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Abstract. This study aims to describe the empirical Bayes estimator for small area estimation 

which use Poisson Gamma as prior distribution. The method then apply to generated data and 

model it with and without indicator variable. Parameter model estimated uses direct method and 

indirect method (known as empirical Bayes approach; with and without indicator variable). The 

choice of better estimator is based on MSE with Jackknife  method. The criteria of acceptable 

proposed model are based on Deviance, Scaled Deviance, Pearson ChiSquare and Scaled 

Pearson Chi-square. This study proves that empirical Bayes in SAE with indicator variable result 

better estimated values than two other methods. All criteria of acceptable model indicate that 

proposed model could be accepted. Based on plot between the estimated residual versus 

predicted values of response variable informed that proposed model is plausible enough. 

1.  Introduction 

Small area typically refers to a small geographic area or a demographic group for which very little 

information is obtained from the sample surveys. An empirical Bayes (EB) method uses sample survey 

data in conjunction with relevant supplementary data which are obtained from various administrative 

sources. The method has been found to be very useful in many applications of small-area estimation and 

related problems (Butar Butar & Lahiri, 2003; Sundara, Sadik, & Kurnia, 2017). 

Direct survey estimators in the area-specifics small sample size, tend to yield unacceptably large 

standard errors (Jakimauskas & Sakalauskas, 2010). Therefore, it has to borrow the strength from related 

areas to improve the power of small sample size hope it could provide higher precision of estimates. 

Such of this estimation method is known as indirect estimators. Those indirect estimators are often based 

on mixed models and associated empirical Bayes estimators in which random effects represents area-

specific effects. 

Empirical Bayes estimator for small area places a prior distribution on population- specific area. 

Many distributions of priors  have been used for this purpose, such as log normal, gamma and 

nonparametric priors (Jeong, 2010; John Quigley, Bedford, & Walls, 2007; Martuzzj & Elliott, 1996). 

In this study, we describe the Poisson gamma distribution for priors (Sakalauskas, 2010) and then 

applied it to generated data. 

2.  Small Area Estimation   

Small area estimation are classified into two model, these are basic area level model and basic area level 

unit. In this paper, we limit the discussion in basic area level model only. A basic area level  model 
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assumes that some function 𝜃𝑖 = 𝑔(𝜇𝑖) of the small area mean 𝜇𝑖 is related to the data from specific 

area 𝑧𝑖 = (𝑧1𝑖, 𝑧2𝑖, ⋯ , 𝑧𝑝𝑖)𝑇 through a linear model with random effect 𝑣𝑖 (Rao, 2003):    

𝜃𝑖 = 𝑧𝑖
𝑇𝛽 + 𝑏𝑖𝑣𝑖,    𝑖 = 1, … , 𝑚      (1) 

Which 𝑏𝑖 is known positive constant and 𝛽 = (𝛽1, 𝛽2, ⋯ , 𝛽𝑝)𝑇 is a p x 1 vector of known regression 

parameters. Meanwhile 𝑣𝑖 is random effects assummed as normal distribution or written as 

𝑣𝑖~ 𝑁(0, 𝜎𝑣
2), m is the number of small areas. In this study, we take 𝑔(. ) as the identity function. In the 

basic area level model, it is assummed that the direct estimate 𝜃𝑖 is usually design as unbiased estimator, 

or 𝐸(𝜃𝑖) = 𝜃𝑖. It is usual to assume : 

 𝜃𝑖 = 𝜃𝑖 + 𝑒𝑖,    𝑖 = 1, … , 𝑚.       (2) 

Where 𝑒𝑖 is independent normal random variables which denotes the sampling errors associated with 

the transformed direct estimator 𝜃𝑖. It is assumed 𝑒𝑖~𝑁(0, 𝜓𝑖)     

If we combine the equation (1) and (2), we will get this following equation: 

 𝜃𝑖 =  𝑧𝑖
𝑇𝛽𝑖 + 𝑏𝑖𝑣𝑖 + 𝑒𝑖        (3) 

