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Abstract. Indonesian’s data are obtained from BPS from census, but census are designed for 

large area. Now, local goverments need to have reliable and detailed information in small area. 

Direct estimation are unreliable to be applied in small area because produced high mean square 

error (MSE). To overcome this problem, we use the indirect estimation Small Area Estimation 

Hierarchical Bayesian (SAE HB) with Logit Normal as the model. From this study founded 

that HB produced a smaller MSE than direct estimation 

1.  Introduction 

Statistics Indonesia (BPS) calculate about literacy rate, drop out children from school, etc periodly 

with cencus, which from its sampling design can provide direct estimation only on provincial level and 

district area. Along with establishment of autonomous regional policy, where regional governments 

had greater power to manage their own region, availability of data on lower level is necessary for 

regional government. Due to sampling design of cencus, accommodated only estimation on district 

level, the data will give high variance if used to estimate on lower sub-district level, although still 

unbiased. The high variance will result to broader confidence interval of estimation, which will make 

the estimation become unreliable [1]. 

One of method to obtain accurate estimator from inadequate sample size in small area is method of 

Small Area Estimation (SAE). Until now, the SAE method has been applied in various disciplines. 

The SAE method that is widely known and has been used in various subject which is Empirical Best 

Liniear Unbiased Predictor (EBLUP), Empirical Bayes (EB), Hierarchical Bayes (HB). EBLUP 

method can be applied for linear mixed models that are suitable to use if the response variable is a 

continuous variable. Some research that using EBLUP method are Krieg, Blaess and Smeets (2012), 

and Song (2011). On the other hand, EB and HB method can be generally applied because can be used 

for liniear mixed models, binary data and count data. The research using this method are Datta, Lahiri, 

and Maiti (2002), and Bukhari (2015). Rao (2003) explains some examples how to use these three 

methods in his book. 

In this study, we used the binary data from R-software. Based on this information, it is known that 

the response variable in this study is binary data so the SAE method used is the HB method. The HB 

method is preferred because the EB method does not count the variance in hyperparameter estimation. 

The advantages of SAE HB are: (1) The model specifications are easy to use and can model different 

various (2) the inferential problem is relatively clearer and its computation is relatively easier by using  

the Markov Chain Monte Carlos technique (MCMC) [7]. 

mailto:ferrayanuar@sci.unand.ac.id
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Rifki Hamdani (2015) used HB SAE to estimate literacy rate on sub-district level in district of 

Donggala with Hierarchical Bayes method. In this research three methods were compared, the first is 

direct estimation, the second is HB spatial logit-normal SAE, and the third is HB non spatial logit-

normal SAE. The conclusion is HB SAE the best method for estimating literacy rate in sub-district 

level either by including spatial or not. This study will compare the estimation of data for small areas 

using the small area estimation hierarchical bayes method and direct estimation.  

2.  Methods 

2.1.  Direct Estimation on Variable Binomial Response 

The response variable 𝑦𝑖𝑗 is a binary variable count in i and j area where 𝑦𝑖𝑗 is 1 or 0. If the  variable  

𝑦𝑖𝑗 is assumed to have a Bernouli distribution with 𝑝𝑖 as the parameter, so the density function of 𝑦𝑖𝑗 

is: 

𝑓(𝑦𝑖𝑗|𝑝𝑖) = 𝑝𝑖
𝑦𝑖𝑗(1 − 𝑝𝑖)  

or 

𝑦𝑖|𝑝𝑖
𝑖𝑛𝑑
~

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝑝𝑖). 

The proportion of 𝑝𝑖 is: 

𝑝𝑖 = �̅�𝑖 = ∑
𝑦𝑖𝑗

𝑁𝑖
  

If the sampling used the simple random sampling, then estimate the proportion of the i area is 𝑝𝑖, is 

derived through the method of Maximum Likelihood (ML), namely �̂�𝑖 = ∑
𝑦𝑖𝑗

𝑛𝑖
𝑗 =

𝑦𝑖

𝑛𝑖
.  ML estimation 

is unbiased estimator because the expectation velue of the estimator is the same as the parameter. 

