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Abstract. The purpose of this study is to calculate the statistical power and sample size in 

simple linear regression model based on quantile approach. The statistical theoretical 

framework isthen implemented to generate data using R. For any given covariate and 

regression coefficient, we generate a random variable and error. There are two conditions for 

error distributions here; normal and nonnormal distribution. This study resulted that for normal 

error term, sample size is large if the effect size is small. Meanwhile, the level of statistical 

power is also affected by effect size, the more effect size the more level of power. For 

nonnormal error terms, it isn’t recommended using small effect size, moderate effect size 

unless sample size more than 320 and large effect size unless sample size more than 160 

because it resulted in lower statistical power. 

1.  Introduction 

The least square estimator has many limitations. This estimator estimates the relationships between the 

conditional mean of the covariates on the response, or it only measures the mean of the response at 

given values of covariates [1]. The leastsquare estimator can be applied if the classical assumptions are 

fulfilled unless the conditional mean is not appropriate anymore. Another limitation of the leastsquare 

estimator is the response variable must follow normal distribution. If not, the conditional mean cannot 

appropriate to be applied. Due to these limitations, numerous estimator methods have been proposed.  

One of more popular estimator methods than others is quantile regression approach. Quantile 

regression estimates the relationship between covariates at different percentile points of the response 

variable. Quantile regression also has no assumption about the distribution of error. This estimator is 

widely used in many disciplines, such as in social science research, health research, and environmental 

sciences.  

In many disciplines of research, the study of statistical power and sample size calculation are 

important factors to be considered in pilot study which then required for future implementation [2]. 

The accurate statistical power and reasonable sample size must be allowed in order to achieve the 

purposes of the study.  

The sample size is an estimate of how many objects to be involved in a study. In determining the 

sample size, it needs predetermined parameters of the corresponding probability distribution, such as 

mean and standard deviations. Sample size can be determined based on these parameters. There are 

two criteria that can be used to determine sample size, precision analysis, and power analysis. 

http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

ICE-STEM IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 948 (2018) 012072  doi :10.1088/1742-6596/948/1/012072

 

 

 

 

 

 

In calculating the reasonable sample size, it uses the concept of type I error, denoted by 𝛼. Type I 

error or 𝛼  is the probability of reaching incorrect conclusion. Sample size calculation in precision 

analysis is usually referred to as the maximum error of an estimate of the unknown parameter. It 

allows the maximum half width of the (1 − 𝛼)100%  confidence interval for this error.  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 are identically independent distribution normal random variables with mean 𝜇  

and variance 𝜎2. The (1 − 𝛼)100% confidence interval for 𝜇 if 𝜎2 is known, is given by following : 

�̅� ± 𝑧1−𝛼/2
𝜎

√𝑛
, 

Then error or ε is defined as : 

𝜀 = |�̅� − 𝜇| = 𝑧1−𝛼/2
𝜎

√𝑛
. 

Hence, the sample size is calculated by : 

𝑛 =
𝑧1−𝛼/2

2 𝜎2

𝜀2                                           (1) 

Using Chebyshev’s inequality to obtain the following nonparametric approach : 

𝑃(|�̅� − 𝜇| ≤ 𝜀) ≥ 1 −
𝜎2

𝑛𝜀2, 

then set 1 −
𝜎2

𝑛𝜀2 = 1 − 𝑝, with 𝑝 = 𝑃(|𝑍| ≥ 𝑧1−𝛼/2).  Thus, the sample size can be calculated by: 

  𝑛 =
𝜎2

𝑝𝜀2 .                     (2) 

 

Besides controlling the Type I error, or 𝛼, the researcher is also suggested to minimize Type II 

error, 𝛽, in hypothesis testing while maintaining Type I error at a certain pre-specifed level. The 

statistical power here is represented by 1 − 𝛽, the complement of type II error 𝛽which is the 

probability of rejecting the impact or change as it occurs. Meanwhile the (1 − 𝛽) 100% is the power 

of the test represents the probability that a significant result will be detected when the alternative 

hypothesis is true. Sample size calculation under assumptions of this power of the test is called power 

analysis. 

For two-sample test with equal sample size and having normal distribution when the variances for 

both samples are known, the sample size can be calculated by[3]: 

   

  𝑛 =
(𝜎1

2 + 𝜎2
2)(𝑧1−𝛽+𝑧1−𝛼/2)

2

𝛿2 ,        (3) 

where δ is the difference between two population means which are observed. The problems of this 

study are how to determine the reasonable power and sample size in simple linear regression based on 

quantile estimation approach. 

2.  Data and Methods 

In this study, we give brief explanation related to quantile regression approach. This study aims to 

determine the statistical power and calculate the reasonable sample size for univariate case in the 

quantile regression. In this research, we use the generated data which the method is then implemented 

and tested. 

