PROCEEDINC

THE $2^{\text {nd }}$ INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY

Science and Technology for Nation Prosperity

PROCEEDING

THE $2^{\text {nd }}$ INTERNATIONAL CONFERENCE ON

SCIENCE AND TECHNOLOGY

"SCIENCE AND TECHNOLOGY FOR NATION PROSPERITY"

Bengkulu, Indonesia
$6^{\text {th }}-7^{\text {th }}$ July 2019

Editor

Nur Afandi, S.Si., M.Sc.
Nanang Sugianto, S.Si., M.Sc.
Deni Agustriawan, S.Si., M.Sc.
Santi Nurul Kamilah, S.Si., M.Si.
Dyah Setyo Rini, S.Si., M.Sc.
Suhendra, S.Si., MT.

Publisher

UNIB PRESS

Proceeding The $2^{\text {nd }}$ International Conference on Science and Technology

Reviewer Board

Prof. Dr. Irfan Gustian, S.Si., M.Si.
Prof. Mudin Simanihuruk, M.Sc., Ph.D.
Prof. Sigit Nugroho, M.Sc., Ph.D.
Dr. Muhammad Luthfi Firdaus, S.Si., MT.
Ashar Muda Lubis, S.Si., M.Sc., Ph.D.
Abdul Rahman, S.Si., M.Si., Ph.D.
Dr. Elfi Yuliza, M.Si.
Drs. Hery Haryanto, M.Sc.
Dr. Risky Hadi Wibowo, M.Si.

Editor

Nur Afandi, S.Si., M.Sc.
Nanang Sugianto, S.Si., M.Sc.
Deni Agustriawan, S.Si., M.Sc.
Santi Nurul Kamilah, S.Si., M.Si.
Dyah Setyo Rini, S.Si., M.Sc.
Suhendra, S.Si., MT.

Publisher

UNIB Press
LPPM UNIB
University of Bengkulu, WR Supratman street, Kandang Limun Bengkulu City 38371
Published in June 2020

Organizer

Faculty of Mathematics and Natural Sciences, University of Bengkulu W.R. Supratman Street, Kandang Limun, Bengkulu City. 38371.

Proceeding The $2^{\text {nd }}$ International Conference on Science dan Technology Bengkulu $6^{\text {th }}-7^{\text {th }}$ July 2019
ISBN : 978-602-5830-19-8

FOREWORD

All praises be to the Almighty God, for all His grace and guidance, proceeding of the $2^{\text {nd }}$ International Conference on Science and Technology with the theme "Science and Technology for Nation Prosperity" can be completed. This proceeding is a collection of papers held by the Mathematics and Natural Science, University of Bengkulu on $6^{\text {th }}-7^{\text {th }}$ July 2019 at GRAGE Hotel Bengkulu.

Our highest gratitude and appreciation goes to the presenters and authors of the papers, as well as the executive committee who have worked hard so that this proceeding can be published. We also thank the Reviewer Board for reviewing all papers so that the quality of the contents of the paper can be maintained and accounted for. Do not forget to all parties who have provided support for the holding of the international conference and the preparation of this proceeding, we thank you.

We do hope that this conference would bring a great opportunity for all of us to strengthen our contribution to the advancement of our nation.

Finally, I hope this proceeding can provide benefits for all.

Bengkulu, June 2020

Publication Committee

COMMITTEE

THE $2^{\text {nd }}$ INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY

"Science and Technology for Nation Prosperity"

Organized by Faculty of Mathematics and Natural Sciences, University of Bengkulu

Prof. Dr. Irfan Gustian, M.Si. (Conference General Chair)
Dr. Fanani Haryo Widodo, M.Sc. (Technical Program Chair)
Dr. M. Farid, MS. (Technical Program Chair)
Ramya Rachmawati, S.Si., M.Si., Ph.D. (General Secretary)
Dr. Riska Ekawita, S.Si., M.Si.
Pepi Novianti, S.Si., M.Si.
Suhendra, S.Si., MT.
Dr. Liza Lidiawati, S.Si., M.Si.
Santi Nurul Kamilah, S.Si., M.Si.
Dyah Setyo Rini, S.Si., M.Sc.
Nur Afandi, S.Si., M.Sc.
Nanang Sugianto, S.Si., M.Sc.
Dr. Risky Hadi Wibowo, M.Si.
Siska Yosmar, S.Si., M.Si.
Dr. Elfi Yuliza, S.Si., M.Si.
Ulfasari Rafflesia, S.Si., M.Si.
Drs. Hery Haryanto, M.Sc.
Etis Sunandi, S.Si., M.Si.
Idhia Sriliana, S.Si., M.Si.
Nori Wirahmi, S.Si., M.Farm, Apt.
Dian Agustina, S.Si., M.Sc.
Ashar Muda Lubis, S.Si., M.Sc., Ph.D.
Dr. Mulia Astuti, S.Si., M.Si.
Dr. Eng Asdim, S.Si., M.Si.
Drs. Choirul Muslim, SU., Ph.D.
Faisal Hadi, MT.
Fachri Faisal, S.Si., M.Si.
Zulfia Memi Mayasari, S.Si., M.Si.
Herlin Fransiska, S.Si., M.Si.
Dr. Arif Ismul Hadi, S.Si, M.Si.
Ghufira, S.Si., M.Si.

