Industrial Engineering, Management Science and Applications 2015

Mitsuo Gen
Kuinam J. Kim
Xiaoxia Huang
Yabe Hiroshi

Editors

Lecture Notes in Electrical Engineering 349

Springer
Lecture Notes in Electrical Engineering

Volume 349

Board of Series editors

Leopoldo Angrisani, Napoli, Italy
Marco Arteaga, Coyoacán, México
Samarjit Chakraborty, München, Germany
Jiming Chen, Hangzhou, P.R. China
Tan Kay Chen, Singapore, Singapore
Rüdiger Dillmann, Karlsruhe, Germany
Haibin Duan, Beijing, China
Gianluigi Ferrari, Parma, Italy
Manuel Ferre, Madrid, Spain
Sandra Hirche, München, Germany
Faryar Jabbari, Irvine, USA
Janusz Kacprzyk, Warsaw, Poland
Alaa Khamis, New Cairo City, Egypt
Torsten Kroeger, Stanford, USA
Tan Cher Ming, Singapore, Singapore
Wolfgang Minker, Ulm, Germany
Pradeep Misra, Dayton, USA
Sebastian Möller, Berlin, Germany
Subhas Mukhopadyay, Palmerston, New Zealand
Cun-Zheng Ning, Tempe, USA
Toyoaki Nishida, Saka-ku, Japan
Bijaya Ketan Panigrahi, New Delhi, India
Federica Pascucci, Roma, Italy
Tariq Samad, Minneapolis, USA
Gan Woon Seng, Nanyang Avenue, Singapore
Germano Veiga, Porto, Portugal
Haitao Wu, Beijing, China
Junjie James Zhang, Charlotte, USA
Mitsuo Gen · Kuinam J. Kim
Xiaoxia Huang · Yabe Hiroshi
Editors

Industrial Engineering, Management Science
and Applications 2015
Preface

This LNEE volume contains the papers presented at the International Conference on Industrial Engineering, Management Science and Applications (ICIMSA2015) which was held in Tokyo, Japan on May 26-28, 2015.

ICIMSA2015 received over 350 paper submissions from various countries. After a rigorous peer-review process, 114 full-length papers were accepted for presentation at the conference. This is intended for maintaining the high standards of the conference proceedings.

The conference is intended to bring together the researchers and technologists working in different aspects of Industrial Engineering, Management Science and Applications. In addition to the contributed papers, internationally known experts from several countries were invited to deliver Keynote speeches at ICIMSA2015.

Much of the credit of the success of the conference is due to the topic coordinators who have devoted their expertise and experience in promoting and in general coordination of the activities for the organization and operation of the conference. The coordinators of various session topics have devoted a considerable time and energy in soliciting papers from relevant researchers for presentation at the conference. The Session Chairs of the different session played important role in conducting the proceedings of the session in a timely and efficient manner.

On behalf of the Organizing Committee, we would like to thank Springer LNEE for publishing the proceedings of ICIMSA2015. We also would like to express our sincere and grateful thanks to our Program Committee and Reviewers for providing extra help in the review process. The quality of a refereed volume depends mainly on the expertise and dedication of the reviewers.

Our sincere thanks to the Institute of Creative Advanced Technology, Engineering and Science (iCatse) for designing the conference web page and also spending countless days in preparing the final conference program in time for printing. We would also like to thank the ICIMSA2015 Secretariat and Staff for arranging a large number of the
invitation letters and assisting in the various stages of the editorial work. Finally we would like to thank our organization committee for their several months of hard work in sorting out manuscripts from our authors.

We look forward to seeing all of you next year at ICIMSA2016 in Korea.

Mitsuo Gen
Fuzzy Logic Systems Institute and Tokyo University of Science, Japan
Xiaoxia Huang
University of Science and Technology Beijing, China
Kuinam J. Kim
Kyonggi University, Republic of Korea
Yabe Hiroshi
Tokyo University of Science, Japan
Organizing Committee

General Chairs

Mitsuo Gen Fuzzy Logic Systems Institute and Tokyo University of Science, Japan
Xiaoxia Huang University of Science and Technology Beijing, China
Kuinam J. Kim Institute of Creative Advanced Technologies, Science and Engineering, Republic of Korea
Yabe Hiroshi Tokyo University of Science, Japan

Steering Committee

Nikolai Joukov Chair of IEEE CS STCOS, USA
Borko Furht Florida Atlantic University, USA
Bezalel Gavish Southern Methodist University, USA
Kin Fun Li University of Victoria, Canada

Publicity Chairs

Dan (Dong-Seong) Kim University of Canterbury, New Zealand

Workshop Chairs

Kuinam J. Kim Kyonggi University, Republic of Korea
Donghwi Lee University of Colorado, USA
VIII Organizing Committee

Financial Chairs
Kyoungho Choi
Institute of Creative Advanced Technologies, Science and Engineering, Republic of Korea

Program Chairs
Adel Hejaaji
Engineering Services Management Limited
[ESM LTD] ESSEX, UK

Organizers and Supporters
Institute of Creative Advanced Technologies, Science and Engineering (iCatse)
Chinese Management Science Society (CMSS)
Korean Industry Security Forum (KISF)
Korea Information Assurance Society (KIAS)
Kyonggi University
University of Science and Technology Beijing
Tokyo University of Science
River Publishers

Program Committee
Chil-Chyuan Kuo
Ming Chi University of Technology, Taiwan
Suksan Prombanpong
King Mongkut’s University of Technology
Thonburi, Thailand
Ramayah Thurasamy
Universiti Sains Malaysia, Malaysia
Siana Halim
Petra Christian University, Indonesia
Yves De Smet
Université Libre de Bruxelles, Belgium
Marco Aiello
University of Groningen, The Netherlands
Catalina Lucia Alberto
Universidad Nacional de Córdoba, Argentina
Llewellyn C.M. TANG
University of Nottingham Ningbo China, China
M. Birasnav
New York Institute of Technology, USA
Enslin Johannes van Rooyen
Tshwane University of Technology, South Africa
Supachart Iamratanakul
Kasetsart University, Thailand
Luciana Hazin Alencar
Universidade Federal de Pernambuco, Brazil
Jui-Sheng Chou
National Taiwan University of Science and Technology, Taiwan
Shimpei Matsumoto
Hiroshima Institute of Technology, Japan
Ahm Shamsuzzoha
University of Vaasa, Finland
Minghai Jiao
Northeastern University, China
Masaharu Tsujimoto
Tokyo Institute of Technology, Japan
Ahm shamsuzzoha
Sultan Qaboos University, Oman
Seren OZMEHMET TASAN
Dokuz Eylul University, Turkey
Yoshinobu Tamura
Yamaguchi University, Japan
António Grilo
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Portugal
Fabrizio Maria Maggi
University of Tartu, Estonia
V. Cruz Machado
Universidade Nova de Lisboa, Portugal
Md Mamun Habib
Universiti Utara Malaysia, Malaysia
Kittisak Jermsittiparsert
Rangsit University, Thailand
Adel Hejaaji
Engineering Services Management Limited [ESM LTD] ESSEX, UK
Ulrich Reimer
University of applied sciences St. Gallen, Switzerland
Hardeep Singh
Ferozepur College of Engg & Technology, India
Fatemeh Almasi
Amirkabir University of Technology (Tehran polytechnic), Iran
Yiliu Liu
Norwegian University of Science and Technology, Norway
Ryo HARUNA
Kanazawa Gakuin University, Japan
Ilias Santouridis
Technological Educational Institute (TEI) of Thessaly, Greece
Purit Thanakijkasem
King Mongkut’s University of Technology Thonburi, Thailand
Chun-Cheng Lin
National Chiao Tung University, Taiwan
Michel ALDANONDO
Toulouse University - Mines Albi -, France
Jinho Lee
Korea Naval Academy, Republic of Korea
Mojahid F. Saeed Osman
King Fahd University of Petroleum and Minerals, Saudi Arabia
Wasawat Nakkiew
Advanced Manufacturing Technology Research Center (AMTech), Chiang Mai University, Thailand
Somlak Wannarumon KIELAROVA
Naresuan University, Thailand
Jaekyung Yang
Chonbuk National University, Republic of Korea
Suprakash Gupta
Indian Institute of Technology (B H U), India
Alejandro Escudero-Santana
Universidad de Sevilla, Spain
RIKA AMPUH HADIGUNA
Andalas University, Indonesia
Andreas Dewald
University of Erlangen, Germany
Kit Fai Pun
The University of the West Indies, West Indies
Abdol S. SOOFI
University of Wisconsin-Platteville, USA
El-Houssaine AGHEZZAF
Ghent University, Belgium
Chompoonoot Kasemset
Chiang Mai University, Thailand
Ana Paula Ferreira Barroso
Universidade Nova de Lisboa, Portugal
Virgínia Helena Arimateia de Campos Machado
Universidade Nova de Lisboa, Portugal
Antonio Ruiz Molina
University of Malaga, Spain
Contents

Regional Location Decision for Thai Garment Industry:
An AEC Perspective ... 1
Walailak Atthirawong, Wariya Panprung

Key Performance Indicators for Sustainable Campus Assessment:
A Case of Andalas University ... 11
Elita Amrina, Febriza Imansuri

Minimum Partial Encryption for JPEG/JPEG2000 Medical Image Protection ... 19
Seong Min Yoo, Jun Hoo Park, Jae Cheol Ryou

The Optimal Hedging Strategy for Commodity Processors in Supply Chain .. 27
Ehsan Bolandifar, Zhong Chen

Application of MFCA and Dynamic Programming in Operations Improvement: A Case Study .. 35
Atchara Songkham, Chompoonoot Kasemset

Value Analysis of Coco Board for Production Sustainability 45
Marianne B. Calayag

Effect of Temperature on the Colour and TSS Removal of Batik Dye Wastes in an Integrated Biological and Filtration Treatment System 55
N.A. Ramlee, M.N. Mohd Rodhi, S.F. Abdul Manaf, F. Hamzah, A. Anuar, A. Datu Brandah

A Multi-agent Approach for Production Management 65
Ana Paula M. Tanajura, Valdir Leanderson C. Oliveira, Herman Lepikson

