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Abstract. This study aims to implement Bayesian quantile regression method in constructing 

the model of Low Birth Weight. The data of Low Birth Weight is violated of nonnormal 

assumption for error terms. This study considers quantile regression approach  and use Gibbs 

sampling algorithm from Bayesian method for fitting the quantile regression model. This study 

explores the performance of the asymmetric Laplace distribution for working likelihood in 

posterior estimation process. This study also compare the result of variable selection in quantile 

regression and Bayesian quantile regression for Low Birth Weight model. This study. proved 

that Bayesan quantile method produced better model than just quantile approach. Bayesian 

quantile method proved that it can handle the nonnormal problem although using moderate size 

of data. 

1. Introduction 

In the classical linier models interests on the conditional mean function, that is the function that estimates 

how the mean of response variable changes with the vector of covariates. Sometimes, some researchers 

do not only need mean values but also need additional information  requires about the whole conditional 

distribution of the response variable.  

Quantile regression extends the classical mean regression to conditional quantiles of the response 

variable. It is more robust to nonnormal error distributions and outliers, and provides more complete 

information on the relationship between the response variable and the covariates than classical theory 

of linear models [1]. 

The main problem in any regression is the selection of appropriate covariates, as in quantile regresion 

problem. Excluding important covariates could result biased estimator meanwhile including spurious 

covariates may lead to loss in estimation efficiency. Quantile regression combined with Bayesian 

approaches have more powerfull to handle the problem and often more competitive for small or 

moderate data sets with a low signal-to-noise ratio [2]. This approaches has received considerable 

attention in recent literatures. [3], [4]  explored stochastic search variable selection (SSVS) to estimate 

the parameter based on quantile regression using latent variable. Meanwhile Oh et al. [5] proposed the 
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method in Bayesian variable selection using the Savage-Dickey density ratio. Oh et al. [2] described the 

Bayesian variable selection in binary quantile regression.  

In this paper we implement the Bayesian variable selection in quantile regression in the construction 

the Low birth weight model. The United Nations Children’s Fund (UNICEF) defined Low birth weight 

babies as newborns weighing less than 2,500 grams with the measurement taken within the first hour of 

life. The data of Low Birth Weight is violated of nonnormal assumption for error terms which is 

introduced in Section 2 together with the method. This study considers quantile regression model and 

use Gibbs sampling algorithm from Bayesian approach for fitting the quantile regression model. This 

study explores the performance of the asymmetric Laplace distribution for working likelihood in 

posterior estimation process. This study also compare the result of quantile regression and Bayesian 

quantile regression at selected quantile in the Low Birth Weight case in Section 3. We end with 

concluding remarks in Section 4. 

2. Data and Methods 

This study used primary data collected by distributing the questionnaires from March to July 2017. We 

limited the sample to mothers who just had singleton live birth and living in West Sumatera, Indonesia. 

There were 92 respondents with complete information included in the analysis. The response variable 

are birth weight, recorded in kilograms. There were 11 indicator variables used in this study, which 

consist of  continuous and categorical types, i.e., mother’s education, mother’s job, residence, the 

number of pregnancy problems, mother’s age, the number of maternal parity, the number of prenatal 

care, mother’s weight gain during prenancy, mother’s hemoglobin (Hb) level, last birth interval and sex 

of the baby [6]. Mother’s education was devided into three levels; low level, middle level and high level, 

where low level was as reference category so coefficients were interpreted relative to this category. 

Mother’s job was classified into three categories, i.e., goverment employee, housewife and others. 

Residence is categorized into urban and rural. The number of pregnancy problems was categorized into 

three types, i.e., more than one problems, one problem and no problem. The category more than one 

problem is noted as reference category. Meanwhile mother’s age, the number of maternal parity, the 

number of prenatal care, mother’s weight gain during prenancy, mother’s hemoglobin level and last 

birth interval are represented as continous variables.  

Figure 1 (a) presents the histogram for the dependent variable of 92 birth weight. Based on the figure, 

it could be seen that distribution of the data is skewed to the right. It informs us that more data at the 

lower values, thus the distribution of the data is not normal. Figure 1 (b) shows normal Q-Q plot for the 

data. This figure also proves that normality assumption is violated in this birth weight data and any 

outliers are in the data. 

To model the low birth weight, quantile regression approach then implemented in this present study. 

Quantile regression is based on an idea as following. 