KEYNOTE SPEAKER

1. Prof. Sudarsanam (Sri Venkateswara University, INDIA),
2. Prof. Martianus Frederick Ezerman (Nanyang Technology University, SINGAPORE)
3. Bambang Sumintono, Ph.D. (Universiti Malaya, MALAYSIA)
4. Assoc. Prof. Dr. Oki Muraza (King Fahd University of Petroleum and Minerals, Dhahran, SAUDI ARABIA)

INVITED SPEAKER

Dr. Nampiah Sukarno (Bogor Agricultural University, INDONESIA)

TABLE OF CONTENTS

Foreword (iii)
Commite (iv)
Keynote and Invited Speaker (v)
Table of Contents

Physics

Secondary Particle-Based Radioisotope Production: Theoretical Approach
H Suryanto and I Kambali
A preliminary study of the structure and electrical properties on transition metal incorporated in Li2CoSiO4 prepared from rice husk silica and cathode waste
A Riyanto, S Sembiring, C Widyastuti, M T Rangga, Junaidi, and S Husain
Measurement of Position and Groundwater Quality Around the Palm Oil Plantation by Using Geo-
Electric Method
M Farid, M L Firdaus, DwiAlfina S
Chemistry
Formulation Gel Mask Peel Off from Palm Shell (Elaeis quinemis Jacq) Activated Charcoal as
Facial Cleanser with Polyvinyl Alcohol (PVA)
U Lestari, Y A J Limbong, and Muhaimin
Photochemistry of Chloroplatinate Anions
I H Silalahi1 and D W Bruce
Enzymatic Conversion of Potato Starch into Glucose using the purified α-Amylase Enzyme from Locale Isolate Bacteria Bacillus subtillis ITBCCB148

Mathematics

Solid Fixed Charge Transportation Problem and Its Paradox
E Sulistyono, B P Silalahi and F Bukhari
Transportation Paradox in Multi-objective Transportation Problem of d-Dimensional Case
I Husniah, B P Silalahi and F Bukhari
Identity graph of cyclic group
A Adrianda and Yanit
Linear Programming Model for Parallelogram-Shaped Parking Lot
I Hasbiyati, W Putri, and M D H Gamal
A Note on the Partition Dimension of Subdivided-Thorn Graphs
N Narwen, LYulianti, S Y Fadillah, K Al Azizu
The Numerical Solution by Modified Adomian Decomposition Method for General Wave Equation
J A Putra, M A Ridzi, Hafnani, and R Zuhra

L Yulianti, N Narwen, S Fitrianda and K AI Azizu

Numerical studies of free convection process in Sabang Bay using 2d non-hydrostatic model
T Iskandar, M Ikhwan, Y Haditiar, and S Rizal

The simulation of free convection in the shallow waters of Krueng Raba Bay, Aceh
T Iskandar, M Ikhwan, Y Haditiar, and S Rizal

Box-Jenkins Modelling to Forecast Monthly Rainfall in Bengkulu City and Accuracy using MAPE
H Fransiska, P Novianti, and D Agustina

The Application of INGARCH Model for Time Series Count Data in Predicting Monthly Rainy Days (Case study: Rainfall Data of Pulau Baai Climatology Station in Bengkulu City)
(110-116)
P Novianti, D S Rini, I Sriliana, and A Anwar

The Pricing of Premium of Endowment Insurance under Stochastic Interest Rate Vasicek with Weibull
Mortality Laws
(117-123)
S Yosmar, P Nurhidayah, and F Faisal

Valuing Employee Stock Options (ESO) Under Dilution Effect by Using Trinomial Multilevel Monte
Carlo
(124-133)
Suherman, H Maulana, and Jazwinarti

The Properties of Matrix in Group from Kronecker Product on The Representation of Quaternion Group Using Partitioned Matrix
(134-139)
N N Bakar, Yanita, M R Helmi, and Ahsan