Design of Experiment for Predicting Residual Stresses in Gas Tungsten Arc Welding Process 77
Adirek Baisukhan, Wasawat Nakkiew, Siwasit Pitjamit
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hands-on Industrial Process Modelling Using the MATLAB System</td>
<td>85</td>
</tr>
<tr>
<td>Identification Toolbox</td>
<td></td>
</tr>
<tr>
<td>Abubakar Sadiq Bappah</td>
<td></td>
</tr>
<tr>
<td>Model Based Design of Finger Exoskeleton for Post Stroke Rehabilitation</td>
<td>95</td>
</tr>
<tr>
<td>Using a Slotted Link Cam with Lead Screw Mechanism</td>
<td></td>
</tr>
<tr>
<td>Mohd Nor Azmi Bin Ab Patar, Takashi Komeda, Jamaluddin Mahmud,</td>
<td></td>
</tr>
<tr>
<td>Cheng Yee Low</td>
<td></td>
</tr>
<tr>
<td>Quantile Estimation Using a Combination of Stratified Sampling and</td>
<td>105</td>
</tr>
<tr>
<td>Control Variates</td>
<td></td>
</tr>
<tr>
<td>Marvin K. Nakayama</td>
<td></td>
</tr>
<tr>
<td>A Simulation-Based Analysis for Inter Release Problem in Airport</td>
<td>115</td>
</tr>
<tr>
<td>Baggage Handling Systems</td>
<td></td>
</tr>
<tr>
<td>James T. Lin, Irene Liou, Chun-Chih Chiu</td>
<td></td>
</tr>
<tr>
<td>A New Two-Phase Approach for Petri Net Based Modeling of Scheduling</td>
<td>125</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td>Reggie Davidrajuh</td>
<td></td>
</tr>
<tr>
<td>Simulation and Analysis of Impulse Faults in Power Transformer</td>
<td>135</td>
</tr>
<tr>
<td>Kaveri Bhuyan, Saibal Chatterjee, Anwesa Yadav, Sarita Bansal,</td>
<td></td>
</tr>
<tr>
<td>Sanat Kumar Paul</td>
<td></td>
</tr>
<tr>
<td>The Online Study Design for Different Study Location Environment,</td>
<td>143</td>
</tr>
<tr>
<td>Using ICT and Social Methodology Tool</td>
<td></td>
</tr>
<tr>
<td>Platt Pangthong, Phudinan Singkamfu</td>
<td></td>
</tr>
<tr>
<td>Telematics Technology Development Forecasting: The Patent Analysis</td>
<td>149</td>
</tr>
<tr>
<td>and Technology Life Cycle Perspective</td>
<td></td>
</tr>
<tr>
<td>Shu-Hao Chang, Chin-Yuan Fan</td>
<td></td>
</tr>
<tr>
<td>Empirical Study of Collaborative Learning Knowledge Management</td>
<td>159</td>
</tr>
<tr>
<td>System for Thai Students</td>
<td></td>
</tr>
<tr>
<td>Krittawaya Thongkoo, Chiraporn Thongkhu</td>
<td></td>
</tr>
<tr>
<td>Factors for Enterprise Resource Planning System Selection to Support</td>
<td>165</td>
</tr>
<tr>
<td>Information Management of Manufacturers</td>
<td></td>
</tr>
<tr>
<td>Pornthida Kaewkamol</td>
<td></td>
</tr>
<tr>
<td>Low Level of Licensing Activities by Universities in Japan</td>
<td>173</td>
</tr>
<tr>
<td>Shigenori Hata, Kumiko Miyazaki</td>
<td></td>
</tr>
<tr>
<td>Analysing Industry Clustering to Develop Competitive Advantage for</td>
<td>181</td>
</tr>
<tr>
<td>Wualai Silver Handicraft</td>
<td></td>
</tr>
<tr>
<td>Khanita Tumphasuwan</td>
<td></td>
</tr>
</tbody>
</table>
University-Industry Linkages (UILs) and Research Collaborations: Case of Thailand’s National Research Universities (NRUs) 189
Naparat Siripitakchai, Kumiko Miyazaki

Factors Affecting the Use of Information Technology for Collaboration among Government, Educational and Tourism Small Business Sectors 199
Kannika Daungcharone

How Managerial Capabilities of Entrepreneur Leverage Innovative Capability of SMEs: A Perspective of TIM 207
Qingrui Xu, Siyu Liu, Zhiyan Wu

Definition of Complex Hurst and Fractional Analysis for Stock Market Fluctuation 215
Qing Zou, Yufan Hu, Jun Steed Huang

Water Cycle and Artificial Bee Colony Based Algorithms for Optimal Order Allocation Problem with Mixed Quantity Discount Scheme 229
Chanikarn Praepanichawat, Charoenchai Khompatraporn, Chorkaew Jaturanonda, Chiranya Chotyakul

The Management of Assessment and Allocation of Marshalling Yards and Designation Their Catchment Areas 241
Juraj Camaj, Jana Lalinská, Jaroslav Masek

Improving Vehicle Routing Decision for Travel Agency in Chonburi, Thailand 251
Tantikorn Pichpibul

Differential Evolution Algorithm for Storage Location Assignment Problem 259
Warisa Wisittipanich, Pongsakorn Meesuk

Master Production Scheduling for the Production Planning in the Pharmaceutical Industry 267
Sivinee Wattitham, Tuanjai Somboonwiwat, Suksan Prombanpong

A Hybrid Genetic Algorithm for Simultaneous Scheduling of Machines and AGVs in FMS 277
James T. Lin, Chun-Chih Chiu, Yu-Hsiang Chang, Hung-Ming Chen

Collaborative Agents Supporting Tactical Planning Activities – An Industrial Application 287
Ana Paula M. Tanajura, Pinar Öztürk, Herman Lepikson

Minimizing Makespan Using Node Based Coincidence Algorithm in the Permutation Flowshop Scheduling Problem 303
Ornrumpha Srimongkolkul, Prabhas Chongstitvatana
An Inventory System of Packaging Materials: Case Study at PT. Djambi
Waras Jujuhan ... 313
Nilda Tri Putri, Jonrinaldi, Y.R. Risa Noviani

A Pattern In Formgiving Design: Giving Priority To a Principle Solution in Industrial Design Situation .. 331
Rusmadiah Anwar, Shahriman Zainal Abidin, Oskar Hasdinor Hassan

Simulation of Logistic Operations ... 341
Jana Lalinská, Kendra Martin, Čamaj Juraj

Contracting Decisions in Project Management – An Outline of the Dedicated Decision Support System .. 347
Tomasz Błaszczyk, Paweł Błaszczyk

Factory Logistics Improvement Projects: Case Northern Thailand 357
Sakgasem Ramingwong, Apichat Sopadang, Korrakot Yaibuathet Tippayawong

Enhancing Project Funding Decision Quality .. 363
Ofer Zwikael, Ying-Yi Chih

Software Project Team Selection Based on Enterprise Social Networks 375
Panos Fitsilis, Vassilios Gerogiannis, Leonidas Anthopoulos

Study on the Agriculture Information Cloud Architecture and Application ... 385
Peng Qing, Ming Ye, Guangyuan Liu

Enhanced Value Stream Mapping: Potentials and Feasibility of IT Support through Manufacturing Execution Systems .. 393
Markus Philipp Roessler, Ina Kleeberg, Moritz Kreder, Joachim Metternich, Klaus Schuetzer

Automatic Oil Palm Detection and Identification from Multi-scale Clustering and Normalized Cross Correlation 403
Teerawut Wong-in, Tonphong Kaewkongka, Nagul Cooharojananone, Rajalida Lipikorn

A Comparison Approach for Accuracy Feature of Requirements Prioritization Models ... 411
Jenjira Jaimunk, Pradorn Sureephong

A Novel Approach on Operation and Maintenance Guideline Using Semantic Processing and Clustering .. 419
Ki Hoon Jang, Gyeong-June Hahm, Heejung Lee, Hyo-Won Suh
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutting Load Equivalency Factors of Heavy Vehicles Operating in the Sothern Part of Malaysian Peninsula</td>
<td>429</td>
</tr>
<tr>
<td>Osama Mahmoud Yassenn, Intan Rohani Endut, Mohamed Ahmed Hafez, Siti Zaharah Ishak</td>
<td></td>
</tr>
<tr>
<td>Enhancing Virtual Manipulatives for After-School Tutoring in the Subtraction Unit</td>
<td>439</td>
</tr>
<tr>
<td>Wen-Chung Shih</td>
<td></td>
</tr>
<tr>
<td>Implementing an Information System Development Simulation in an Industrial Engineering Class: A Case Study</td>
<td>451</td>
</tr>
<tr>
<td>Sakgasit Ramingwong, Lachana Ramingwong</td>
<td></td>
</tr>
<tr>
<td>Exploring the ISO 14001 Environmental Management System (EMS) towards SMEs Organizational Performance: Case Study of Southern Malaysia Furniture Manufacturers</td>
<td>459</td>
</tr>
<tr>
<td>A.H. Nor Aziati, Ng Seow Chian, Abdul Talib Bon, Y. Ngadiman, M.F. Ahmad</td>
<td></td>
</tr>
<tr>
<td>Happy Workers Work Happy? The Perspective of Frontline Service Workers</td>
<td>473</td>
</tr>
<tr>
<td>Wan-Jung Hsiao</td>
<td></td>
</tr>
<tr>
<td>Analyzing Cargo Loss Severity of Electronics Products with Decision Tree</td>
<td>477</td>
</tr>
<tr>
<td>Mu-Chen Chen, Pei-Ju Wu, Chih-Kai Tsau</td>
<td></td>
</tr>
<tr>
<td>A Comparison of Inventory Management between Decentralized and Centralized Distribution Networks with Backorder</td>
<td>485</td>
</tr>
<tr>
<td>Kanokwan Singha, Parthana Parthanadee, Jirachai Buddhakulsomsiri</td>
<td></td>
</tr>
<tr>
<td>A Study on Hong Kong Rice Supply Chain Risk Management with Value Chain Analysis</td>
<td>491</td>
</tr>
<tr>
<td>Anthony Lam, Tao Zhang, Kin Keung Lai</td>
<td></td>
</tr>
<tr>
<td>The Role of Product Development to Drive Product Success: An Updated Review and Meta-Analysis</td>
<td>501</td>
</tr>
<tr>
<td>Yosephine Suharyanti, Subagyo, Nur Aini Masruroh, Indra Bastian</td>
<td></td>
</tr>
<tr>
<td>Management Practices of Thai Silk Product</td>
<td>511</td>
</tr>
<tr>
<td>Kanogkan Leerojanaprapa, Walailak Atthirawong</td>
<td></td>
</tr>
<tr>
<td>Fuzzy Multi-objective Supplier Selection Problem: Possibilistic Programming Approach</td>
<td>521</td>
</tr>
<tr>
<td>Dicky Fatrias, Ahmad Syafruddin Indrapriyatna, Difana Meilani</td>
<td></td>
</tr>
<tr>
<td>Value Adding and Improving Factors of Thai Long Steel Supply Chain for ASEAN Economic Community</td>
<td>531</td>
</tr>
<tr>
<td>Apinun Chedchoosuwon, Tuanjai Somboonwiwat, Charoenchai Khompatraporn</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Causal Competitive Factors of Thai Iron and Steel Supply Chain by DEMATEL Method ... 541
Supattra Rattanavijit, Tuanjai Somboonwiwat, Charoenchai Khompatraporn

