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Abstrac—Many robots have been being developed based on
the characteristics of the human body. Robots that mimic the
motion of a human arm have many practical applications. The
author built a robot manipulator which is controlled by a
human left arm and studied its effectiveness. This robot had
two joints and one gripper attached to the end-effector. Two
joints worked based on the information from two absolute
encoders operating as movement sensors on the operators’ left
elbow. The gripper picked up and released objects based on
the electromyography (EMG) signals from the flexor muscle
of left hand. The first joint provided for flexion and extension
and the second joint was for supination and pronation rotation.
Both of the encoders produced three bits of data resulting in
eight combinations. The resolution for the first encoder was
approximately 7° and the second was 10.5°. The gripper mode
depended on the amplitude of EMG signal. The gripper picked
up the object if the signal was bigger than the threshold value
and it released the object if the signal was smaller than that
threshold value. The threshold used was 100 pV. The result
showed that this control design successfully operated the robot
joints using human arm movement and the contraction of the
flexor muscle controlled the gripper well. This system can be
further developed by increasing the resolution of the sensors
and flexibility of the mechanical structure.
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I. INTRODUCTION

As robot technology improves, robots are able to replace
human labour to perform difficult and dangerous tasks.
Academics who conduct research in extreme environments
can use robots collect data safely reducing the risk to human
investigators.

Robots are also being developed for building
construction projects. Specific jobs with high risk can be
done wusing robots instead of endangering human
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construction workers. Daniel Schmidt in [1] surveyed the
range of climbing robots used for maintenance and
inspection of vertical structures. He discovered that although
many robots were created to do these tasks; they were
limited to specialized functions. The challenges in creating
climbing robots are to make them light, small and fast.

Underwater robots also have a role in scientific research.
A walking underwater robot [2] has been created that is able
to use arms and legs for walking on the seabed. This robot
named CRABSTER200. It uses six legs and the front two
legs can be transformed into manipulators. The degree of
freedom, dimensions, motion range, joint structure and mass
were developed according to certain specifications.

Medical robots help doctors during surgery. Robots are
developed to carry out minimally invasive diagnosis and
interventions so improving efficiency, safety, pain, speed and
post-operative recovery time. [3]. There are still many
challenges to be overcome in developing effective medical
robots. But reducing the cost of surgery and ensuring patient
well-being are very important issues to be addressed.

Robots that work in collaboration with humans or cobot
are utilized in many fields including industry, medicine and
tourism. Cobots, designed for the assembly line worker, must
be ergonomic, safe produce quality goods and not
compromise productivity. Andrea Cherubini [4] developed a
human-robot manufacturing system for homokinetic joint
assembly. The result showed that although the collaboration
between human and robot took longer to insert six balls in
the joint assembly, than doing the job manually the cobot
reduced the operator load by approximately 60%.

Assistive robots are also being developed to help people
with special needs. Recently, two types of biosignals,
electromyography (EMG) and electroencephalography
(EEG), are being used widely to control these. Rechy-




Ramirez [5] reviewed the development of these biosignals in
control systems and noted that. design of bio-control systems
requires four stages: data acquisition-segmentation, feature
extraction, classification and control. There are several
challenges in the implementation of EMG and EEG control
systems. First, there are many methods to classify the EMG
and EEG signals proposed by academic community, but
developing this technology to produce commercial
applications for simple tasks has yet to be achieved. Second,
most EMG and EEG control systems have only been tested
in a laboratory setting. However outside the controlied
conditions of the laboratory EMG and EEG signals are
harder to detect. Electrooculography (EOG) signals are also
being studied to establish the communication between the
human eye and machines using blinking and gaze motion.
The EOG signals are linear to the gaze angle as reported by
Rusydi [6]. An EOG based control robot has been developed
by Rusydi [7].

Robots are also created to imitate human or animal
movement. In [8], a snake arm robot was constructed that
demonstrated flexibility-stiffness and actuation. In another
project [9], a flexible robot arm using flexible pneumatic
cylinders and wultrasonic sensors for human wrist
rehabilitation was developed. In last few years, academia and
industry have focused attention on human-robot interaction,
improving robot perception, reasoning, learning,
manipulation and navigation. Human-aware navigation has
been classified according to comfort, naturalness and
sociability motion [10].

Prosthetic organs are being developed to assist disabled
people in daily activities. Non-linear ankle dynamics have
been modeled using an artificial neural network and the
relationship between the foot and walking configurations
has been determined by an empirical model of the ground
reaction force [11].

As cobots are bound to play an increasing role in so
many areas, developing effective biocontrols is essential.
This research is a significant advancement toward achieving
this as it combines both encoders and EMG signals. A robot
manipulator controlled by a human left arm was constructed.
This project was selected as a manipulator controlled by a
left arm would be invaluable for a right arm amputee to
perform tasks requiring two arms. Human elbow movement
was replicated by two joints. Two absolute encoders were
used to calculate the joint movements. A gripper was
attached to the end-effector of the robot and controlled by
EMG signals.

II. THEEMG SIGNAL

The EMG signal is a biosignal corresponding to muscle
contractions [12]. Many methods have been developed to
classify the EMG signal, such as bayessian [13], neural
network [14], fuzzy [15] and support vector machine [16].

In this research, EMG was used to detect muscle
contraction. Two muscle locations were investigated to
determine the best electrode position. The amplitude of EMG
produced by wrist extensor and wrist flexor were studied.
Five participants relaxed and contracted these muscles for
approximately two second each. The experiment was

repeated five times. Fig. 1 shows the investigated muscle
positions.

Figure 1. Electrode position for flexor and extensor muscle.