Poverty Modeling in Bengkulu Province using Geographically Weighted Logistic Regression
D S Rini, I Sriliana, H Fransiska

Biology

The Track Record of the Usage of Plant Parts as Immunomodulator Medicine by Suku Anak Dalam

The Properties of Matrix in Group from Kronecker Product on The Representation of Quaternion Group Using Partitioned Matrix

N N Bakar ${ }^{1}$, Yanita ${ }^{2}$, M R Helmi ${ }^{3}$, and Ahsan ${ }^{4}$
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Andalas University-Kampus Unand Limau Manis Padang 25163 Indonesia

Abstract

This paper discusses about the properties of matrices which are element of a group derived from the application of Kronecker product to the representation of the quaternion group (this group is called by author with Kronecker quaternion group). The properties the new matrix that constructed by matrices from the Kronecker quaternion group as submatrix in partitioned matrix are discussed based on transpose and determinant matrix. It's known that theconstruction of the partitioned matrix implies that product of partitioned matrix and the transpose of the matraix is commute.

Keyword: partitioned matrix, transpose matrix, determinant matrix

1. Introduction

In this paper, G denotes a finite non-abelian group with 32 orders. Group G was obtained by applying Kronecker product on the representation quaternion group. Thus, the elements of G are 4×4 matrices [1]. There are some specific properties of these matrices, that is:
a. Symmetric matrix (20 symmetric matrices).
b. Non-symmetric matrix (12 non-symmetric matrices)
c. For every $A \in \mathrm{G}, A^{T}=A^{-1}$ (orthogonal matrix)
d. For every $A \in \mathrm{G},|A|=1$.
e. For every $A \in G, A A^{T}=A^{T} A$.
f. For every $A, B \in G, A B^{T}=A^{T} B \quad A$ and B non-symmetric matrix.

Let A is an arbitrary $m \times n$ matrix. A matrix A can be divided or partitioned into submatrices by drawing horizontal or vertical lines between various of its rows or columns, in this case the matrix is called a partitioned matrix. Meanwhile, a submatrix of a matrix A is a matrix that can be obtained by striking out rows and/or columns of A [2].

In this paper, we construct a new matrix that entries are matrices in G. Thus, the new matrix can be seen as a partitioned matrix. New matrix properties are arranged in the form of matrix partitions, where the submatrices are matrices derived from [1], using some properties in the partitioned matrices related to transpose (in Part 2: Theorems 2.1, 2.2, 2.3, and 2.4) and the determinant matrix (in Section 3: Theorems 3.3, 3.4 and 3.5).

2. Properties Matrix From G related to Transpose Matrix

It's known that if A is symmetric matrix, then the product $A^{T} A=A A^{T}$. Thus the properties given below are in the following theorems for non-symmetric matrix. We refer [3] and [4], to show the following theorems:

Theorem 2.1

Let $\mathbf{A}=\left[\begin{array}{ll}U & 0\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}U & V\end{array}\right]$ where $U, V, \mathrm{~W}$ non-symmetric matrices in G and 0 is a
4×4 zero matrix. Then $\mathbf{A}^{T} \mathbf{A}=\mathbf{B B}^{T}$.
Proof.
Noted that $\mathbf{A}^{T}=\left[\begin{array}{ll}U^{T} & V^{T}\end{array}\right]$ and $\mathbf{B}^{T}=\left[\begin{array}{ll}U^{T} & 0\end{array}\right]$. Based on e. and f. in Section 1, we have
$0 \quad \mathrm{~W}^{T} \quad V^{T} \mathrm{~W}^{T}$
$\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{ll}U^{T} U+V^{T} V & V^{T} \mathrm{~W}\end{array}\right]$
$\mathrm{W}^{T} V \quad \mathrm{~W}^{T} \mathrm{~W}$
$=\left[\begin{array}{cc}U U^{T}+V V^{T} & V \mathrm{~W}^{T} \\ \mathrm{~W} V^{T} & \mathrm{WW}^{T}\end{array}\right]$
$=\mathbf{B B}^{T}$

Theorem 2.2

Let $\mathbf{A}=\left[\begin{array}{ll}U & V \\ \mathrm{~W} & \mathrm{X}\end{array}\right]$ where $U, V, \mathrm{~W}, \mathrm{X}$ are non-symmetric matrices in G . Then $\mathbf{A A}^{T}=\mathbf{A}^{T} \mathbf{A}$.