Combining Balanced Scorecard and Data Envelopment Analysis to Design Performance Measurement for Supply Chain Actor and Regulator: A Case Study in Innovative Product in Indonesia 551
Elisa kusrini, Subagyo, Nur Aini Masruroh

A Study of Consumers’ Post Consumption Behaviour for Mobile Phone in Indonesia ... 563
Siti Mahsanah Budijati, Subagyo, Muhammad Arif Wibisono, Nur Aini Masruroh

Green Supply Chain Assessment to Operations Improvement for Can Packaging Industry ... 575
Tuanjai Somboonwiwat, Tuangyot Supeekit, Pattiyut Punta

Selection of Digital Marketing Channels: Application of Modern Portfolio Theory ... 585
Tomás Frausto-da-Silva, António Grilo, Virgílio Cruz-Machado

The Effect of Stockout Cause and Brand Equity on Consumer Preference in Online Retailing ... 599
Jun Ding, Qiang Lu, Xianghua Chu

Development of a Remote Controlled Mobile Robot for Toy Application Using RF Module in PIC Microcontroller ... 609
Rionel Belen Caldo, Donabel D. Abuan, Elmer P. Dadios

Generalized Space Fourier Transform Method for the Analysis of Electrical Machines ... 617

Product Attribute Analysis for Customer Involvement in Value Creation ... 629
Risdiyono

Influence of Gender of Customers on Service Quality 639
S. Valli Devasena

The Service Quality of Indonesia’s Logistics Service Provider in Preparation for ASEAN Economic Community ... 647
Mahendrawathi ER, Thananya Wasusri, Hanim Maria Astuti, Anisah Herdiyanti
Effects on Physical and Mechanical Properties of Thermochemical Treated Kenaf (Hibiscus Cannabinus) Fibres Composite Board 657
Mohamad Nurul Azman Mohammad Taib, Mohd Ariff Jamaludin, Masitah Abu Kassim

Design Process Using Lean Six Sigma to Reduce the Receiving Discrepancy Report of ACE Logistics ... 665
Jervie Bersamin, Roselyn Drio, Ariane Lanel Lacibal, Camille Manalastas, Sheily Mendoza, Ghil Michael Danico Orallo, Carl Timmothy Tan

A Study on Carbon Emission Effects of Foreign Direct Investment in Secondary Industry of Shandong Province .. 675
Bin Xiong, Meng-jiao Wang

An Evaluation Performance of Log Periodic Dipole Antenna Based on the Parameter of Flux Density of the Solar Radio Burst Event 685
Z.S. Hamidi, N.N.M. Shariff

Attitude and Opinion of Bicycle-Helmet Signal ... 693
Pattama Longani, Orawit Thinnukool, Anusorn Yodjaiphet

Real Time Customer Satisfaction Index .. 701
Afizan Azman, Luwe Cheng Wong, Mohd Fikri Azli, Siti Zainab, Kirbana Jai Raman, Sumendra Yogarayan

FLC-Based Indoor Air Quality Assessment for ASHRAE Standard Conformance ... 711
Rionel Belen Caldo

Artificial Intelligent System to Stop Bots from Playing Online Games 719
Gagandeep Singh, Pooja Choudhary, Vikrant Sharma

Multi-lane Detection Based on Original Omni-Directional Images 727
Chuanxiang Li, Bin Dai, Tao Wu

A Framework for Text Classification Using Intuitionistic Fuzzy Sets 737
Peerasak Intarapaiboon

An Adaptive Incremental Fuzzy TSK Controller Combined with Evolutionary Optimization .. 747
Niusha Shafiabady, Rajprasad K. Rajkumar, Dino Isa, J. Michael Menke, M.A. Nima Vakilian

Ground Grid Integrity Testing Using Matlab Fuzzy Logic Toolbox 759
Bryan M. Dimayuga, Kevin Martin E. Jaron, Alexander T. Montero, Mark Kenneth Z. Peros, Rionel Belen Caldo

Filtering as a Tool of Diversity in Ensemble of Classifiers 767
Eva Volna, Martin Kotyrba, Vaclav Kocian
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining High Utility Patterns in Different Time Periods</td>
<td>779</td>
</tr>
<tr>
<td>Show-Jane Yen, Yue-Shi Lee</td>
<td></td>
</tr>
<tr>
<td>Content Based Image Retrieval Using Fuzzy Texton and Shearlet</td>
<td>791</td>
</tr>
<tr>
<td>Sudhakar Putheti, P.R. Krishna Prasad, Srinivasa Reddy Edara</td>
<td></td>
</tr>
<tr>
<td>Assessing Lean Implementation</td>
<td>803</td>
</tr>
<tr>
<td>Timo Schröders, Virgílio Cruz-Machado</td>
<td></td>
</tr>
<tr>
<td>Concealing of $\text{Al}_2(\text{SO}_4)_3$ Stain by Spray Coating Process</td>
<td>813</td>
</tr>
<tr>
<td>Chachsanun Srisoy, Suksan Prombanpong</td>
<td></td>
</tr>
<tr>
<td>Developing Interfaces Based on Services to the Cloud Manufacturing:</td>
<td>821</td>
</tr>
<tr>
<td>Plug and Produce</td>
<td></td>
</tr>
<tr>
<td>Eduardo Cardoso Moraes, Herman Augusto Lepikson, Armando Walter Colombo</td>
<td></td>
</tr>
<tr>
<td>Optimization of Teflon Spraying Process for Non-stick Coating</td>
<td>833</td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>Oraphan Poonkwan, Viboon Tangwarodomnukun, Suksan Prombanpong</td>
<td></td>
</tr>
<tr>
<td>Multidimensional Process Analytical System for Manufacturing</td>
<td>841</td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>Poonphon Suesaowaluk</td>
<td></td>
</tr>
<tr>
<td>The Design of Machine Cluster for Loading and Unloading Slider</td>
<td>849</td>
</tr>
<tr>
<td>in the Hard Disk Drive Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Amarin Wongsetti, Suksan Prombanpong</td>
<td></td>
</tr>
<tr>
<td>A Study of Downloading Game Applications</td>
<td>859</td>
</tr>
<tr>
<td>Long-Sheng Chen, Chen-Wei Yen</td>
<td></td>
</tr>
<tr>
<td>Explicating the Trends of China’s Logistics Services for Electronic</td>
<td>871</td>
</tr>
<tr>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>Mu-Chen Chen, Pei-Ju Wu, Wei-Hua Xion</td>
<td></td>
</tr>
<tr>
<td>Measuring Customer Relationship Marketing Outcomes in the Greek</td>
<td>881</td>
</tr>
<tr>
<td>Banking Sector</td>
<td></td>
</tr>
<tr>
<td>Ilias Santouridis, Melania Stoumbou</td>
<td></td>
</tr>
<tr>
<td>Analysis of Websites of Top Global Logistics Providers by a Trust</td>
<td>891</td>
</tr>
<tr>
<td>Building Framework</td>
<td></td>
</tr>
<tr>
<td>Lachana Ramingwong, Sakgasit Ramingwong</td>
<td></td>
</tr>
<tr>
<td>An Empirical-Based Construction of the Multi-purpose Process</td>
<td>901</td>
</tr>
<tr>
<td>Reference Model for Hospital Supply Chain</td>
<td></td>
</tr>
<tr>
<td>Wirachchaya Chanpuyypetch, Duangpun Kritchanchai</td>
<td></td>
</tr>
</tbody>
</table>
Smartphone Based Healthcare Platform and Challenges 913
Bofan Song, Bingwen Yu, Dan Zhu, Wei Jin, Ying Mu

Operating Rooms Decision Optimization Integrating Surgery Planning
and Nurse Rostering .. 919
Siyu Wang, Changyue Ma, Wei Xiang

Linking Hospital Supply Chain Processes and Performance to Identify
Key Performance Indicator ... 927
Tuangyot Supeekit, Tuanjai Somboonwiwat, Duangpun Kritchanchai

Kansei’s Physiological Measurement in Small-Medium Sized Enterprises
Using Profile of Mood States and Heart Rate 939
Mirwan Ushada, Tsuyoshi Okayama, Nafis Khuriyati, Atris Suyantohadi

Investigation of Customer and Technical Requirements for Designing
an Ergonomics Notebook Soft Case Using Quality Function Deployment
(QFD) Approach .. 949
Hilma Raimona Zadry, Defri Arif Irfansyah

Demographic Characteristics in Correlation with Household
Electricity Use .. 959
Lusi Susanti, Prima Fithri, Karin Bestarina

Central Composite Design for the Experiments with Replicate Runs
at Factorial and Axial Points .. 969
Haeil Ahn

A Software Trustworthiness Measure Based on the Decompositions
of Trustworthy Attributes and Its Validation 981
Hongwei Tao, Yixiang Chen, Jianmin Pang

Review Relationship TPM as Mediator between TQM and Business
Performance .. 991
M.F. Ahmad, A.H. Nor Aziai, Abdul Talib Bon, Y. Ngadiman, Shiau Wei Chan

Theoretical Review of Critical Factors that Impact on Global Human
Resource Practices: Case on Multinational Companies in Emerging
Economies .. 997
Muhammad Mehmood Aslam, Syed Shaheer Hassan Rizvi, Asif Hameed

Ranking Measures for Sustaining Quality Excellence Practices:
An Empirical Investigation ... 1009
Mehran Doulatabadi, Sha’ri Mohd Yusof