This equation is known as Fay-Herriot model, special case of generalized linear mixed model in small 

area estimation that consist of fixed effect, that is 𝛽 and random effect, that is 𝑣𝑖. Fay-Herriot  used this 

basic area level model to estimate income per capita at any small areas in United State with population 

less that 1000. In this paper, we are concerned with the basic area-level model of Fay and Herriot (Rao, 

2003).  
Empirical Bayesian method of small area estimation places a prior distribution on area-specific risks 

(Clement, 2014). According to properties of this model the distribution of the number of events in 

populations follows to Poisson law, that intensity parameter is distributed according to Gamma 

distribution and the rates are estimated as the a posteriori means. Thus in this paper we address the 

empirical Bayesian estimation techniques for Poisson-Gamma model as well. 

3.  Results  

3.1.  Empirical Bayes Method in Small Area Estimation   

Wakefield (2006) introduced Poisson-Gamma model two stage to estimate parameter in rare data. In 

first stage is assumed that random variable 𝑦𝑖 has Poisson distribution or written as 

𝑦𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝑖𝜇𝑖𝜃𝑖) with probability density function is : 

𝑔(𝑦𝑖|𝑒𝑖𝜇𝑖𝜃𝑖) =
𝑒−(𝑒𝑖𝜇𝑖𝜃𝑖)(𝑒𝑖𝜇𝑖𝜃𝑖)𝑦𝑖

𝑦𝑖!
, 𝑦𝑖 = 0,1, ⋯     (4) 

where 𝜇𝑖 = 𝜇 (𝑥𝑖, 𝛽) is regression model, 𝑥𝑖 = (𝑥1𝑖, 𝑥2𝑖, ⋯ , 𝑥𝑝𝑖)
𝑇

 is a vector of covariates and 𝛽 =

(𝛽1, 𝛽2, ⋯ , 𝛽𝑝)
𝑇

 is regression coefficients. In the second stage, it is assumed the parameter 𝜃𝑖 has 

Gamma distribution or 𝜃𝑖~𝑖𝑖𝑑 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛼) with probability density function is : 

𝑘(𝜃𝑖) =
𝛼𝛼

Γ(𝛼)
 𝑒−𝛼𝜃𝑖𝜃𝑖

𝛼−1, 𝜃𝑖 > 0      (5) 

Based on equation (1) and (2) is obtained the joint probability density function as follows: 

          ℎ(𝑦𝑖 , 𝜃𝑖) =
𝑒−(𝑒𝑖𝜇𝑖𝜃𝑖)(𝑒𝑖𝜇𝑖𝜃𝑖)𝑦𝑖

𝑦𝑖!

𝛼𝛼

Γ(𝛼)
 𝑒−𝛼𝜃𝑖𝜃𝑖

𝛼−1, 𝑦𝑖 = 0,1, ⋯ ; 𝜃𝑖 > 0   (6) 

We could also get the marginal probability density function as follows: 

              𝑚(𝑦𝑖) =  ∫ ℎ(𝑦𝑖 , 𝜃𝑖) 𝑑𝜃𝑖

∞

0

 

                           = (
𝑦𝑖 + 𝛼 − 1

𝛼 − 1
) (

𝛼

𝑒𝑖𝜇𝑖+𝛼
)

𝛼
(1 −

𝛼

𝑒𝑖𝜇𝑖+𝛼
)

𝑦𝑖
      (7) 
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We could identify that the distribution of equation (4) is negative binomial with mean and variance for 

𝑦𝑖 respectively are as follows:  

               𝐸 (𝑌𝑖|𝛽, 𝛼)  = 𝑒𝑖𝜇𝑖  and 𝑉𝑎𝑟 (𝑌𝑖|𝛽, 𝛼)  = 𝑒𝑖𝜇𝑖 (1 +
𝑒𝑖𝜇𝑖

𝛼
)    (8) 

Then, we will estimate the posterior distribution for 𝜃𝑖: 

𝜋(𝜃𝑖|𝑦𝑖 , 𝛽, 𝛼) =
ℎ(𝑦𝑖, 𝜃𝑖)

𝑚(𝑦𝑖)
 