𝐸(�̂�𝑖) = 𝐸 (
𝑦𝑖

𝑛𝑖
) =

1

𝑛𝑖
𝐸(𝑦𝑖) =

1

𝑛𝑖
𝑛𝑖𝑝𝑖 = 𝑝𝑖  

So, the mean square error is same as the variety 

𝑀𝑆𝐸(�̂�𝑖) = 𝑉𝑎�̂�(�̂�𝑖) =
𝑝𝑖(1−�̂�𝑖)

(𝑛𝑖−1)
×

𝑁𝑖−𝑛𝑖

𝑁𝑖
. 

2.2.  Hierarchical Bayes Method with Logit-Normal Model 

Small area estimation for each small area can calculate with Hierarchical Bayes Logit-Normal model. 

Rao (2003) defines the model as: 

i. 𝑦𝑖|𝑝𝑖~𝑖𝑛𝑑 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛𝑖, 𝑝𝑖) 

ii. 𝜃𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑥𝑖
𝑇𝛽 + 𝑣𝑖 , 𝑣𝑖

𝑖𝑖𝑑
~

𝑁(0, 𝜎𝑣
2) 

iii. 𝛽 dan 𝜎𝑣
2 are mutualy independent with 𝑓(𝛽) ∝ 1 

1

𝜎𝑣
2 ~ 𝑔𝑎𝑚𝑚𝑎 (𝑎, 𝑏); 𝑎 ≥ 0, 𝑏 ≥ 0  

Thus, 𝑝𝑖 is a parameter of the 𝑦𝑖 variable that has a binomial distribution and it is the target to 

estimate. To connect 𝑝𝑖 with the 𝑋𝑖 variable we need the link fuction that matches with Generalized 

Linier Mixed Model. The suitable model is: 

logit(𝑝𝑖) = 𝑙𝑛 (
𝑝𝑖

1−𝑝𝑖
) 

If 𝑣 and 𝑦 are vectors that contain the value 𝑣𝑖 and 𝑦𝑖 then 𝑦 vector will take the distribution of 

binomial product: 

𝑓(𝒚|𝜷, 𝒗) = 𝑓(𝑦1|𝜷, 𝒗)𝑓(𝑦2|𝜷, 𝒗) … 𝑓(𝑦𝑚|𝜷, 𝒗)  

                   = ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)1−𝑦𝑖𝑚

𝑖=1   

The distribution for 𝛽 and 𝑣 will follow the Normal distribution: 

𝑓(𝛽, 𝑣|𝜎𝑣
2) = ∏ 1 × (2𝜋𝜎𝑣

2)−1exp (−
1

2𝜎𝑣
2

𝑚
𝑖=1 𝑣𝑖

2)  

                      ∝ (𝜎𝑣
2)−𝑚𝑒𝑥𝑝 (∑

1

2𝜎𝑣
2

𝑚
𝑖=1 𝑣𝑖

2)  
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If 𝑚 indicates a small area, then the variance of the combined area will follow the inverse Gamma 

distribution: 

𝑓(𝜎𝑣
2) =

𝑏𝑎exp (−
𝑏

𝜎𝑣
2)

𝜎𝑣
2(𝑎+1)

Γ(𝑎)
  

So, we get the new distribution from these variable is: 

𝑓(𝑦, 𝛽, 𝑣, 𝜎𝑣
2) ∝ ∏ 𝑝𝑖

𝑦𝑖(1 − 𝑝1)𝑦𝑖 ×𝑚
𝑖=1 (𝜎𝑣

2)−1 exp(−
1

2𝜎𝑣
2 𝑣𝑖

2) ×
𝑏𝑎exp (−

𝑏

𝜎𝑣
2)

𝜎𝑣
2(𝑎+1)𝛤(𝑎)

  

𝑓(𝑝1, … , 𝑝𝑚, 𝛽, 𝜎𝑣
2|𝑦) ∝ ∏ 𝑓(𝑝𝑖,𝛽, 𝜎𝑣

2)𝑓(𝑦|𝛽, 𝜎𝑣
2)𝑚

𝑖=1   

The function 𝑓(𝑝1, … , 𝑝𝑚|𝑦) is the marginal distribution from the 𝑓(𝑝1, … , 𝑝𝑚, 𝛽, 𝜎𝑣
2|𝑦) and the 

function is 

𝑓(𝑝1, … , 𝑝𝑚, 𝜷, 𝜎𝑣
2|𝑦) = ∫ ∫ 𝑓(𝑝1, … , 𝑝𝑚, 𝜷, 𝜎𝑣

2|𝑦)
𝜎𝑣

2𝛽
𝑑(𝜷)𝑑(𝜎𝑣

2)  