Software Reliability Analysis Considering the Fault Detection Trends
for Big Data on Cloud Computing 1021
Yoshinobu Tamura, Shigeru Yamada
Effect of Vibration Transmissibility on Fatigue Lifetime of Electronic Devices .. 1031
Liu Yang, Ying Chen, Zenghui Yuan, Liqun Chen

Reliability Importance of the Channels in Safety Instrumented Systems .. 1041
Yiliu Liu, Mary Ann Lundteigen

Fatigue Damage Ratios for Heavy Vehicles Operating in the Southern Part of Malaysian Peninsula 1055
Osama Mahmoud Yassen, Intan Rohani Endut, Mohamed Ahmed Hafez, Siti Zaharah Ishak, Nurul Elma Kordi

Process Reliability Modeling Based on Nonlinear Correlation Analysis .. 1065
Chuanliang Zhang, Wei Dai, Yu Zhao

Identification of Public Awareness in Preventive Maintenance for Personal Automobile .. 1073
Y. Ngadiman, A.H. Nor Aziati, Abdul Talib Bon, M.F. Ahmad, Raja Zuraidah Raja Mohd Rasi, Martin Yaw Swee Hock

A Novel Analysis of Clinical Data and Image Processing Algorithms in Detection of Cervical Cancer 1091
Abhishek Das, Avijit Kar, Debasis Bhattacharyya

Author Index .. 1099
An Inventory System of Packaging Materials: Case Study at PT. Djambi Waras Jujuhan

Nilda Tri Putri, Jonrinaldi, and Y.R. Risa Noviani

Department of Industrial Engineering, Faculty of Engineering, Andalas University, Padang 25163, Indonesia
nildatrupti@gmail.com, jonrinaldi@ft.unand.ac.id

Abstract. PT Djambi Waras Jujuhan is one of Crumb Rubber Factory which is inseparable of inventory problems. It needs packaging materials for production process, especially in packaging process. Currently, PT Djambi Waras Jujuhan has the problems in controlling inventory system of packaging materials because of one supplier only supplying materials, variation of lead time, high minimum stocks of packaging materials and pile up in the storage. The aim of the research is to propose an inventory system of packaging materials to improve inventory performance considering variations of lead time. The inventory system we proposed consists of four steps. The first step is calculating Inventory Turnover (ITO) to identify how the performance level of the existing inventory system. The second step is determining aggregate planning of packaging materials, classifying packaging materials using ABC analysis and testing distribution of lead time. The third step is determining economic order quantity and order interval, safety stock and reorder point. The fourth step is calculating total annual inventory cost considering safety stock and variation of lead time. Sensitivity analysis is performed to see the effects of changes of input parameters to the decision variables and total inventory cost. Based on analysis we have done, current inventory system of packaging materials at PT Djambi Waras Jujuhan has not been efficient yet that we can see from the value of inventory turnover. From 38 types of packaging materials, 18 types of packaging materials have the value of inventory turnover more than 1 and 20 types have the value of inventory turnover less than 1. The inventory system we proposes in this paper can save 78.46% of total current inventory cost that is Rp.320.728.188,-. Therefore, the inventory system considering variation of lead time we proposed at PT Djambi Waras Jujuhan has increased the inventory performance.

1 Introduction

Inventory is one of the most important factors in logistics management. Inventory planning will determine the smoothness of the production process in the company. Deficiency or excess inventories may cause problems in the company. So, inventory management seeks to achieve balancing between deficiency and excess inventory in a period of planning that involve risks and uncertainties [2]. In addition, each company must be able to maintain the optimum amount of inventory so as to ensure the
smoothness whole operation of the company in the right quantity, right quality and lowest possible cost.

Inventory problems can be influenced by several parameters such as demand, lead time, holding costs, ordering cost, back order costs and price, which often vary in the real situation. Deterministic models are not sensitive for these changes. To cope their variations, especially variations of lead time and demand, the probabilistic model is characterized by the presence of safety stock that is an important part of the company inventory policies. Safety stock be able to meet the demand during lead time [1,2].

PT Djambi Waras Jujuhan is one of Crumb Rubber Factory that produces natural rubber balles into products such as: SIR-10, SIR-20 and SIR-20 CV. The company needs packaging materials for packaging process. And the company had difficulty to control the packaging materials inventory because the company has only one supplier, varying demand and lead time which varies from 1 day, 3 days, 5 days until more than 1 month, the packaging materials ordered the last period came periodically, minimum stock of packaging materials in warehouses is quite high. Because the existing inventory system for packaging materials in the company has not yet precise and optimal, so the packaging material is damaged and pill up in warehouses. This situation happened because of the size specification of the packaging materials that has been holding in previous period by the company no longer fit the size specifications set by the consumer (buyer), so that situation has explained before happened and the company is loss. Figure 1, 2, and 3 showed the variation of the finished product demand, variation of lead time, and one of the packaging materials inventory.

![Fig. 1. Graph of Product Demand (SIR) in PT Djambi Waras Jujuhan](image1)

![Fig. 2. Graph of Lead Time Packaging Materials in PT Djambi Waras Jujuhan](image2)
Examples for safety stock of Label Bridgestone SIR 20 Plastic is 30,000 sheets and changed in October 2013 to be 7000 sheets, though this type of packaging material start in November 2012 until in July 2013 are not used. That type of packaging material used on August 28th, 2013 was 400 sheets. It was concluded that this type of packaging material has a lot of stock and long stored in the warehouse. As a result of too much storage, there are some packaging material that discarded due to damage such as Plastic bags SIR R 20/35 SEU damaged amount of 654 sheets or approximately 27.25 kg and removed from the warehouse on April 10, 2013. In addition, there are some packaging material have not been established safety stock to be provided by the company to cope with demand fluctuations or variations. For example: Label SMPT C 20 UG230 SIR Plastic, Red Plastic, etc.

Consequences that must be accepted by the company because inventory system still doesn’t optimal or appropriate is the high inventory cost and inventory policy for safety stock is not accurate that will increase the risk of losses in the future. Now, company management has not been too considering the consequences. Based on the issues that have been disclosed and supporting data of this research to be done so this research to improve the existing inventory system is needs by evaluate inventory system with considering variations of lead time, so the company can make appropriate planning of when order time, optimal quantity order and how much safety stock should be provided for a certain period to anticipate variations of lead time so that inventory cost can be minimized.

2 Literature

2.1 Inventory

According to reference [1] inventory is a number of materials, spare-parts, work in process, finished goods/products or components supplied to meet consumer demand at all times and use an asset that is waiting in a production process. So, basically this inventory is intended to facilitate or expedite the process of the operation in the company.
2.1.1 Inventory Costs

According to reference [1] the elements contained in the inventory can be divided into four groups, that is:

1. Ordering Costs
2. Inventory carrying costs/stock holding cost (%)
 According to Tersine (1994), holding costs are typically at intervals of 20-40% of the investment companies [8].
4. Capacity associated costs

2.1.2 ABC Analysis

ABC Analysis is the method to classification material into group based on materials usage during the period of time (price per unit multiplied by the volume of material usage in period of time). ABC classification is using principle 80-20 or Pareto law which about 80% of the total inventory of material represented or represented by 20% of material inventory. Use of ABC analysis is to establish the engineering priority, purchase priority, security, recharging system (replenishment systems), and investment decisions and also can be applied in the company that have various types of inventory materials with different using value.

2.1.3 Probabilistic Models

This model considers all variables have values that are uncertain and one or more variable is a random variable. Parameters such as demand, lead time, inventory costs are varies in the real condition. And deterministic models are not sensitive to such things. The equation used to determine the total inventory cost is using equations Economic Order Interval (EOI)-Multiple Items. The equation is as follows:

1. Total Inventory Cost
\[
TC(T) = \sum_{i=1}^{n} P_i R_i + \frac{C+nc}{T} + \frac{T}{2} \sum_{i=1}^{n} P_i R_i
\]
(1)

2. Optimum Order Interval (T*)
\[
T^* = \sqrt{\frac{2(C+ne)}{\sum_{i=1}^{n} P_i R_i}}
\]
(2)

3. Maximum Inventory each items (Ei)
\[
E_i = \frac{R_i T}{N} + \frac{R_i L}{N} = \frac{R_i (T+L)}{N}
\]
(3)

where:
- \(R_i\) = Demand or requirement per item
- \(P_i\) = Purchasing cost per item
- \(n\) = number of items are ordered at the same time
- \(c\) = additional ordering cost for each item
When the lead time varies, reorder point policies that may set the lead time is the time that the minimum lead time, the average lead time or maximum lead time. With a minimum or maximum limit, then the reorder point should be different. If the reorder point based on a minimum lead time then tend not sufficient, and if the maximum lead time based on the results obtained is excessive inventory levels, so it can not be evaluated statistically, so in practice the reorder point based on the average lead time. The solution in this case is similar to variation demand and constant lead time. The basic difference is the demand during lead time probability distribution is obtained by adding a constant demand during lead time. This case can be seen in Figure 4

![Fig. 4. Constant Demand and Variable Lead Time (Source: Tersine, 1994)](image)

If the lead time is normal distribution, the formulations are used to optimize the reorder point is as follows:

\[B = \bar{M} + Z\sigma = D\bar{L} + ZD\sigma_L \] \hfill (4)

where:
- \(B \) = reorder point
- \(D \) = rate constant demand per period
- \(\sigma \) = standard deviation of demand during lead time
- \(\sigma_L \) = standard deviation of lead time
- \(\bar{L} \) = average lead time in the period

2.2 Sensitivity Analysis

Sensitivity analysis is one step of the modeling system in validation the inventory model built or developed. Two important issues in the sensitivity analysis are as follows [3]:

1. Find response of optimal solutions generated to changes in the input values.
2. Find out how the big error occurs (loss of profits or savings).
3 Research Methodology

Research methodology is structured for problems can be resolved with better and more focused. The steps are shown in the flowchart in Figure 5.

Fig. 5. Flowchart of Research Methodology
Fig. 5. Flowchart of Research Methodology (continue)
4 Results and Discussion

4.1 Data Collection

The data collected are as follows:

1. Data demand of finished products in 2013
2. Plan production in 2013 and 2014
3. Data supplies packaging materials in 2013
4. Component inventory cost of packaging materials
5. Percentage of defect or damaged packaging materials
6. Data order lead time of packaging materials
7. Data purchase of packaging materials.