Consider a linear model [6] [7]: 

                                                      𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝑒𝑖 ,    𝑖 = 1, … , 𝑛.    (1) 

where 𝑦𝑖  is the ith observation, 𝑥𝑖  is the ith independent and identically distributed random variables in 

𝑚
 and 𝑒𝑖 is an independent error variable with probability density 𝑓𝑖. For identifiability, we assume 

that, for a quantile level   (0,1) of interest, the conditional th quantile of 𝑒𝑖 given 𝑥𝑖 is zero. The 

conditional quantile regression as follows :  

                                                             𝑄𝑌(𝜏|𝒙) = 𝑥𝑇𝛽(𝜏),        (2) 

where 𝑄𝑌(𝜏|𝒙) represent the th conditional quantile of the response Y given x  and parameter 𝛽(𝜏) is 

an unknown functional vector. A point estimate �̂�(𝜏), of the parameter 𝛽(𝜏) is obtained by minimizes 

the objective function. 



International Conference on Mathematics and Natural Sciences (ICMNS) 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1245 (2019) 012044

IOP Publishing

doi:10.1088/1742-6596/1245/1/012044

3
  

 

∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽)

𝑛

𝑖=1

 

where 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)) is the quantile loss function and 
𝜏
(𝑢) = 𝜏 − 𝐼(𝑢 < 0) is the score 

function. 

 

 

(a) 

 

(b) 

Figure 1. (a) Histogram and (b) Normal QQ Plot for Birth weight Data 

The goodness of fit for these quantile regression are assessed using R2 values. The formulation of R2 

index for quantile regression differs from OLS regression because it is based on the minimization of an 

absolute weighted sum (not an unweighted sum of squares as in OLS). The R2  formulation for quantile 

regression is represented in terms of the complement of 1 of the ratio between the residual sum of squares 

and the total sum of squares of the dependent variable [1], usually called as pseudoR2 formulated as 

follows: 

                                                       𝑃𝑠𝑒𝑢𝑑𝑜𝑅2 = 1 −
𝑅𝐴𝑆𝑊𝜏

𝑇𝐴𝑆𝑊𝜏
       (3) 

where 𝑅𝐴𝑆𝑊𝜏 is residual absolute sum of weighted  differences between the observed dependent 

variable and the estimated quantile conditional distribution in the more complex model, and 𝑇𝐴𝑆𝑊𝜏 is 
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total absolute sum of weighted differences between the observed dependent variable and the estimated 

quantile in the simplest model.  

Yu & Moyeed [8] proposed combination of Bayesian approach to quantile regression method in the 

minimizing problem. They used asymmetric Laplace error distribution to maximize likelihood 

distribution as equivalent way in minimizing this equation [9, 10,11, 12].  They assumed that error term 

follows an independent asymmetric Laplace distribution: 

                                                      𝑓(𝑢) = (1 − )𝑒−𝜌𝜏(𝑢),     𝑢 ∈ 𝑅,    (4) 

The mode of 𝑓(𝑢) is the solution to (2), thus the asymmetric Laplace distribution is closely related 

to quantile regression. However, the posterior density for parameter estimated 𝛽( ) is not simple to 

obtained due to the complexity of the likelihood function, then Markov Chain Monte Carlo (MCMC) 

method is applied to sample from the approximate posterior distribution. [12] used a random walk 

Metropolis algorithm with a Gaussian density centred at the current parameter value. Meanwhile [13] 

developed a Gibbs samplig algorithm based on a location-scale mixture representation of the asymmetric 

Laplace distribution. 

      Given 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛), where the prior distribution of 𝛽 is 𝑝(𝛽). The prior distribution taken 

in this research is prior informative those originating from previous research. Determination of prior 

distribution parameters are very subjective, depending on the researcher's intuition. A variable 𝑌 is said 

to follow Asymmetric Laplace Distribution with the density function of the probability is as follows: 

                                                     𝑓𝑝(𝑦) = 𝑝(1 − 𝑝)exp {𝜌𝜃(𝑦𝑖 − 𝜇)}                 (5) 

and likelihood function as follows : 

                                     𝐿(𝑦|𝛽) = 𝑝𝑛(1 − 𝑝)𝑛exp {− ∑ 𝜌𝜃𝑖 (𝑦𝑖 − 𝑥𝑖
𝑇𝛽)} .           (6) 

Then the posterior distribution of 𝛽, 𝑓(𝛽|𝑦) is given by   

                                                      𝑓(𝛽|𝑦) ∝ 𝐿(𝑦|𝛽) 𝑝(𝛽)     