To find the marginal function from 𝜷, 𝒗𝒊, and 𝜎𝑣
2 we get from 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣

2) function, they are: 

𝑓(𝛽0|𝒚, 𝛽1, … , 𝛽𝑘 , 𝒗, 𝜎𝑣
2) = 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣

2)/ ∫ 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣
2) 𝑑(𝛽0)  

⋮  

𝑓(𝛽𝑢|𝒚, 𝛽0, … , 𝛽𝑢−1, 𝛽𝑢−1, … , 𝛽𝑘  𝒗, 𝜎𝑣
2) = 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣

2)/ ∫ 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣
2) 𝑑(𝛽𝑢)  

𝑓(𝑣𝑖|𝒚, 𝛽, 𝑣1, … , 𝑣𝑖−1, 𝑣𝑖+1, … , 𝑣𝑚 𝜎𝑣
2) = 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣

2)/ ∫ 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣
2) 𝑑(𝑣𝑖)   

𝑓(𝜎𝑣
2|𝒚, 𝜷, 𝒗) = 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣

2)/ ∫ 𝑓(𝒚, 𝜷, 𝒗, 𝜎𝑣
2) 𝑑(𝜎𝑣

2)  

It is not possible to get a close form from that final function with the form of a multi-dimensional 

integral in the above equations. One method used to solve this problem is Markov Chain Monte Carlos 

(MCMC) algorithm. The usually MCMC procedure is Gibbs Conditional. After simulations and 

iterations,  the estimation of proportion of Hierarchical Bayes (𝑝𝑖
𝐵𝐵) is 

𝑝𝑖
𝐵𝐵 ≈

1

𝐷
∑ 𝑝𝑖

(𝑘)
= 𝑝𝑖

(.)𝑑+𝐷
𝑘=𝑑+1   

And the variation for Hierarchical Bayes estimatimation (𝑝𝑖
𝐵𝐵) is 

𝑉(𝑝𝑖
𝐵𝐵|�̂�) =

1

𝐷
∑ (𝑝𝑖

(𝑘)
− 𝑝𝑖

(.)
)

2
𝑑+𝐷
𝑘=𝑑+1   

where 

D = Iteration after burn in 

d  = Burn in period 

k  = The iteration 

 

One measure of model compatibility that can be used in evaluating the compatibility of the Bayes 

model is Deviance Information Criterion (DIC). The smaller DIC value indicates the more suitbale 

model to use. According to Ntzoufras (2009), this criterion is defined as: 

𝐷𝐼𝐶 = 2𝐷(𝜃𝑐 , 𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐷(�̅�𝑐, 𝑐) =  𝐷(�̅�𝑐, 𝑐) + 2𝑝𝑐  

2.3.  Data Source 

The data used in this study is data generated by R-software. Variables 𝑋1 and 𝑋2 are generated 

following the Normal distribution of 38 data for each variable. 𝑋1 is generated by Normal distribution 

with an average of 10 and variant 5. 𝑋2 is generated with Normal distribution with an average of 7 and 

variant 3. Furthermore, variable data is generated “n” with a Binomial distribution. 

3.  Result and discussion 

3.1.  Exploration 𝑝𝑖 with Direct Estimation and Hierarchical Bayes Small Area Distribution 

Descriptive statistics  𝑝𝑖 of data generated through R-software, where  𝑦𝑖 following Binomial 

distribution are presented in Table 1. 
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Table 1. Descriptive statistics  𝑝𝑖 

Descriptive statistics 𝑝𝑖 

Mean 0,014166 

Standard deviation 0,006324344 

Maximum value 0,02439 

Minimum value 0,0000 

Total 38 

 

From Table 1, it can be seen from the highest 𝑝𝑖 value that is 0,02439 and the lowest is 0,000. The 

standard deviation is 0,006324344, this means that the value of 𝑝𝑖 is not too diverse. Data from the 

table is processed using Gibbs Sampling algorithm by entering a variable predictor component 

( 𝑋1, 𝑋2) to obtain 3 models, there are: 