Ordering costs of packaging material can be seen in Table 1, and transportation cost and PPN can be seen in Table 2, the percentage of defect packaging materials can be seen in Table 3, and data lead time can be seen in Table 4.

Table 1. Ordering Costs of Packaging Materials

<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Make PR from storage and buy sheet (@Rp. 1000)</td>
<td>Rp 6,000</td>
</tr>
<tr>
<td>2</td>
<td>Make an covering letter (3 pieces) @Rp. 1000</td>
<td>Rp 3,000</td>
</tr>
<tr>
<td>3</td>
<td>Goods Receiving Report 6 pieces (@Rp. 1000)</td>
<td>Rp 6,000</td>
</tr>
<tr>
<td>4</td>
<td>Communication Fee via Telephone and email</td>
<td>Rp 30,925</td>
</tr>
<tr>
<td>5</td>
<td>Administration Fee</td>
<td>Rp 72,565</td>
</tr>
<tr>
<td>6</td>
<td>Goods Receiving Fee</td>
<td>Rp 206,360</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Rp 324,850</td>
</tr>
</tbody>
</table>

(Source: Materials Storage and Purchasing Division of PT Djambi Waras Jujuhan)

Table 2. Transportation Costs of Packaging Materials

<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transport Cost Per Kg</td>
<td>Rp 600</td>
</tr>
<tr>
<td>2</td>
<td>Delivery Cost Per Kg</td>
<td>Rp 500</td>
</tr>
<tr>
<td>3</td>
<td>Value Added Tax (PPN) % Per Unit</td>
<td>10%</td>
</tr>
</tbody>
</table>

(Source: Purchasing Division of PT Djambi Waras Jujuhan)
Table 3. Percentage Defect of Packaging Material

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
<th>Type of Packaging Material</th>
<th>Unit</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLS-0001</td>
<td>Plastic Bag SIR 10 SEUR</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>2</td>
<td>PLS-0002</td>
<td>Plastic Bag SIR 20 SEUR</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>3</td>
<td>PLS-0003</td>
<td>Plastic Bag SIR 20 SEUVK</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>4</td>
<td>PLS-0071</td>
<td>Bridgeston Plastic SIR 20</td>
<td>Sheet</td>
<td>3%</td>
</tr>
<tr>
<td>5</td>
<td>PLS-0074</td>
<td>Good Year Plastic SIR 20 NOLO</td>
<td>Sheet</td>
<td>3%</td>
</tr>
<tr>
<td>6</td>
<td>PLS-0075</td>
<td>Good Year Plastic SIR 20 SEUNOVOLO</td>
<td>Sheet</td>
<td>3%</td>
</tr>
<tr>
<td>7</td>
<td>PLS-0076</td>
<td>Good Year Plastic SIR 10 NIMBO</td>
<td>Sheet</td>
<td>3%</td>
</tr>
<tr>
<td>8</td>
<td>PLS-0077</td>
<td>Good Year Plastic SIR 20 SEUCVNVICO</td>
<td>Sheet</td>
<td>3%</td>
</tr>
<tr>
<td>9</td>
<td>PLS-0093</td>
<td>Plastic SIR 10</td>
<td>Sheet</td>
<td>3%</td>
</tr>
<tr>
<td>10</td>
<td>PLS-0099</td>
<td>SMPT Plastic C UG230SIR20</td>
<td>Sheet</td>
<td>3%</td>
</tr>
<tr>
<td>11</td>
<td>PLS-0163</td>
<td>Shrink Wrapped Plastic 0,25mm x 165 mm x252 mm</td>
<td>Kg</td>
<td>5%</td>
</tr>
<tr>
<td>12</td>
<td>PLS-0189</td>
<td>Blank Plastic SIR 20 SEU</td>
<td>Sheet</td>
<td>5%</td>
</tr>
<tr>
<td>13</td>
<td>PLS-0195</td>
<td>Blueprint Plastic 0,14mm x 145 x 870 cm</td>
<td>Kg</td>
<td>5%</td>
</tr>
<tr>
<td>14</td>
<td>PLS-0199</td>
<td>Blueprint Plastic 0,10 mm x 140 x 160 cm</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>15</td>
<td>PLS-0202</td>
<td>Gyo Plastic SR 20 SEUCOOPER TIRE</td>
<td>Sheet</td>
<td>3%</td>
</tr>
<tr>
<td>16</td>
<td>PLS-0223</td>
<td>Blank Plastic 0,1 x 140 x 160 cm</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>17</td>
<td>PLS-0225</td>
<td>White Blank Plastic 0,1 mm x 125 x 160 cm</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>18</td>
<td>PLS-0230</td>
<td>Trapping Band Plastic SMPT</td>
<td>Rol</td>
<td>3%</td>
</tr>
<tr>
<td>19</td>
<td>PLS-0253</td>
<td>Wire Plastic MB 0,2mm x 90 x 271 cm</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>20</td>
<td>PLS-0296</td>
<td>Red Plastic 0,14 mm x 146 x 340 cm</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>21</td>
<td>PLS-0297</td>
<td>Red Plastic 0,14 mm x 146 x 370 cm</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>22</td>
<td>PLS-0302</td>
<td>Blue Plastic 0,1 mm x 140 x 170 cm</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>23</td>
<td>PLS-0312</td>
<td>Blue Plastic 0,1 mm x 110 x 150 cm</td>
<td>Kg</td>
<td>3%</td>
</tr>
<tr>
<td>24</td>
<td>PLS-0326</td>
<td>Suntomom Plastic</td>
<td>Sheet</td>
<td>3%</td>
</tr>
</tbody>
</table>

(Source: Finished Product Warehouse of PT Djambi Waras Jujuhan)

Table 4. Order Lead Time of Packaging Materials

<table>
<thead>
<tr>
<th>Order</th>
<th>Lead Time (Days)</th>
<th>Order</th>
<th>Lead Time (Days)</th>
<th>Order</th>
<th>Lead Time (Days)</th>
<th>Order</th>
<th>Lead Time (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>15</td>
<td>13</td>
<td>29</td>
<td>22</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>16</td>
<td>11</td>
<td>30</td>
<td>35</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>17</td>
<td>10</td>
<td>31</td>
<td>24</td>
<td>45</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>18</td>
<td>19</td>
<td>32</td>
<td>9</td>
<td>46</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>19</td>
<td>16</td>
<td>33</td>
<td>21</td>
<td>47</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>20</td>
<td>20</td>
<td>34</td>
<td>8</td>
<td>48</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>21</td>
<td>11</td>
<td>35</td>
<td>14</td>
<td>49</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>22</td>
<td>16</td>
<td>36</td>
<td>6</td>
<td>50</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>23</td>
<td>26</td>
<td>37</td>
<td>10</td>
<td>51</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>38</td>
<td>3</td>
<td>52</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>25</td>
<td>24</td>
<td>39</td>
<td>16</td>
<td>53</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>29</td>
<td>26</td>
<td>1</td>
<td>40</td>
<td>8</td>
<td>54</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>27</td>
<td>9</td>
<td>41</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>28</td>
<td>6</td>
<td>42</td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Source: Purchasing Division of PT Djambi Waras Jujuhan)
4.2 Results

The following are the results of the calculations have been carrying out.

Table 5. Summary of Packaging Material Requirements 2014

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
<th>Type of Packaging Material</th>
<th>Unit</th>
<th>Total Requirement (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLS-0001</td>
<td>Plastic Bag SIR 10 SEUR</td>
<td>Kg</td>
<td>4201.73</td>
</tr>
<tr>
<td>2</td>
<td>PLS-0002</td>
<td>Plastic Bag SIR 20 SEUR</td>
<td>Kg</td>
<td>59969.25</td>
</tr>
<tr>
<td>3</td>
<td>PLS-0003</td>
<td>Plastic Bag SIR 20 SEUVK</td>
<td>Kg</td>
<td>14833.31</td>
</tr>
<tr>
<td>4</td>
<td>PLS-0071</td>
<td>Bridgeston Plastic SIR 20</td>
<td>Sheet</td>
<td>2294</td>
</tr>
<tr>
<td>5</td>
<td>PLS-0074</td>
<td>Good Year Plastic SIR 20 NOLO</td>
<td>Sheet</td>
<td>17955</td>
</tr>
<tr>
<td>6</td>
<td>PLS-0075</td>
<td>Good Year Plastic SIR 20 SEUNOVOLO</td>
<td>Sheet</td>
<td>32398</td>
</tr>
<tr>
<td>7</td>
<td>PLS-0076</td>
<td>Good Year Plastic SIR 10 NIMBO</td>
<td>Sheet</td>
<td>9515</td>
</tr>
<tr>
<td>8</td>
<td>PLS-0077</td>
<td>Good Year Plastic SIR 20 SEUCVIVCO</td>
<td>Sheet</td>
<td>43951</td>
</tr>
<tr>
<td>9</td>
<td>PLS-0093</td>
<td>Plastic SIR 10</td>
<td>Sheet</td>
<td>1158</td>
</tr>
<tr>
<td>10</td>
<td>PLS-0099</td>
<td>SMPT Plastic C UG23OSIR2</td>
<td>Sheet</td>
<td>25891</td>
</tr>
<tr>
<td>11</td>
<td>PLS-0163</td>
<td>Shrink Wrapped Plastic 0.25mm x 165 mm x 252 mm</td>
<td>Kg</td>
<td>25772</td>
</tr>
<tr>
<td>12</td>
<td>PLS-0189</td>
<td>Blank Plastic SIR 20 SEU</td>
<td>Sheet</td>
<td>21665</td>
</tr>
<tr>
<td>13</td>
<td>PLS-0195</td>
<td>Blueprint Plastic 0.14mm x 145 x 870 cm</td>
<td>Kg</td>
<td>20045.2</td>
</tr>
<tr>
<td>14</td>
<td>PLS-0199</td>
<td>Blueprint Plastic 0.10 mm x 140 x 160 cm</td>
<td>Kg</td>
<td>17522.44</td>
</tr>
<tr>
<td>15</td>
<td>PLS-0202</td>
<td>Gyo Plastic SR 20 SEUCOOPER TIRE</td>
<td>Sheet</td>
<td>7632</td>
</tr>
<tr>
<td>16</td>
<td>PLS-0223</td>
<td>Blank Plastic 0.1 x 140 x 160 cm</td>
<td>Kg</td>
<td>4008.9</td>
</tr>
<tr>
<td>17</td>
<td>PLS-0225</td>
<td>White Blank Plastic 0.1 mm x 125 x 160 cm</td>
<td>Kg</td>
<td>1068.48</td>
</tr>
<tr>
<td>18</td>
<td>PLS-0230</td>
<td>Trapping Band Plastic SMPT</td>
<td>Rol</td>
<td>1295</td>
</tr>
<tr>
<td>19</td>
<td>PLS-0253</td>
<td>Wire Plastic MB 0.2mm x 90 x 271 cm</td>
<td>Kg</td>
<td>41346.84</td>
</tr>
<tr>
<td>20</td>
<td>PLS-0296</td>
<td>Red Plastic 0.14 mm x 146 x 340 cm</td>
<td>Kg</td>
<td>3107.52</td>
</tr>
<tr>
<td>21</td>
<td>PLS-0297</td>
<td>Red Plastic 0.14 mm x 146 x 370 cm</td>
<td>Kg</td>
<td>3301.74</td>
</tr>
<tr>
<td>22</td>
<td>PLS-0302</td>
<td>Blue Plastic 0.1 mm x 140 x 170 cm</td>
<td>Kg</td>
<td>3365.96</td>
</tr>
<tr>
<td>23</td>
<td>PLS-0312</td>
<td>Blue Plastic 0.1 mm x 110 x 150 cm</td>
<td>Kg</td>
<td>30789.64</td>
</tr>
<tr>
<td>24</td>
<td>PLS-0326</td>
<td>Sumtomom Plastic</td>
<td>Sheet</td>
<td>34491</td>
</tr>
</tbody>
</table>