III. ENCODER

Modelling the arm movement was a challenge in this
research. The previous papers [17] and [18] used Inertial
Measurement Unit (IMU) sensor to detect the Euler angle of
the hand movement. The problem of using the Euler angle
for the hand movement patterns was the callibration to the
reference point of the movement.

In this research, two encoders were used to sense the
elbow movement. The positions of the two encoders were
maximised to detect the angle of flexion/extension and
supination/pronation rotation of the left hand. Fig. 2
illustrates the encoder positions. The first encoder
determined the flexion/extension movement and the second
encoder was used for supination/pronation.

Both of the encoders were typically designed three bit
absolute encoders. The possibile states were 000, 001, 010,
011, 100, 101, 101, 110 and 111. The shape of the encoder
for the flexion/extension measurement was different from
that of the encoder for the supination/pronation. The enocder
structures in Fig. 3 were estabilished after a prelimanary
study of hand kinesiology.
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Figure 2. The encoder positions.




Three photodiodes were used to detect the encoder state.
These photodiodes captured the light from three Light
Emiting Diodes (LEDs) facing them. The signal produced by
photodiodes was determined by intensity of the light
received from the corresponding LED. The design of
photodiodes is shown by Fig. 4.

Second Encoder
Figure 3. The encoder design.

First encoder

Figure 4. Three photo diode
IV. RoBoT ARM

The robot manipulator had two joints and a gripper
attached to the end-effector. These two joints together
reproduced the elbow movement of the human arm. The first
joint was for the flexion and the second joint was for the
internal rotation. Fig. 5(a) illustrates the robot arm design.
The hand function, was simulated by the gripper to pick up
and release objects. The two joints were controlled by the
encoders and the gripper by the EMG signal. The first joint
movement is illustrated in Fig. 5(b). The robot rotated about
Z;-axis for the flexion movement. The second joint
movement is shown in Fig, 5(c). The robot rotated about Z»-
axis for supination/pronation.
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Figure 5. The robot manipulator movement.
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Fig. 6 shows the robot manipulator. The first joint was
driven by a Pro MG995 servo motor and the second joint
was manipulated by a FreeTech FR0115M servo motor. The
gripper used the same motor type as the first joint.
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Figure 6. Robot manipulator.
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V. METHOD
Fig. 7 shows the control scheme of the robot manipulator.

Two encoders were connected to an Arduino microcontroller.

The output of the microcontroller was a Pulse Width
Modulation (PWM) signal. Two microcontrollers were used.

The first microcontroller processed the data from the two
encoders. It converted the analog signal from the photodiode
to the digital signal. The states determined by the three
photodiodes converted to angle of the motor. The second
received the signal from EMG and processed it to control the
gripper. The EMG signals were classified into contraction
and relaxation mode.

Encoder 1 Joint 1 Flexion
uConl l»
Encoder 2 Joint 2 pwemal
EMG uCon2 Gripper Pick
Release

Figure 7. Control scheme of the robot manipulator




VI. RESULT AND DISCUSSION

The first encoder was designed to detect flexion angles
between 0° to 50°. The second encoder angle was used to
detect the pronation/supernation angle from 0° to 73.5°.
Table I shows the degree of eight states for the first joint
encoder and the second joint encoder. The encoders were
attached as shown by Fig. 8.

TABLE L THE DEGREE OF EIGHT STATES

Binary code | First Encoder Second Encoder
000 0° 0°
001 i 10.5°
010 14° 21'°
011 212 31.5°
100 28° 42°
101 351° 52.5°
110 42° 63 °
111 50° 7355

20d encoder

12 encoder

Figure 8. Two encoder sensor systems attached to human left arm.

The signals from the three photodiodes were tested for
each or the eight states. The result is shown inTable II. Based
on the signals obtained, it was decide to define two
conditions for the photodiode. If the encoder blocked the
light to the photodiode the binary code was 0 and the
photodiode output was higher than 900mV. When the light
was not blocked by the encoder but was received by the
photodiode the binary code was 1 and the photodiode ouput
lower than 800mV.

TABLE IL PHOTODIODES OUTPUTS
Photodiodes Photodiodes
Binary Encoder 1 Encoder 2
Code (mV) (mV)

1 2 3 1 2 3
000 932 | 926 | 953 | 932 | 913 | 947
001 904 | 913 | 226 | 932 | 910 | 670
010 954 | 529 | 965 | 931 | 545 | 955
011 964 | 533 | 697 | 927 | 526 | 705
100 500 | 960 | 983 | 517 | 903 | 925
101 508 | 957 | 577 | 515 | 908 | 584
110 520 | 647 | 961 | 490 | 510 | 952
111 517 | 520 | 548 | 499 | 522 | 562

Five human subjects participated in this research. Their
EMG signals from flexor and extensor wrist muscles were
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investigated. Fig. 9 shows an example of EMG signals from
one of the subjects. The results showed that the flexor
muscle produces bigger signals than the extensor muscles.
This muscle was chosen to control the gripper. A threshold
value was set to differentiate when the subjects hand was
picking up an object and when it was releasing. If the EMG
signal was bigger than 100mV, the robot gripper also picked
up an object. If the EMG signal was lower than 100mV, the
gripper released.
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Figure 9. EMG signal.

All the systems were integrated as shown by Fig. 10.
This robot followed the human left arm movement well.
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Figure 10. The integrated robot manipulator with two encoders and EMG
Sensor.

VII. CONCLUSION

A robot manipulator controlled by a left human arm was
designed in this research. The result showed that the encoder
could detect hand movement but with limited resolution. The
EMG signal was able to differentiate between: relaxed and
contracted muscles but more work is required to replicate
contractions of differing strength based on EMG signal.
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