    

                                      ∝ 𝑝𝑛(1 − 𝑝)𝑛exp {− ∑ 𝜌𝜃𝑖 (𝑦𝑖 − 𝑥𝑖
𝑇𝛽)} 𝑝(𝛽)                      

3. Results and Discussion 

The model hypothesis in this study is presented in the Birth weight’s equation as following : 

𝐵𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 = 𝛽1𝐴𝑔𝑒𝑖 + 𝛽2𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 (𝑀𝑖𝑑𝑑𝑙𝑒)𝑖 + 𝛽3𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 (𝐻𝑖𝑔ℎ)𝑖 + 𝛽4𝑃𝑎𝑟𝑖𝑡𝑦𝑖

+ 𝛽5𝐿𝑎𝑠𝑡 𝑏𝑖𝑟𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 + 𝛽6𝑊𝑒𝑖𝑔ℎ𝑡 𝑔𝑎𝑖𝑛𝑖 + 𝛽7𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠 (𝑂𝑛𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚)𝑖

+ 𝛽8𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠 (𝑁𝑜 𝑝𝑟𝑜𝑏𝑙𝑒𝑚)𝑖 + 𝛽9𝐻𝑏𝑖 + 𝛽10𝑅𝑢𝑟𝑎𝑙𝑖 + 𝛽11𝐹𝑒𝑚𝑎𝑙𝑒𝑖+𝑒𝑖; 

      Table 1. Coefficient Estimated for Low Birth Weight Model Using Quantile Regression (QR) 

Indicator Variable 
Estimate of QR (Standard Error) 

 = 0.05  = 0.25  = 0.50 

𝛽1 (Middle) 1.369 (2.370) 2.338 (0.896)* 1.255 (0.845) 

𝛽2 (High) -0.904 (2.455) 2.065 (0.982) 0.981 (0.875) 

𝛽3 (Parity) 0.703 (0.702) 0.777 (0.265)* 0.232 (0.250)* 

𝛽4 (One problem) 4.790 (2.595) -0.026 (0.981) 1.000 (0.925) 

𝛽5 (No problem) 8.273 (2.271)* 1.282 (0.859)* 1.145 (0.809)* 

Pseudo R2 0.26 0.69 0.19 

*  Significant at 10% level 
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Table 2. Coefficient Estimated for Low Birth Weight Model Using Bayesian Quantile Regression 

(Bayes QR) 

 

Indicator Variable 
Estimate of Bayes QR 

 = 0.05  = 0.25  = 0.50 

𝛽1 (Middle) 2.124 2.493* 0.845 

𝛽2 (High) -0.996 2.027* 0.781 

𝛽3 (Parity) 0.196 0.616* 0.250* 

𝛽4 (One problem) 5.365 1.125 0.897 

𝛽5 (No problem) 7.540* 2.073* 1.167* 

*  Significant at 10% level 

 

The model hypothesis is then fitted to the birth weight data. After fitting, four indicator variables 

statistically significant to give effect to the response. The variable problems were excluded from the 

model since those variables are not statistically significant in any of the constructed equations. 

Following Table 1 presents the results of conditional quantile regression for low quantiles (at quantiles 

0.05, 0.25, and 0.50) for significant variables only.  

Based on the result of quantile regression model as presented in Table 1 above, the value of Pseudo 

R2 for proposed model at quantiles 0.05 and 0.50 are 0.26 and 0.19 respectively. These values indicate 

that the goodnees of fit for proposed model are not good enough, thus both proposed model could not 

be accepted. Meanwhile the value of Pseudo R2 for proposed model at quantile 0.50 is 0.69, therefore 

the proposed model at this quantile could be accepted. 

For the next analysis, we consider the Bayesian quantile regression method to construct the Low Birth 

Weight model and fitted to the same data for   = 0.05, 0.25, and 0.50 as well. To assess the sampling 

efficiency of the proposed algorithm we calculated Monte Carlo standard error [14, 15].  

After obtaining the values for parameter model, the analysis is then continued to do the convergency 

test for all selected parameters. Convergency test in Bayesian method is done by check its trace plot by 

running the Gibbs sampler for 50,000 iterations with an initial burnin of 5000 iterations. Following are 

the figure of trace plot for selected parameters (“Middle” at quantiles 0.05th and 0.25th).                                                   

 

Figure 2. Trace Plot for parameter 

“Middle” at quantile (a)  = 0.05, (b)  = 0.25  

 

Based on the figures, it can be seen that the distribution of selected parameter at any selected quantiles 

lie within two paralel horizontal lines. These indicated that the parameter have converged [14, 15]. 