Table 6. Summary of ABC Classification Based on Usage Value / Demand Packaging Materials

<table>
<thead>
<tr>
<th>Class</th>
<th>Usage Value</th>
<th>Amount of items</th>
<th>Percentage of items</th>
<th>Total usage value/demand</th>
<th>Percentage usage value/demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>360 million</td>
<td>5</td>
<td>20.83%</td>
<td>Rp 4,226,892,496</td>
<td>79.41%</td>
</tr>
<tr>
<td>B</td>
<td>70 million < usage value < 360 million</td>
<td>4</td>
<td>16.67%</td>
<td>Rp 782,532,795</td>
<td>14.56%</td>
</tr>
<tr>
<td>C</td>
<td>< 70 million</td>
<td>15</td>
<td>62.50%</td>
<td>Rp 323,674,462</td>
<td>6.02%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>100%</td>
<td>Rp 5,373,099,753</td>
<td>100%</td>
</tr>
</tbody>
</table>

Data collected amount of 80 data and after testing data distribution, data can only 54 data. This happened because there are some data that is too extreme like ordering
lead time is more than 1 month and out of the control limits I-MR control chart. Distribution of lead time obtained is a normal distribution with a mean = 16.2 days (0.044 years) and standard deviation = 8.97 days (0.025 years).

Determination of Q^* and T^* packaging material the proposed system (2014) by using joint replenishment method

- Code material = PLS-0002
- Type of material = Plastic Bag SIR 20 SEU R
- Unit = kg
- Class = A
- Total requirement (R_i) = 59,969,25 kg
- Price per unit (P_i) = Rp. 27,940, -
- S = ordering cost for 1x order = Rp. 324,850, -
- k = fraction of holding cost = 0.24

Step 1: Calculate annual demand (P_iR_i)

$$P_iR_i = Rp. 27,940, - \times 59,969,25 kg = Rp. 1,675,540,845, -$$

Step 2: Total annual demand = Rp. 4,894,941,013, -

Step 3: Economic Order Interval (EOI)

$$T^* = \frac{\sqrt{2(C + nc)}}{F \sum_{i=1}^{n} P_iR_i} = \frac{\sqrt{2(Rp. 324,850 + (7x0))}}{0,24 \times Rp. 4,894,941,013} = 0,02 \text{ years} = 8,58 \text{ days}$$

That included in Group AB.

Step 4: Optimal Order Quantity (Q^*)

$$Q^* = R_i \times Q^* = 59,969,25 kg \times 0,02$$

$$= 1,410,28 kg \text{ per order}$$

Step 5: Ordering cost (T_{C_p}) Group AB

$$T_{C_p} = \frac{C + nc}{T} = \frac{Rp.324,850 + (7x0)}{0,01} = Rp. 13,968,562, -$$

Step 6: Holding cost (T_{C_s}) Group AB

$$T_{C_s} = \frac{T_F}{2} \sum_{i=1}^{n} P_iR_i = \frac{0,01x0,24}{2} \times Rp. 4,894,941,013 = Rp. 13,813,571, -$$

Step 7: Total Inventory Cost

$$TC = T_{C_p} + T_{C_s} = Rp. 13,968,562, - + Rp. 13,813,571, -$$

$$= Rp. 27,782,133, -$$

Determination of SS and B for the proposed system (2014)
Code material = PLS-0001
Type of material = Plastik Kantong SIR 10 SEU R
Class = B

Total demand in 2014 (D) = 4201.73 kg
\(\bar{L} \) = 16.2 days = 0.044 years
\(\sigma_L \) = 8.97 day = 0.025 years

SS = \(ZD\sigma_L \)
= 2.33 x 4.201.73 kg x 0.025
= 240.59 kg

B = \(\bar{M} + Z\sigma = D\bar{L} + ZD\sigma_L \)
= (4201.73 kg x 0.044 years) + 240.59 kg
= 427.08 kg

Table 7. Summary of Inventory Cost Comparison between The Existing and The Proposed Inventory System in 2013

<table>
<thead>
<tr>
<th>component of inventory system</th>
<th>existing inventory system</th>
<th>proposed inventory system</th>
</tr>
</thead>
<tbody>
<tr>
<td>ordering cost</td>
<td>Rp 5,522,455</td>
<td>Rp 16,892,214</td>
</tr>
<tr>
<td>holding cost</td>
<td>Rp 403,234,152</td>
<td>Rp 71,136,205</td>
</tr>
<tr>
<td>total inventory cost</td>
<td>Rp 408,756,607</td>
<td>Rp 88,028,419</td>
</tr>
<tr>
<td>save</td>
<td>Rp 320,728,188</td>
<td></td>
</tr>
<tr>
<td>% save</td>
<td>78.46%</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Summary Inventory Costs of The Proposed System with Considering Safety Stock (SS) in 2014

<table>
<thead>
<tr>
<th>component of inventory cost</th>
<th>proposed system 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>ordering cost</td>
<td>Rp 19,815,867</td>
</tr>
<tr>
<td>holding cost</td>
<td>Rp 94,877,098</td>
</tr>
<tr>
<td>total inventory cost</td>
<td>Rp 114,692,965</td>
</tr>
</tbody>
</table>

Sensitivity analysis performed two conditions of ordering cost are:
Initial condition = Rp. 324 850, -
Condition 1 booking fee up to 30% = Rp. 422 305, -
Condition 2 booking fee rise 50% = Rp. 487 275, -
4.3 Analysis

4.3.1 Analysis of Inventory Turnover (ITO) of Packaging Materials

The purpose of determination ITO value was to know how quickly turnover of packaging materials in the company and how much the company invested to inventory. Inventory management of the company will be efficient if ITO value more higher. Based on the results that have been obtained from 38 types of packaging material, just only 18 types of packaging material that has ITO value > 1, its means that 18 types of packaging material is changed at least once time for a year. For example, Plastic Bag SIR 20 SEU Plastic have ITO value = 10.28 x turn of the year,

Table 9. Summary of Inventory Cost Comparison between Initial Condition, Condition 1 and 2

<table>
<thead>
<tr>
<th>component of inventory cost</th>
<th>initial condition (proposed 2014)</th>
<th>sensitivity analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>condition 1</td>
<td>condition 2</td>
</tr>
<tr>
<td>ordering cost</td>
<td>Rp 19,815,867</td>
<td>Rp 22,804,489</td>
</tr>
<tr>
<td>holding cost</td>
<td>Rp 19,368,350</td>
<td>Rp 22,083,316</td>
</tr>
<tr>
<td>total inventory cost</td>
<td>Rp 39,184,216</td>
<td>Rp 44,887,805</td>
</tr>
<tr>
<td>% increasing TC</td>
<td>14.56%</td>
<td>22.72%</td>
</tr>
</tbody>
</table>