 =
(𝑒𝑖𝜇𝑖+𝛼)𝑦𝑖+𝛼

Γ(𝑦𝑖+𝛼)
𝑒−(𝑒𝑖𝜇𝑖+𝛼)𝜃𝑖(𝜃𝑖)𝑦𝑖+𝛼−1, 𝜃𝑖 > 0   (9) 

Based on equation (9) we obtain the posterior distribution for 𝜃𝑖 is Gamma, or written as   

 𝜃𝑖|𝑦𝑖, 𝛽, 𝛼~𝐺𝑎𝑚𝑚𝑎(𝑦𝑖 + 𝛼, 𝑒𝑖𝜇𝑖 + 𝛼)     (10) 

Thus, the posterior mean and posterior variance are obtained from this Bayes estimate for 𝜃𝑖, these are: 

            𝜃𝑖
�̂�(𝛽, 𝛼) = 𝐸𝐵(𝜃𝑖|𝑦𝑖 , 𝛽, 𝛼) =

(𝑦𝑖 + 𝛼)

(𝑒𝑖𝜇𝑖 + 𝛼)
 

And 

𝑉𝑎𝑟𝐵(𝜃𝑖|𝑦𝑖 , 𝛼, 𝑣) =
(𝑦𝑖+α)

(𝑒𝑖𝜇𝑖+𝛼)2       (11) 

Or it could be presented as (Wakefield, 2007): 

𝜃𝑖
𝐸�̂� = 𝐸(𝜃𝑖|𝑦𝑖 , 𝛽, 𝛼) = 𝛾�̂�𝜃�̂� + (1 − 𝛾�̂�)𝐸[𝑅𝑅𝑖]     (12) 

Where 𝛾�̂� = 𝑒𝑖𝜇�̂� (�̂� + 𝑒𝑖𝜇�̂�)⁄ , 𝐸[𝑅𝑅𝑖] = 𝜇�̂� × 𝐸(𝜃𝑖) = 𝜇�̂� × 1 = 𝜇�̂� = exp (𝑥𝑖
𝑇 , �̂�) is undirect estimator, 

𝜃�̂� = 𝑦𝑖 𝑒𝑖⁄  is direct estimator for 𝜃𝑖, 𝑦𝑖 is number of observations and 𝑒𝑖 is mean of number of 

observations. 

The indicator to test the acceptable and the goodness of fit for the better proposed model is identified 

by calculating the value of Mean square error (MSE). (Rao, 2003) stated that better estimator tend to 

have smaller value of MSE.  

(Ghosh, Maiti, & Roy, 2008) have proven that Bayes method is asymtotically unbiased estimator and 

empirical Bayes as well. The Jackknife method then be used to obtain this asymtotic unbiased estimator 

of MSE for 𝜃𝑖
𝐸𝐵

.  Following is the formula for Jackknife estimator : 

 𝑀𝑆𝐸𝑗 (𝜃𝑖
𝐸𝐵

) = �̂�1𝑖 + �̂�2𝑖 

 

where �̂�1𝑖 = 𝑔1𝑖 (𝛽,̂ �̂�, 𝑦𝑖) −
𝑚−1

𝑚
∑ [𝑔1𝑖 (�̂�−1, �̂�−1, 𝑦𝑖) − 𝑔1𝑖 (𝛽,̂ �̂�, 𝑦𝑖)]𝑚

𝑙=1   

 

and  �̂�2𝑖 =
𝑚−1

𝑚
∑ (𝜃𝑖

𝐸𝐵
− 𝜃𝑖,−1

𝐸𝐵
)

2
𝑚
𝑙=1  with 𝜃𝑖

𝐸𝐵
= 𝑘𝑖 (𝑦𝑖 , 𝛽,̂  �̂�) and 𝜃𝑖,−1

𝐸𝐵
= 𝑘𝑖 (𝑦𝑖 , �̂�−1, �̂�−1). 