Proof.
Noted that $\mathbf{A}^{T}=\left[\begin{array}{ll}U^{T} & V^{T}\end{array}\right]$. Based on e. and f. in Section 1, we have $V^{T} \quad \mathrm{X}^{T}$
$\mathbf{A} \mathbf{A}^{T}=\left[\begin{array}{cc}U U^{T}+V^{T} \mathrm{~W} & U V^{T}+V \mathrm{X}^{T} \\ \mathrm{~W} U^{T}+\mathrm{XW}^{T} & \mathrm{WV}^{T}+\mathrm{XX}^{T}\end{array}\right]$
$=\left[\begin{array}{cc}U^{T} U+V^{T} \mathrm{~W} & U^{T} V+V^{T} \mathrm{X} \\ \mathrm{W}^{T} U+\mathrm{X}^{T} \mathrm{~W} & \mathrm{~W}^{T} V+\mathrm{X}^{T} \mathrm{X}\end{array}\right]$
$=\mathbf{A}^{T} \mathbf{A}$

In general we have the following theorem:

Theorem 2.3

Let

$$
\mathcal{A}=\left[\begin{array}{cccccc}
A_{11} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0}^{\text {N N Bakar, Yanita, M R Helmi, and Ahsan }} \mathbf{0} \text {. } \\
A_{21} & A_{22} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\
A_{31} & A_{32} & A_{33} & - & \vdots & \vdots \\
\vdots & \vdots & \vdots & - & \mathbf{0} & \mathbf{0} \\
A_{(n-1) 1} & A_{(n-1) 2} & A_{(n-1) 3} & \cdots & A_{(n-1)(n-1)} & \mathbf{0} \\
A_{n 1} & A_{n 2} & A_{n 3} & \cdots & A_{n(n-1)} & A_{n n}
\end{array}\right]
$$

and

$$
\mathcal{B}=\left[\begin{array}{cccccc}
A_{11} & A_{21} & A_{31} & \cdots & A_{(n-1) 1} & A_{n 1} \\
\mathbf{0} & A_{22} & A_{32} & \cdots & A_{(n-1) 2} & A_{n 2} \\
\mathbf{0} & \mathbf{0} & A_{33} & \cdots & A_{(n-1) 3} & A_{n 3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \ddots & A_{(n-1)(n-1)} & A_{n(n-1)} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & A_{n n}
\end{array}\right]
$$

where $A_{\mathrm{ij}} \in \mathrm{G}$ and A_{ij} non-symmetric matrix and 0 is an 4×4 zero matrix. Then $\mathrm{A}^{T} \mathrm{~A}=\mathrm{BB}^{T}$.

Theorem 2.4

$$
\text { Let } \mathrm{A}=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & & \vdots
\end{array}\right] \text { where } A_{\mathrm{ij}} \in \mathrm{G} \text { and } A_{\mathrm{ij}} \text { non symmetric matrix. Then } \mathrm{AA}^{T}=\mathrm{A}^{T} \mathrm{~A} \text {. }
$$

Proof of Theorem 2.3 and 2.4 are analogues with proof of Theorem 2.1 and 2.2 respectively.

3. Properties Matrix from G Related to Determinant Matrix

Noted that, if an $n \times n$ matrix $A=\left[a_{\mathrm{ij}}\right]$ is (upper or lower) triangular then the determinant of a triangular matrix equals the product of its diagonal elements. Furthermore, we have the following properties:

Theorem 3.1 [4]

Let P be an $m \times m$ matrix, Q be an $n \times m$ matrix and R an $n \times n$ matrix. Then,

$$
\begin{array}{ll}
P & 0 \\
Q & R
\end{array}\left|=\left|\begin{array}{ll}
R & Q \\
0 & P
\end{array}=|P|\right| R\right| .
$$

The repeated application of Theorem 3.1 leads to the following formulas for the determinant of an arbitrary (square) upper or lower block-triangular matrix (with square diagonal blocks):
and

				$B_{1(n-1)}$	$B_{1 n}$
B_{11}	B_{12}	ν_{13}	\ldots	$B_{2(n-1)}$	$B_{2 n}$
0	B_{22}	B_{23}			
	0	B_{33}	\ldots		
0	\vdots	\vdots			
	0	0			
	0	0		The 2nd International Conference on Science and Technology (ICST)	

The following theorems give formulas for the determinant of a partitioned matrix:

Theorem 3.2 [4]
Let P an $m \times m$ matrix, Q an $n \times m$ matrix, R an $n \times n$ matrix and S an $m \times n$. If P is nonsingular, then

$$
\left.\begin{array}{ll}
P & S \\
Q & R
\end{array}\left|=\left|\begin{array}{ll}
R & Q \\
S & P
\end{array}\right|=|P|\right| R-Q P^{-1} S \right\rvert\, .
$$

We continue with the matrix from group G. Based on Theorem 3.1 and 3.2, we have the following theorems:

Theorem 3.3
Let $\mathbf{A}=\left[\begin{array}{ll}\ddot{U} & 0\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}U & V\end{array}\right]$, where $U, V, \mathrm{~W} \in \mathrm{G}$ and 0 is a 4×4 zero matrix. Then $V \quad \mathrm{~W} \quad 0 \quad \mathrm{~W}$
$|\mathbf{A}|=|\mathbf{B}|=1$.
Proof.
$|\mathbf{A}|=|\mathbf{B}|$
$=I_{V}^{U} \quad 0$
$=\left\lvert\, \begin{array}{cc}U & V \\ 0 & \mathrm{~W}\end{array}\right.$
$=|U||\mathrm{W}|$
$=1$.

In general, we have

Theorem 3.4

	F ${ }^{A_{11}}$	0	0	...	0	${ }^{0} 1$			
	$\mathrm{I}^{A_{21}}$	A_{22}	0	\ldots	0	${ }^{0}$ I			
Let	Let $\mathrm{A}=\mathrm{I} \quad A_{31}$	A_{32}	A_{33}		\vdots	${ }^{\text {I }}$			non-
	I	\vdots	\vdots		0	0 I	i	ij	
	I $A_{(n-1) 1}$	$A_{(n-1) 2}$	$A_{(n-1) 3}$	\ldots	$A_{(n-1)(n-1)}$	0 I			
	[$A_{n 1}$	$A_{n 2}$	$A_{n 3}$...	$A_{n(n-1)}$	$A_{n n}$]			

symmetric matrix and 0 is an 4×4 zero matrix and

The $2^{\text {nd }}$ International Conference on Science and Technology (ICST)
$\left.\begin{array}{cccccc}\text { I 0 } & 0 & 0 & & B_{(n-1)(n-1)} & B_{(n-1) n} \mathrm{I} \\ {\left[\begin{array}{lll}0 & 0 & 0\end{array}\right.} & \cdots & 0 & B_{n n}\end{array}\right]$
matrix and 0 is an 4×4 zero matrix. Then $|A|=1$ and $|B|=1$
Proof.

Theorem 3.5

Let $\mathbf{A}=\left[\begin{array}{cc}U & V \\ \mathrm{~W} & \mathrm{X}\end{array}\right]$ where $U, V, \mathrm{~W}, \mathrm{X}$ are non-symmetric matrices in G . Then

$$
|\mathbf{A}|=\left.\right|_{\mathrm{W}} ^{U} \quad \mathrm{X}^{U}\left|=\left|\mathrm{X}-\mathrm{W} U^{T} V\right|\right.
$$

Proof.
Since all of matrices in G are nonsingular, so we have U is nonsingular. We can apply Theorem 3.2 and 3.3 to prove this theorem.
Consider that

$$
|\mathbf{A}|=\left.1\right|^{U} \quad V_{\mid}
$$

$$
=\left\lvert\,\left[\begin{array}{cccccc}
I_{-1}^{W} & \mathrm{X} & & & -1
\end{array}\right]\left[\begin{array}{ll}
U & V \\
& \\
&
\end{array}\right]\right.
$$

$$
\mathrm{W} U \quad \mathrm{X}-\mathrm{W} U \quad V \quad 0 \quad I
$$

$$
=\bar{W}_{W}{ }_{-1}^{I} \quad \begin{array}{crrr}
& 0 & \|^{U} & V_{\mid}
\end{array}
$$

$$
=|I|\left|\mathrm{X}-\mathrm{W} U^{-1} V\|U\| I\right|
$$

$=\left|\mathrm{X}-\mathrm{WU}^{-1} V\right||U|$
$=|U|\left|\mathrm{X}-\mathrm{W} U^{-1} V\right|$
$=\left|\mathrm{X}-\mathrm{W} U^{-1} V\right|$
$=\left|\mathrm{X}-\mathrm{W} U^{T} V\right|$

Acknowledgement

This work supported by BOPTN Grand Andalas University 2018

References

[1] Yanita Y, Helmi M R and Zakiya A M 2018 Solvability group from Kronecker product on the representation of quaternion group. Asian Journal of Scientifics Research. 2 (12): 293-297.
[2] Piziak R And Odell P L 2007 Matrix Theory: From Generalized Inverses to Jordan Form. (New York: Chapman \& Hall/CRCX)
[3] Wang K, and Davis P J 1986 Group matrices for the quaternion and Generalized DihedralGroups. Computers and Mathematics with Applications, 5-6(12B): 1297-1301.
[4] J Harville D A 1997 Matrix Algebra from a Statiscian's Perspective (New York Springer-Verlag)