2.1.  Quantile Regression Approach 

Let 𝒚 is the response variable, 𝒙 is a 𝑝 × 1 vector of p indicator variables for the ith observation. Let 

𝐹𝜀 be the distribution function of error term which is 𝜀 with associated probability density function 𝑓𝜀. 

The 𝐹𝜀 is supposed to be strictly increasing and absolutely continuous for every 𝜀 𝜖 ℐfor some 

intervalℐ ⊂ ℜ. Then let 𝑄𝜏(𝒙) denote the -th (0 << 1) quantile regression function of 𝑦 given 𝒙.  

The quantile regression model is[4] : 
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𝑄𝜏(𝒙)  = 𝒙′𝛽( ) + 𝐹𝜀
−1(𝜏)               (4) 

Normally, we assume 𝐹𝜀
−1(𝜏) is 0 and -th quantile of dependent variable can be expresssed as a 

linear function of indicator variables.  For 𝑖 = 1,2, … , 𝑛 observations, the quantile regression 

estimation for �̂�( ) are given by : 

 �̂�( ) = 𝑚𝑖𝑛 ∑  𝜌𝜏 (𝑦𝑖 − 𝒙𝑖
𝑇𝛽( ))𝑖 ,              (5) 

where 𝜌𝜏(𝜀) is the loss function defined by: 

 𝜌𝜏(𝜀) = 𝜀(𝜏 − 𝐼(𝜀 < 0))         (6) 

We also may write (3) as: 

  𝜌𝜏(𝜀) = 𝜀(𝜏𝐼(𝜀 > 0) − (1 − 𝑡)𝐼(𝜀 < 0))or 𝜌𝜏(𝜀) =  
|𝜀|+(2𝜏−1)𝜀

2
 

For independent and identic distribution (iid) errors 𝜀𝑖 , 𝑖 = 1,2, … , 𝑛, the asymptotic distribution for 

�̂� in quantile regression has the following distribution [5][6]: 

√𝑛 (�̂�( ) − 𝛽( )) ~𝑁 (0,
𝜏(1−𝜏)

𝑓(𝐹−1(𝜏))
2 𝐸(𝑋′𝑋)−1)   (7) 

where 𝑓(𝐹−1(𝜏)) > 0,  and suppose 𝑛−1𝑋′𝑋 ≡ 𝑄𝑛 converges to a positive definite matrix 𝑄0, i.e 

𝐸(𝑋′𝑋). 
The errors can be assumed non iid, Koenker [6] showed that the asymptotic distribution of the 

estimator �̂� has the following form : 

√𝑛 (�̂�( ) − 𝛽( )) ~𝑁(0, 𝜏(1 − 𝜏)𝐻−1𝐽𝑛𝐻−1)   (8) 

where 

𝐽𝑛 = 𝑛−1𝑋′𝑋and 𝐻 = lim
𝑛→∞

𝑛−1𝑋′𝑋 𝑓𝜀(𝜏). 

2.2.  Statistical Framework for Sample size and Power Calculation 

In univariate case, we have 𝑥𝑖,  𝑖 = 1,2, … , 𝑛1 and 𝑦𝑖 ,  𝑖 = 1,2, … , 𝑛2.  Both groups of observations are 

independent and normally distribution with means 𝜇𝑥  and 𝜇𝑦 and variances 𝜎𝑥
2 and 𝜎𝑦

2,    respectively.  

We then have the following hypothesis to be tested [7][3] : 

 𝐻𝑜:  𝜇𝑥 = 𝜇𝑦 vs 𝐻𝑎:  𝜇𝑥𝜇𝑦 

The Type I error of the test is : 

 𝛼 = 𝑃(𝑍 > 𝑐|𝐻0)     (9) 

Where Z is a test statistic and c is the critical value of the rejecting the null hypothesis 𝐻𝑜.  

 

The Type II error is defined as following: 

 𝛽 = 1 − 𝑃(𝑍 > 𝑐|𝐻𝑎)    (10) 

Thus, we have : 

power = 1- 𝛽 = 𝑃(𝑍 > 𝑐|𝐻𝑎). 

For condition 𝜎𝑥
2 and 𝜎𝑦

2 are known, and 𝑛𝑥 = 𝑛𝑦 = 𝑛,  we can implement Z test: 

 𝑍 =
𝜇𝑥− 𝜇𝑦

√
𝜎𝑥

2+𝜎𝑦
2

𝑛

              (11) 

The null hypothesis or 𝐻𝑜 is rejected if the absolute value of Z is larger or equal 𝑍1−𝛼/2, 

represented by  |𝑍|≥𝑍1−𝛼/2. 
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Under alternative hypothesis we have 𝛿 = 𝜇𝑥 − 𝜇𝑦 with  𝛿 > 0and 𝑍𝑎  ~ 𝑁(𝜇∗, 1)with 𝜇∗ =
𝛿

√
𝜎𝑥

2+𝜎𝑦
2

𝑛

> 0. Parameter 𝛿 is known as predefined constant and as effect size, it plays an important role 

in the determination of statistical power and reasonable sample size [3]. 