  

3.2.   Application of Empirical Bayes in SAE Using Generated Data. 

The theoritical framwork of empirical Bayes for SAE as  presented above then applied to a set of 

generated data. Generate a set data of 𝑦𝑖 and 𝑥𝑖 represent response variable and indicator variable 

corresponding with normal distribution for both variables. Other variables such as 𝑛𝑖, 𝑒𝑖 and direct 

estimator for 𝜃�̂� are calculated based on the fixed formula. This following Table 1 presents the statistics 

of the data.  
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Table 1. Statistics from Generated Data 

Statistics 
𝑦𝑖 

(Observations) 

𝑒𝑖 

(Expected Values) 

Direct Estimator  

for 𝜃�̂� 

Mean 1.680 1.680 1.071 

Minimum 0.000 1.043 0.000 

Maximum 6.000 2.508 3.833 

Standard deviation 1.464 6.564 1.013 

  

Table 1 informs us that minimum value for 𝜃�̂� is 0.000. Standard deviation for expected value (𝑒𝑖) is 

6.564 more than standard deviation for observations, 𝑦𝑖. These results are hard to accepted. Thus, the 

informations obtained from classical appproaches (direct estimator) could not believed.  

Then we did the estimate for parameter 𝜃�̂�  using proposed empirical Bayes (EB) based on Poisson 

Gamma model using without and with indicator variables. Table 2 is presenting the comparison results 

based on direct estimator and indirect estimator using empirical Bayes (EB) in SAE with and without 

indicator variables.  

  

Tabel 2.  The Results of Estimate for parameter 𝜃�̂� 

Mean Direct Estimator 

Indirect Estimate 

EB Without 

Variable 

EB With 

Variable 

Relative Risk 1.071195 1.005896 1.015143 

MSE 0.723369 0.374396 0.287734 

Standard error 0.041754 0.040824 0.040824 

 

Based on Table 2, it informs that relative risk for both indirect estimator methods result smaller values 

than direct estimator as well as values of MSE and standard error. These results indicate that indirect 

estimator yield better values than direct estimator. Meanwhile for both indirect estimator, EB with 

variable result better values than EB without variable, based on the result from MSE and standard error.   

From this study we can conclude that indirect estimator using empirical Bayes in small area 

estimation is better estimator than direct estimator. We also obtained than empirical Bayes in SAE with 

indicator variable tends to result better estimator than without indicator variable, since indicator variable 

could increase the goodness of fit of proposed model. Table 3 presents the indicator of goodness of fit 

for empirical bayes in SAE with indicator variable. 

 

Tabel 3. The Criteria of Goodness of Fit for Propsoed Model (EB with 

Variable)  

Criterion DF Value Value/DF 

Deviance 23 26.5527 1.1545 

Scaled Deviance 23 26.5527 1.1545 

Pearson Chi-Square 23 27.7788 1.2078 

Scaled Pearson X2 23 27.7788 1.2078 

Log Likelihood  -21.1788  

 

Last column in Table 3 is the values for each criteria of goodness of fit for proposed model. All these 

values are less than 2 which indicate that proposed model could be accepted. Thus based on this analysis, 

the equation of proposed model is as follows :  
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𝑙𝑛 (
𝑦𝑖

𝑒𝑖

̂) =  −0,2090 + 0,0139𝑥𝑖      (13) 

In this study we also check the estimated residual versus predicted values of response variable to assess 

the plausibility of the proposed model. Figure 1 presents the plot between these two variables (Yanuar, 

Ibrahim, & Jemain, 2013). This figure informs that no trends are detected. We could also conclude here 

that the estimated model which is obtained based on empirical Bayes analysis could be considere 

adequate and could be accepted. 

 
Figure 1.  Plot of  Residual versus Predicted Response Variable. 

4.  Discussions 

This study described the empirical Bayes estimator for small area estimator which used Poisson Gamma 

as prior distribution. The method then applied to generated data and model it with and without indicator 

variable. Parameter model estimated used direct method and indirect method (known as empirical Bayes 

approach). The choice of better estimator based on MSE with Jackknife  method. The criteria of 

acceptable proposed model were based on Deviance, Scaled Deviance, Pearson ChiSquare and Scaled 

Pearson Chi-square. Meanwhile to assess the plausibility of the proposed model was examined by 

plotting the estimated residual versus predicted values of response variable. 
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