.000	±	0.000		
C22:6n-3	Docosahexanoic Acid	0.578	±	0.648	0.209	±	0.309		
C23:0	Tricosanoic Acid	0.019	±	0.022	0.000	±	0.000		
C24:0	Lignoceric Acid*	0.051	±	0.040	0.000	±	0.000		
C24:1	Nervonic Acid	0.005	±	0.012	0.000	±	0.000		
SUM		37.60			43.87				

Table 3. Amount of fatty acid in FDHE and SDHE, mean \pm SD, n = 6

*Amount values of fatty acid are significantly different (p<0.05) between FDHE and SDHE

Conclusion

Freeze drying method could degrade the amino acids in Haruan extract except threonine and proline while spray drying method could damage the fatty acids in Haruan extract. Long-chain fatty

acids were likely to turn into shorter-chain fatty acids (palmitic acid and stearic acid) that were indicated by the increased in the amount of these two fatty acids.

Acknowledgement

This study was supported by APEX Delivering Excellence Grant 2012 No. 1002/PFarmasi/910332, Universiti Sains Malaysia

(USM). Authors also would like to thank Miss Noratiqah Mohtar for the assistance in writing.

References

- Gam LH, Leow CY, and Baie S. Amino Acid Composition of Snakehead Fish *(Channa striatus)* of Various Sizes Obtained at Different Times of the Year. Malay. J. Pharm. Sci., 2005. 3(2): p. 19 - 30.
- [2]. Gam LH, Leow CY, and Baie S. Proteomic Analysis of Snakehead Fish (Channa striata) Muscle Tissue. Malaysian Journal of Biochemistry and Molecular Biology, 2006. 14: p. 25 - 32.
- [3]. Febriyenti Laila L, and Baie S Effects of Aerosol Formulation to Amino Acids and Fatty Acids Contents in Haruan Extract. Pak. J. Pharm. Sci., 2012. 25(1): p. 1-6.
- [4]. Zakaria ZA, Mat Jais AM, Goh YM, Sulaiman MR, and Somchit MN. Amino acid and fatty acid composition of an aqueous extract of Channa striatus (Haruan) that exhibits antinociceptive activity Clin. Exp. Pharmacol. P., 2007. 34(3): p. 198-204.
- [5]. Zuraini A, Somchit MN, Solihah MH, Goh YM, Arifah AK, Zakaria MS, Somchit N, Rajion MA, Zakaria ZA, and Mat Jais AM. Fatty acid and amino acid composition of three local Malaysian Channa spp. fish. Food Chem., 2006. 97(4): p. 674-678.
- [6]. Mat Jais AM, Dambisya YM, and Lee T-L. Antinociceptive activity of Channa striatus (haruan) extracts in mice. J. Ethnopharmacol., 1997. 57(2): p. 125-130.
- [7]. Mat Jais AM, McCulloch R, and Croft K. Fatty acid and amino acid

composition in haruan as a potential role in wound healing. Gen. Pharmacol.-Vasc. S., 1994. 25(5): p. 947-950.

- [8]. Zakaria ZA, Sulaiman MR, Mat Jais AM, and Somchit MN. Effects of alfa amylase, protease and lipase on Haruan (Channa striatus) Mucus Extract antinociceptive activity in mice. Pakistan Journal of Biological Sciences, 2004. 7(12): p. 2202-2207.
- [9]. Michelle NYT, Shanthi G, and Loqman MY. Effect of orally administered Channa striatus extract against experimentally - induced osteoarthritis in rabbits. Intern. J. Appl. Res. Vet. Med., 2004. 2(3): p. 171-175.
- [10]. Luz PP, Pires AM, and Serra OA. A low-cost ultrasonic spray dryer to produce sperical microparticles from polimeric matrices. Quim. Nova, 2007. 30(7): p. 1744 - 1746.
- [11]. Shadung KG, Mphosi MS, and Mashela PW. Influence of drying method and location on amino acids and mineral elements of *Sternocera orissa* Buguet 1836 (Coleoptera: Buprestidae) in South Africa. African Journal of Agricultural Research, 2012. 7(46): p. 6130 - 6135.
- [12]. Sadikoglu H. Spray freeze drying, in Spray Drying Technology, M.W. Woo, A.S. Mujumdar, and W.R.W. Daud, Editors. 2010: Singapore. p. 157-182.
- [13]. Oliveira WP, Souza CRF, Kurozawa LE, and Park KJ. Spray drying of food and herbal products, in Spray Drying Technology, M.W. Woo, A.S.

Mujumdar, and W.R.W. Daud, Editors. 2010: Singapore. p. 113-155.

- [14]. Re MI. Formulating drug delivery systems by spray drying, Drying Technology: An International Journal. 2006. 24(4): p. 433 - 446.
- [15]. Henderson JW, Ricker RD, Bidlingmeyer BA, and Woodward C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids. 2000 [cited 2013; Available from: https://www.chem.agilent.com/Library/ chromatograms/59801193.pdf.
- [16]. Yuh-Fun M, Nguyen P-A, Sweeney T, Shire SJ, and Hsu CC. Protein Inhalation Powders: Spray Drying vs Spray Freeze Drying. Pharmaceutical Research, 1999. 16(2): p. 249 - 254.
- [17]. Olu M, Alamu AE, and Oluwajoba SO. Effect of Processing on Total Amino Acid Profile of Maize and Cowpea Grains. Journal of Advanced Laboratory Research in Biology, 2013. IV(II): p. 77 - 82.
- [18]. Yong-Hong L, Brown MB, Nazir T, Quader A, and Martin GP. Effects of sucrose and trehalose on the preservation of the native structure of spray dried lysozyme. Pharmaceutical Research, 2002. 19(12): p. 1847 -1853.
- [19]. Akpinar-Bayizit A, Ozcan T, Yilmaz-Ersan L, and Gurbuz O. Impact of processing methods on nutritive value and fatty acid profile of hen eggs. Pakistan Veterinary Journal, 2010. 30(4): p. 219 - 222.