Table 10. Inventory Turnover Value (ITO) of Proposed Inventory System

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
<th>Type of Packaging Material</th>
<th>Unit</th>
<th>Class</th>
<th>ITO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLS-0002</td>
<td>Plastic Bag SIR 20 SEUR</td>
<td>Kg</td>
<td>A</td>
<td>58.46%</td>
</tr>
<tr>
<td>2</td>
<td>PLS-0253</td>
<td>Wire Plastic MB 0.2mm x 90 x 271 cm</td>
<td>Kg</td>
<td>A</td>
<td>58.46%</td>
</tr>
<tr>
<td>3</td>
<td>PLS-0163</td>
<td>Shrink Wrapped Plastic 0.25mm x 165 mm x252 mm</td>
<td>Kg</td>
<td>A</td>
<td>58.46%</td>
</tr>
<tr>
<td>4</td>
<td>PLS-0312</td>
<td>Blue Plastic 0.1 mm x 110 x 150 cm</td>
<td>Kg</td>
<td>A</td>
<td>58.46%</td>
</tr>
<tr>
<td>5</td>
<td>PLS-0195</td>
<td>Blueprint Plastic 0.14mm x 145 x 870 cm</td>
<td>Kg</td>
<td>A</td>
<td>58.46%</td>
</tr>
<tr>
<td>6</td>
<td>PLS-0199</td>
<td>Blueprint Plastic 0.10 mm x 140 x 160 cm</td>
<td>Kg</td>
<td>B</td>
<td>58.46%</td>
</tr>
<tr>
<td>7</td>
<td>PLS-0003</td>
<td>Plastic Bag SIR 20 SEUNIQ</td>
<td>Kg</td>
<td>B</td>
<td>58.46%</td>
</tr>
<tr>
<td>8</td>
<td>PLS-0001</td>
<td>Plastic Bag SIR 10 SEU</td>
<td>Kg</td>
<td>B</td>
<td>38.55%</td>
</tr>
<tr>
<td>9</td>
<td>PLS-0223</td>
<td>Blank Plastic 0.1 x 140 x 160 cm</td>
<td>Kg</td>
<td>B</td>
<td>38.55%</td>
</tr>
<tr>
<td>10</td>
<td>PLS-0302</td>
<td>Blue Plastic 0.1 mm x 140 x 170 cm</td>
<td>Kg</td>
<td>C</td>
<td>38.55%</td>
</tr>
<tr>
<td>11</td>
<td>PLS-0297</td>
<td>Red Plastic 0.14 mm x 146 x 370 cm</td>
<td>Kg</td>
<td>C</td>
<td>38.55%</td>
</tr>
<tr>
<td>12</td>
<td>PLS-0296</td>
<td>Red Plastic 0.14 mm x 146 x 340 cm</td>
<td>Kg</td>
<td>C</td>
<td>38.55%</td>
</tr>
<tr>
<td>13</td>
<td>PLS-0077</td>
<td>Good Year Plastic SIR 20 SEUVNIYCO</td>
<td>Sheet</td>
<td>C</td>
<td>27.69%</td>
</tr>
<tr>
<td>14</td>
<td>PLS-0230</td>
<td>Trapping Band Plastic SMPT</td>
<td>Rol</td>
<td>C</td>
<td>27.69%</td>
</tr>
<tr>
<td>15</td>
<td>PLS-0326</td>
<td>Sunstrom Plastic</td>
<td>Sheet</td>
<td>C</td>
<td>27.69%</td>
</tr>
<tr>
<td>16</td>
<td>PLS-0075</td>
<td>Good Year Plastic SIR 20 SEUNOVOLO</td>
<td>Sheet</td>
<td>C</td>
<td>27.69%</td>
</tr>
<tr>
<td>17</td>
<td>PLS-0225</td>
<td>White Blank Plastic 0.1 mm x 125 x 160 cm</td>
<td>Kg</td>
<td>C</td>
<td>27.69%</td>
</tr>
<tr>
<td>18</td>
<td>PLS-0099</td>
<td>SMPT Plastic C UG23OISR20</td>
<td>Sheet</td>
<td>C</td>
<td>24.54%</td>
</tr>
<tr>
<td>19</td>
<td>PLS-0189</td>
<td>Blank Plastic SIR 20 SEU</td>
<td>Sheet</td>
<td>C</td>
<td>24.54%</td>
</tr>
<tr>
<td>20</td>
<td>PLS-0074</td>
<td>Good Year Plastic SIR 20 NOLO</td>
<td>Sheet</td>
<td>C</td>
<td>24.54%</td>
</tr>
<tr>
<td>21</td>
<td>PLS-0076</td>
<td>Good Year Plastic SIR 10 NIBO</td>
<td>Sheet</td>
<td>C</td>
<td>24.54%</td>
</tr>
<tr>
<td>22</td>
<td>PLS-0202</td>
<td>Gyo Plastic SR 20 SEUCOOPER TIRE</td>
<td>Sheet</td>
<td>C</td>
<td>24.54%</td>
</tr>
<tr>
<td>23</td>
<td>PLS-0071</td>
<td>Bridgeston Plastic SIR 20</td>
<td>Sheet</td>
<td>C</td>
<td>8.53%</td>
</tr>
<tr>
<td>24</td>
<td>PLS-0093</td>
<td>Plastic SIR 10</td>
<td>Sheet</td>
<td>C</td>
<td>8.53%</td>
</tr>
</tbody>
</table>
its mean that packing material turn over 10 times a year and inventory control for this packaging materials quite good compared with other types of packaging materials. Meanwhile, 20 types of packaging material has ITO value <1 and ITO value = 0 as Label Good Year 10 VK / Nevo Plastic, Pink Plastic 0.1 x 150 x 880 cm, etc. That is happened because packaging materials not changed in one year.

If ITO value of the existing inventory system compared with the proposed inventory system in Table 5.1, so ITO value of the existing inventory system is still not optimal or it can be concluded that inventory turnover is still relatively slow if it compared with the proposed inventory system has been considering with variations of lead time. Based on these conditions, the company should improve the existing inventory system and implement the proposed inventory system that can reduce average inventory of packaging materials in warehouses. So turnover of packaging materials can be faster than the previous inventory system.

4.3.2 Analysis of Packaging Material Requirements Aggregation
Existing packaging material requirements planning is still not well arranged and has not been integrated with the demand of finished product, it still based on previous usage, so the risk of stock out or over stock becomes larger. To solve this problem, the company must plan for packaging material in 2014 so that the risks can be minimized.

Packaging material requirements planning is done based on production plan in 2014. The result of this packaging material requirements planning is aggregation of packaging materials. Packaging material requirements planning has been undertaken to consider the percentage of defects or damage of the packaging material during the production process or after production during for a year. Production planning of packaging material in 2014 use for another step for evaluation and give recommendations inventory system for this company.

4.3.3 Analysis of ABC Classification Packaging Materials
Condition of packaging material inventory systems in PT Djambi Waras Jujuhan still not grouping and ordering process in the company is done if inventory of packaging material has reached the minimum stock. So, if there are several types of packaging material has reached the minimum stock of packaging materials will be immediately ordered to suppliers. In this research, packaging materials will be grouped into three classes using the ABC analysis.

Data packaging materials in that company amounted to 38 types. But just only 24 types are used and classify by ABC Analysis because only 24 types of packaging material that has required in the year 2014. Packaging materials are not grouped into packaging material requirements planning in 2014, the inventory system is specific policy based on historical data of the company.

ABC analysis performed in this research is based on value usage criteria of the packaging material and the result showed that 5 types of packaging materials are in A class, 4 types of Packaging materials are in B class, and 15 types of packaging materials are in C class. Packaging materials including into A class with usage percentage 79.41% and its annual usage value more than Rp. 360 million, B class with usage percentage of 14.56% and its annual usage value is above Rp.70 million - under Rp.360 million, and C class with usage percentage 6.02% and its annual usage valua is under Rp.70 million.
The high demand value of packaging material is influenced by price per unit and the number of demand for a year. If price and amount of usage per year increase, so packaging material can classify into A class. And if one of two factors that mentioned before is low, so possibility of the packaging material can classify into B or C class. The situation also happened of packaging material in PT Djambo Waras Jujuhan. For example, Plastic Bag SIR 10 SEU has a high price but low annual usage for a year, so this type classify into C class.

The results of ABC classification will be using for packaging material inventory system in PT Djambo Waras Jujuhan in 2014. A class of packaging materials should be given the main focus in the Materials Storage and Purchasing Division. Although B and C class are focus of attention quite normal and enough, but for certain types of packaging material still needs to be given more attention than the other types that are same class because there is a packaging material that has a rapid rate of usage in the class. The results of ABC classification is also used as the basis for ordering process the packaging material to suppliers.

4.3.4 Analysis of Optimal Order Quantity (Q*) Order Interval (T*) of Packaging Materials by Using Joint Replenishment Models

Order interval for every group is different. The differences happened are because of the influence from purchasing cost, ordering cost, fraction of holding cost and requirement of packaging material. The higher of demand and purchasing cost, so order interval will be smaller. This means that company is increasingly often an order to the supplier. For example, the actual order interval C order 1 that is 59 days so actual order frequency is 11 times not 10.95 times as the result of the calculation. This is done so that demand can be met during the year.

Thus, in the decision-making process should consider order interval and order frequency so that a more optimal decisions compared just only one factor to consider. For example, when a decision is taken only consider order interval there was a risk that order made by the optimal quantity will exceed demand for a year, and it will increase order and holding cost. This problem happens if packaging materials has great demand. Optimal order quantity (Q *) is different for every item in the group, depending on the needs of the packaging materials and purchasing cost. Q * will be greater if demand is high and purchasing cost of packaging materials is low. Conversely, if purchasing cost of packaging materials is high so Q * will become smaller. Recommended for the proposed system, the company would choose the actual order frequency because the company only adds one order.

4.3.5 Analysis of Safety Stock (SS) and Reorder Point (B) Packaging Materials

Based on the results of the calculations have been done SS obtained is smaller than the SS set by companies today. It is shown that the the proposed system has a better inventory system inventory systems inventory now because a given proposal already has the optimal ordering quantity (Q*) with optimal ordering interval (T*) for each packaging material, although given the the proposed inventory system has messaging costs are greater because the frequency of ordering frequently. However, packaging materials stored in the warehouse a little more and have faster inventory turnover compared to the current inventory system. So the risk of damage or loss due to specification changes the size of the packaging material can be reduced in the the proposed inventory system.
Safety stock provided by the company is still greater when compared with the results of calculations performed, but this time the SS policy is much better than the company's policy before the month of October 2013 as the SS set is much larger than the current inventory system. Reorder Point (B) packaging materials are obtained from calculations carried out amounted to two times of the safety stock is obtained. This occurs because the service level that is 99% larger.

4.3.6 Analysis of Current and Proposed Inventory System
Calculation of total inventory cost for the the existing and the proposed inventory system 2013 was conducted to determine the proposed inventory system is feasible to be implemented or not. The proposed inventory system that given was feasible to implement because: a) it can save total inventory costs up to 78.46% or Rp.320,728,188,- from total inventory cost of the existing inventory system, b) ordering costs of the proposed inventory system is greater than the existing inventory system because ordering frequency more often done by considering the optimal quantity of packaging material, purchasing of packaging materials, ordering costs holding costs, c) holding costs of the proposed inventory system is smaller than the existing inventory system because average inventory and safety stock packaging materials is smaller than the existing inventory system. In the existing inventory system, average inventory and safety stock is higher when it compared with the the proposed system, its meaning that company save many packaging materials that resulted turnover of stock to be slow.

4.3.7 Sensitivity Analysis for Ordering Cost of Packaging Materials
Based on result from calculation, it showed that condition 1 when ordering costs increased up to 30%, so total inventory costs increased up to 14.56%. Meanwhile, the condition 2 ordering costs increased up to 50% so the total inventory cost increased up to 22.72%. It can be concluded that the response given the optimal solution or the total inventory costs if ordering costs chaged so total inventory costs chages less than increase of ordering costs, this can be interpreted that propose or recommendations inventory system feasible to implement in the company. In addition, if ordering costs increase so order interval and order quantity will be increasing too. That mean, time period between the previous order to the next order increases because ordering quantity increase or it can be said ordering frequency reduced for a year.