Model A : 𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖) = 𝛽0 + 𝛽1𝑋1 + 𝑣𝑖;  𝑣𝑖~𝑁(0, 𝜎𝑣
2) 

Model B : 𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖) = 𝛽0 + 𝛽1𝑋2 + 𝑣𝑖;  𝑣𝑖~𝑁(0, 𝜎𝑣
2) 

Model C : 𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝑣𝑖;  𝑣𝑖~𝑁(0, 𝜎𝑣
2) 

 

Tabel 2. Estimated results 𝑝𝑖 HB SAE dan DIC 

Model Parameter Mean Std.Dev 
Credible Interval 

Med DIC 
5% 95% 

A 
𝛽0 -5.99 0,7729 -7,582 -4,541 -5,959 

87.905 
𝛽1 0,1709 0,07259 0,03299 0,3173 0,169 

B 
𝛽0 -4,771 0,5808 -5,731 -3,829 -4,763 

92.451 
𝛽1 0,06108 0,06676 -0,05011 0,01751 0,0126 

C 

𝛽0 -6,129 0,8563 -7,564 -4,737 -6,115 

89.819 𝛽1 0,1654 0,0628 0,04021 0,2915 0,1648 

𝛽2 0,02205 0,0045 -0,08264 0,1261 0,02237 

 

In Table 2 it can be seen that the model with all parameter that are significant at the 95% 

confidence level is model A. In Table 2 also presented the DIC value for each model. DIC value can 

be used as a measure of model compatibility, where the smaller DIC value of a model shows that the 

model is suitable for the data. The smallest DIC value is also obtained by model A. thus, the best 

model for estimating proportion of 𝑝𝑖 with HB SAE method is A model, which is a model involving 

one predictor variable, namely 𝑋1. The equation formed by the model is as follows: 

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖) = −5,99 + 0,1709𝑋1 . 

Futhermore, after obtaining parameters of 𝑝𝑖 is carried out with the best HB SAE model as 

presented in Table 3 as below. 

Table 3. Result of 𝑝𝑖 with  HB SAE Method 

𝑝𝑖 Mean 
Credible Interval 

Std. Dev 
5% 95% 

𝑝1 0.01922 0.01347 0.02594 0.003902 

𝑝2 0.01969 0.01368 0.02674 0.004086 

𝑝3 0.00869 0.005033 0.01335 0.0026 

𝑝4 0.006674 0.003075 0.0116 0.002678 

𝑝5 0.01622 0.01186 0.02102 0.002922 

𝑝6 0.009283 0.005627 0.01369 0.002545 

𝑝7 0.009167 0.005471 0.01362 0.002562 

𝑝8 0.01591 0.01161 0.02069 0,002827 

𝑝9 0.02835 0.01634 0.04458 0,008749 

𝑝10 0.01512 0.01114 0.01945 0,002609 

𝑝11 0.01297 0.009343 0.01694 0,00237 
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𝑝𝑖 Mean 
Credible Interval 

Std. Dev 
5% 95% 

𝑝12 0.01286 0.009232 0.01688 0.002397 

𝑝13 0.009653 0.00606 0.01415 0.002545 

𝑝14 0.02389 0.01512 0.03484 0.006161 

𝑝15 0,01769 0.01274 0,0235 0.003265 

𝑝16 0,01702 0.01231 0.02232 0.003101 

𝑝17 0,01387 0.01021 0.01794 0.002399 

𝑝18 0,01728 0.0124 0.02277 0.003182 

𝑝19 0,01282 0.009227 0.01675 0.002357 

𝑝20 0,008325 0.005115 0.01337 0.00257 

𝑝21 0.008325 0.004619 0.01311 0.002644 

𝑝22 0.01209 0.008584 0.01616 0.002354 

𝑝23 0.01364 0.009985 0.01775 0.002458 

𝑝24 0.02341 0.01511 0.03403 0.005873 

𝑝25 0.01452 0.01067 0.01869 0.002516 

𝑝26 0.0106 0.007017 0.01475 0.002468 

𝑝27 0.01198 0.008512 0.01597 0.002316 

𝑝28 0.01154 0.007922 0.01565 0.002397 

𝑝29 0.01511 0.01115 0.01948 0.002602 

𝑝30 0.02114 0.01429 0.02942 0.004737 

𝑝31 0.01473 0.01087 0.01915 0.002566 

𝑝32 0.01585 0.01166 0.02045 0.002761 

𝑝33 0.008834 0.005126 0.01338 0.002579 

𝑝34 0.007628 0.003969 0.01237 0.002612 

𝑝35 0.009484 0.00583 0.01385 0.002527 

𝑝36 0.02072 0.01399 0.02849 0.004554 

𝑝37 0.0126 0.009016 0.01653 0.002369 

𝑝38 0.01275 0.009223 0.01677 0.002341 

 