(a) (b) 



International Conference on Mathematics and Natural Sciences (ICMNS) 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1245 (2019) 012044

IOP Publishing

doi:10.1088/1742-6596/1245/1/012044

6
  

 

We then do the comparison of difference for 95% confidence interval based on both approaches, 

quantile regression and Bayesian quantile regression. The 95% confidence interval and the difference 

are presented in Table 3. 

It is clear from Table 3 that Bayesian quantile regression models almost yield shorter 95% confidence 

interval than those found under quantile regression, except for any indicator variables. This result 

indicates that Bayesian quantile regression yield better proposed model than quantile regression. This is 

not surprising due to the extra information brought by the prior distribution in Bayesian quantile 

estimation method.  

Table 3 also informs us that significant variables for each quantiles are different. At quantile 0.05th, 

the significant variable is 𝛽5 (No problem), while at quantile 0.25th are 𝛽1 (Middle), 𝛽3 (Parity) and 

𝛽5 (No problem). Meanwhile the significant variables at quantile 0.50th are 𝛽3 (Parity) and 𝛽5 (No 

problem). All three models resulted from Bayesian quantile approach at selected quantiles are good 

enough and could be accepted.  

  

Table 3. Comparison the 95% Confidence Interval for Parameter Estimated Using QR and Bayes QR. 

Quantile Indicator Variable 
95% Confidence Interval / Difference 

QR Bayes QR 

 = 0.05 𝛽1 (Middle) (-3.070 ; 4,797)/ 7.867 (-1.083 ; 5.520)    / 6.603 

 𝛽2 (High) (-2.980 ; 4.797)/ 6.561 (-4.111 ; 2.450)    / 6.561 

 𝛽3 (Parity) (-1.999 ; 2.910) / 2.250 (-1.080 ; 1.170)    / 2.250 

 𝛽4 (One problem) (-0.320 ;10.797) / 10.073 (-0.223 ; 9.850)    / 10.073 

 𝛽5 (No problem) (4.465 ;10.797)* / 6.332 (4.204 ; 9.980)*   / 5.776 

    

 = 0.25 𝛽1 (Middle) (1.161 ; 4.659)* / 3.498 (0.735 ; 4.250)*   / 3.512 

 𝛽2 (High) (-0.706 ; 4.694) / 5.401 (0.077 ; 3.910)*   / 3.832 

 𝛽3 (Parity) (0.005 ; 0.992)* / 0.987 (0.144 ; 1.030)*   / 0.885 

 𝛽4 (One problem) (-0.498 ;10.905) / 11.404 (-0.758 ; 3.550) / 4.308 

 𝛽5 (No problem) (0.848 ; 8.843)* / 7.994 (0.309 ; 4.310)*   / 4.000 

    

 = 0.50 𝛽1 (Middle) (-1.123 ; 2.386) / 3.509 (-0.851 ; 2.365) /3.216 

 𝛽2 (High) (-1.180 ; 2.647) /3.828 (-1.023 ; 2.397) /3.420 

 𝛽3 (Parity) (0.022 ; 0.462)* /0.439 (0.074 ; 0.575)*   / 0.501 

 𝛽4 (One problem) (-0.840 ; 2.007) /2.848 (-0.498 ; 2.224)    / 2.722 

 𝛽5 (No problem) (0.011 ; 1.948)* /1.936 (0.026 ; 1.357)*   / 1.331 

*Significant at 10% level 
 

4. Conclusions 

In this paper, we implement  the quantile regression and Bayesian quantile regression for the 

construction of Low Birth Weight model in West Sumatera. This study found that Bayesian quantile 

regression yield better proposed model than quantile regression. In the quantile regression produces 

acceptable model only at quantile 0.25 with indicator for goodness of fit for the model, Pseudo R2 = 

0.69. This method produced that Low birth weight is affected by middle education level, parity and 
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having no problem. Whereas Bayesian quantile regression method could produce acceptable model at 

all selected quantiles with difference significant variables for each quantile.  

This study also did the camparison of the length of the 95% confidence intervals associeted with the 

parameters obtained from both methods. This present study found that the length of the 95% confidence 

intervals associeted with the parameters obtained from Bayesian quantile method are generally shorter 

than with those of the quantile method. This fact also support the conclusion that Bayesian quantile 

method result better model than classical quantile method [14]. 
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