5 Conclusions and Suggestions

5.1 Conclusions
Conclusions derived from this research include the following:
1. Packaging materials inventory systems in PT Djambi Waras Jujuhan still not optimal if their compared with the the proposed inventory system because of from 38 types of packaging materials holding in warehouse just only 18 types of packaging material that has a value of ITO > 1 and 20 types of packaging material has a value of ITO < 1 and ITO = 0. While the value of
the proposed inventory system of order class AB has a value of ITO = 58.46 x turn of the year, order class BC has a value of ITO = 38.55 x turn of the year, order class C 1 has a value of ITO = 27.69 x turn of the year, order class C 2 has a value of ITO = 24.54 x turn of the year, and order class C 3 has a value of ITO = 8.53 x turn of the year. This happens because the company has an average inventory and safety stock is high. Solution for this problem is the company can reduce the average inventory in the warehouse so risk of damage or change the size specifications of packaging materials can be minimized.

2. Proposal or recommendation packaging materials inventory systems will give for the existing inventory system, are:
 a. Planning or aggregation of packaging material needs for a year using a production plan that has been made by considering the percentage of defect packaging materials.
 b. Grouping of packaging materials using ABC analysis based on rate of using criteria ordering process and the controlling.
 c. Determination of the optimal order quantity (Q*), optimal order interval (T*), and frequency ordering (f) by using Joint Replenishment Method.
 d. Determination of safety stock and reorder point of packaging materials by considering variations of lead time.
 e. Calculate the total inventory costs during for a year.

5.2 Suggestions

Suggestions given to the company and further research are:

1. The company may implement the packing material inventory systems is the proposed that the existing inventory system becomes more accurate and optimal.
2. Future research could design an application or information system for inventory planning of packaging materials, so that company can plan packaging materials inventory system for the next period to more easily and quickly and also can be used by stakeholders. In addition, data inventory or inventory reports more accessible.
3. Future research may develop or make a new model inventory system of packaging materials which more appropriate and more sensitive if one of the components inventory system in the company changes, so optimal solutions that result by the model more optimal.

Acknowledgement. This research was financial supported by Andalas University, West Sumatera Indonesia.
REFERENCES

Lecture Notes in Electrical Engineering

Country: Germany
Subject Area and Category: Engineering
Industrial and Manufacturing Engineering
Publisher: Springer Verlag
Publication type: Book Series
ISSN: 18761100
Coverage: 2008-ongoing

Quartiles

Industrial and Manufacturing Engineering

SJR

Citations per document

Total Cites
Self-Cites

http://www.scimagojr.com/journalrank.php?q=19700186622&ip=sd&clean=0
Source details

Lecture Notes in Electrical Engineering

Scopus coverage years: from 2007 to 2016
Publisher: Springer Verlag
ISSN: 1876-1100 E-ISSN: 1876-1119
Subject area: Engineering: Industrial and Manufacturing Engineering

Set document alert

CiteScore 2015

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiteScore</td>
<td>0.06</td>
</tr>
<tr>
<td>Citation Count 2015</td>
<td>917 Citations</td>
</tr>
<tr>
<td>Documents 2012 - 2014*</td>
<td>14555 Documents</td>
</tr>
</tbody>
</table>

*CiteScore includes all available document types
View CiteScore methodology

CiteScoreTracker 2016

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiteScore</td>
<td>0.07</td>
</tr>
<tr>
<td>Citation Count 2016</td>
<td>920 Citations to date</td>
</tr>
<tr>
<td>Documents 2013 - 2015</td>
<td>13460 Documents to date</td>
</tr>
</tbody>
</table>

Metrics displaying this icon are compiled according to Snowball Metrics (http://www.snowballmetrics.com/), a collaboration between industry and academia.

About Scopus

What is Scopus (https://www.elsevier.com/online-tools/scopus)
Scopus blog (https://blog.scopus.com/)
Scopus API (https://dev.elsevier.com/)

Language

日本語に切り替える (https://help.elsevier.com/app/answers/detail/a_id/8150/p/8150)
切り替え (https://help.elsevier.com/app/answers/detail/a_id/128634/p/8150)

Customer Service

Help (https://standard/contactUs.uri?pageOrigin=footer)
Contact us (https://standard/contactForm.uri?pageOrigin=footer)
The Scopus Author Identifier assigns a unique number to groups of documents written by the same author via an algorithm that matches authorship based on a certain criteria. If a document cannot be confidently matched with an author identifier, it is grouped separately. In this case, you may see more than 1 entry for the same author.

Putri, Nilda Tri
Universitas Andalas, Department of Industrial Engineering, Padang, Indonesia
Author ID: 53864158100

Documents: 10
Citations: 0 total citations by 0 document
h-index: 0
Co-authors: 17
Subject area: Business, Management and Accounting, Engineering

10 Documents

Export all | Add to list | Set document alert | Set document feed

Redesign of thresher machine for farmers using rapid upper limb assessment (RULA) method
Putri, N.T., Susanti, L., Tito, A., Sutanto, A.
2016 IEEE International Conference on Industrial Engineering and Management
0

The role of an organizational culture and individual towards knowledge management practice in cement industry
Putri, N.T., Kumia, S.
0

Comparison of Quality Engineering Practices in Malaysian and Indonesian Automotive Related Companies
Putri, N.T., Sharif Mohd, Y., Irianto, D.
2016 IOP Conference Series: Materials Science and Engineering
0

Design of quality system documentation in hydrotiller production unit as improvement of quality management system in small and medium enterprise
Putri, N.T., Retha, F., Yusof, S.M.
2016 International Journal of Productivity and Quality Management
0

Facility layout design on the agricultural machinery industry
Putri, N.T., Fithri, P., Taufik, M.
2015 Lecture Notes in Engineering and Computer Science
0

An inventory system of packaging materials: Case study at PT. Djambo Waras Jujuhan
Putri, N.T., Joninalidi, Risa Noviani, Y.R.
2015 Lecture Notes in Electrical Engineering
0

The effect of TQM implementation towards productivity of employees using Structural Equation Modeling (SEM) analysis method in PT X'Z
Putri, N.T., Dama, H.S.
2014 ICIMIT 2014 - 2014 IEEE International Conference on Management of Innovation and Technology
0

The Delphi hierarchy process-based study of quality engineering in Malaysia and Indonesia automotive companies
Putri, N.T., Mohd. Yusof, S., Irianto, D.
2014 TQM Journal
0

Strategic road performance model: An approach to sustainable facilities management
Kamil, I., Aliax, B., Mohammed, A.H., Putri, N.T., Meilani, D.
2014 Jurnal Teknologi
0

Follow this Author
Receive emails when this author publishes new articles
Add to ORCID
Get citation alerts
Add to ORCID
Request author detail corrections

Author History
Publication range: 2011 - 2016
References: 140

Source history:
Lecture Notes in Electrical Engineering
IEEE International Conference on Industrial Engineering and Management
IOP Conference Series: Materials Science and Engineering

Show More
Show Related Affiliations

Print | E-mail

Follow this Author
Receive emails when this author publishes new articles
Add to ORCID
Get citation alerts
Add to ORCID
Request author detail corrections

Follow this Author
Receive emails when this author publishes new articles
An empirical investigation of quality tools and techniques practices in Malaysia and Indonesia automotive industries

Show abstract | Related documents

Display 20 results per page

Top of page

The data displayed above is compiled exclusively from articles published in the Scopus database. To request corrections to any inaccuracies or provide any further feedback, please contact us (registration required).

The data displayed above is subject to the privacy conditions contained in the privacy policy.

About Scopus

What is Scopus
Content coverage
Scopus blog
Scopus API
Privacy matters

Language

日本語に切り替える
切換到简体中文
切換到繁體中文

Customer Service

Help

Terms and conditions
Privacy policy

Copyright © 2017 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Cookies are set by this site. To decline them or learn more, visit our Cookies page.
Chapter

An Inventory System of Packaging Materials: Case Study at PT. Djambi Waras Jujuhan

PT Djambi Waras Jujuhan is one of Crumb Rubber Factory which is inseparable of inventory problems. It needs packaging materials for production process, especially in packaging process. Currently, PT Djambi War...

Nilda Tri Putri, Jonrinaldi... in Industrial Engineering, Management Science... (2015)
An Inventory System of Packaging Materials: Case Study at PT. Djambi Waras Jujuhan

Nilda Tri Putri, Jonrinaldi, Y. R. Risa Noviani

Abstract

PT Djambi Waras Jujuhan is one of Crumb Rubber Factory which is inseparable of inventory problems. It needs packaging materials for production process, especially in packaging process. Currently, PT Djambi Waras Jujuhan has the problems in controlling inventory system of packaging materials because of one supplier only supplying materials, variation of lead time, high minimum stocks of packaging materials and pile up in the storage. The aim of the research is to propose an inventory system of packaging materials to improve inventory performance considering variations of lead time. The inventory system we proposed consists of four steps. The first step is calculating Inventory Turnover (ITO) to identify how the performance level of the existing inventory system. The second step is determining aggregate planning of packaging materials, classifying packaging materials using ABC analysis and testing distribution of lead time. The third step is determining economic order quantity and order interval, safety stock and reorder point. The fourth step is calculating total annual inventory cost considering safety stock and variation of lead time. Sensitivity analysis is performed to see the effects of changes of input parameters to the decision variables and total inventory cost. Based on analysis we have done, current inventory system of packaging materials at PT Djambi Waras Jujuhan has not been
efficient yet that we can see from the value of inventory turnover. From 38 types of packaging materials, 18 types of packaging materials have the value of inventory turnover more than 1 and 20 types have the value of inventory turnover less than 1. The inventory system we propose in this paper can save 78.46% of total current inventory cost that is Rp.320,728,188,-. Therefore, the inventory system considering variation of lead time we proposed at PT Djambi Waras Jujuhan has increased the inventory performance.

References

About this Chapter

Title
An Inventory System of Packaging Materials: Case Study at PT. Djambi Waras Jujuhan

Book Title
Industrial Engineering, Management Science and Applications 2015

Pages
pp 313-330

Copyright
2015

DOI
10.1007/978-3-662-47200-2_34

Print ISBN
978-3-662-47199-9

Online ISBN
Authors

- Nilda Tri Putri (5)
- Jonrinaldi (5)
- Y. R. Risa Noviani (5)

Author Affiliations

- 5. Department of Industrial Engineering, Faculty of Engineering, Andalas University, Padang, 25163, Indonesia

We use cookies to improve your experience with our site. More information