The next step is to compare the results of direct estimation (DE) and HB SAE as follows: 

Table 4. The comparison results of Direct Estimation and HB SAE 

𝑝𝑖 
Proportion  𝑝𝑖 (DE) Proportion  𝑝𝑖 (HB SAE) 

p Sd p Sd 

𝑝1 0,023255814 0,01613389 0.01922 0.003902 

𝑝2 0,02173913 0,01507357 0.01969 0.004086 

𝑝3 0,011627907 0,01147609 0.00869 0.0026 

𝑝4 0 0 0.006674 0.002678 

𝑝5 0,012195122 0,01204335 0.01622 0.002922 

𝑝6 0,010869565 0,01071767 0.009283 0.002545 

𝑝7 0,010752688 0,01060079 0.009167 0.002562 

𝑝8 0,012048193 0,01189641 0.01591 0,002827 

𝑝9 0,022727273 0,01576448 0.02835 0,008749 

𝑝10 0,010752688 0,01060079 0.01512 0,002609 

𝑝11 0,011363636 0,01121179 0.01297 0,00237 

𝑝12 0,011764706 0,0116129 0.01286 0.002397 

𝑝13 0,010869565 0,01071767 0.009653 0.002545 

𝑝14 0,022727273 0,01576448 0.02389 0.006161 

𝑝15 0,021978022 0,01524064 0,01769 0.003265 

𝑝16 0,012048193 0,01189641 0,01702 0.003101 
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𝑝𝑖 
Proportion  𝑝𝑖 (DE) Proportion  𝑝𝑖 (HB SAE) 

p Sd p Sd 

𝑝17 0,011494253 0,01134242 0,01387 0.002399 

𝑝18 0,010638298 0,01048638 0,01728 0.003182 

𝑝19 0,010526316 0,01037439 0,01282 0.002357 

𝑝20 0,01087 0,010718 0,008325 0.00257 

𝑝21 0,011765 0,011613 0.008325 0.002644 

𝑝22 0,012195 0,012043 0.01209 0.002354 

𝑝23 0,010526 0,010374 0.01364 0.002458 

𝑝24 0,023529 0,016325 0.02341 0.005873 

𝑝25 0,011494 0,011342 0.01452 0.002516 

𝑝26 0,011236 0,011084 0.0106 0.002468 

𝑝27 0,011111 0,010959 0.01198 0.002316 

𝑝28 0,0125 0,012348 0.01154 0.002397 

𝑝29 0,021053 0,014593 0.01511 0.002602 

𝑝30 0,02381 0,016521 0.02114 0.004737 

𝑝31 0,024096 0,016721 0.01473 0.002566 

𝑝32 0,02439 0,016926 0.01585 0.002761 

𝑝33 0,011628 0,011476 0.008834 0.002579 

𝑝34 0 0 0.007628 0.002612 

𝑝35 0,010753 0,010601 0.009484 0.002527 

𝑝36 0,024096 0,016721 0.02072 0.004554 

𝑝37 0,0125 0,012348 0.0126 0.002369 

𝑝38 0,011364 0,011212 0.01275 0.002341 

 

Based on the Table 4 above, it can be seen that the estimated proportion value between DE and HB 

SAE shows a similarity. However, the estimation of HB produces a debiation value smaller than 

estimated by DE. So, the indirect estimation is better than the direct estimation method. 

4.  Conclusion and Suggestion 

The study concluded that the estimation of the proportion of 𝑝𝑖 with HB method better than DE 

method. This is because estimation with HB SAE produces a smaller standard deviation. In this study, 

we only compare the standard deviation between HB SAE and DE, in the next study it can be 

compared DIC value between estimation with HB SAE and DE. After that, in this study only two 

predictor variable were used and formed three models, we were hoped that in the next study more 

predictor variable would be used to obtain more model 
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