 

Therefore, based on equation (10), we have corresponding power here given by : 

 

     𝛽 = 1 − 𝑃 (|𝑍| ≥ 𝑍1−
𝛼

2
|𝐻𝑎) ≈ 𝑃 (𝑍 > 𝑍1−

𝛼

2
) 

        = 𝑃 (𝑍 − 𝜇∗ > 𝑍1−
𝛼

2
− 𝜇∗)   

  

                                                             = 𝑃 (𝑍∗ > 𝑍1−
𝛼

2
− 𝜇∗) 

With 𝑍∗ has standard normal distribution. To achieve desired power of (1-𝛽)100%, set 

 −𝑧𝛽 = 𝑧𝛼

2
− 𝜇∗. 

 

The formula for calculate reasonable sample size then can be obtained by using the same logic. Let 

𝛽1 is the coefficient of indicator variable x, following is hypothesis test for 𝛽1 : 

 𝐻0: 𝛽1 = 0  vs 𝐻𝑎: 𝛽1 ≠ 0 

Under 𝐻𝑎, 𝛿 = 𝛽1+0 =𝛽1,   with 𝜇∗ =
𝛿

√
𝜎𝛽1

2

𝑛

> 0.  

By modifying the equation (3), the formula to determine sample size is given by: 

𝑛 =
𝜎𝛽1

2 (𝑧1−𝛽+𝑧1−𝛼/2)
2

𝛿2     (12) 

The value of 𝛿 is assummed to be known and the unknown variable 𝜎𝛽1

2  is calculated using (7) for 

iid errors : 

𝜎𝛽1

2  = 
𝜏(1−𝜏)

𝑓(𝐹−1(𝜏))2 𝐸(𝑋′𝑋)−1 

 

Test statistics under 𝐻0 to test  𝛽1 is given by : 

 𝑇 =
𝛽1̂−0

√
𝑠𝛽1

2

𝑛

=
𝛽1̂

√
𝑠𝛽1

2

𝑛

. 

Under 𝐻𝑎, statistics T has non-central t distribution  

with 𝜇∗ =
𝛿1

√
𝑠𝛽1

2

𝑛

. Sample size is calculated using following approximation: 

𝑃(|𝑇| > 𝑡𝑛−𝑝,1−𝛼/2|𝐻𝑎) ≈ 𝑃(𝑇 > 𝑡𝑛−𝑝,1−𝛼/2|𝐻𝑎)   (13) 

 

We need n large enough to achieve desired power of (1 − 𝛽) x 100%. Since sample size nwhich is 

involved in degrees of freedom and non-central parameter, it is quite hard to find the closed form ofn. 

It can be solved using numerical method. 
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2.3.  Generated Data for Error Distribution 

We apply generated data in this present study to implement the theoretical framework. For any given 

covariate 𝒙𝑖 and regression coefficient 𝛽, we generate a random variable 𝒀𝒊 and error 𝜀𝑖. There are two 

conditions for error disributions here; normal and non normal distribution.  

Assuming random variable 𝒀𝒊has normal distribution with mean parameter 𝜇𝑖 and variance 𝜎2, 

meanwhileerror  term has the same distibution. We set the regresssion coefficient 𝛽0 = 1,  𝛽1 = 1.5 

and  𝜏 = 0.1, 0.2, … , 0.90. 

3.  Result 

The simulation study is done with the design as represented above. Following tables show the result of 

simulation study. Table 1 and table 2 present the estimated sample size and estimated power 

respectively for normal error term.  

 

 

Table 1. Estimated Sample Size for Normal 

Distribution of Error. 

Quantil 

(  ) 

Effect size ( 𝜹 ) 

𝜹 = 𝟎. 𝟏 𝜹 = 𝟎. 𝟐𝟓 𝜹 = 𝟎. 𝟒 

0.1 22 5 3 

0.2 63 11 5 

0.3 104 17 7 

0.4 147 24 10 

0.5 193 32 13 

0.6 246 40 16 

0.7 310 50 20 

0.8 393 64 26 

0.9 526 85 34 

 

 

Figure 1. Estimated Sample Size for Normal 

Distribution of Error. 

 

Table 1 and figure 1 show the estimated sample size under selected points of quantil and three 

conditions of effect size (𝜹). The sample size range from n = 3 to n = 526 for the setting that we 

considered. The table informs us that if effect size is small, it needs large sample size, the opposite 

sample size is small when effect size is large.  

 

Table 2. Estimated Power for Normal Distribution of Error. 

Sample size ( n ) 
Effect size ( 𝜹 ) 

𝜹 = 𝟎. 𝟏 𝜹 = 𝟎. 𝟐𝟓 𝜹 = 𝟎. 𝟒 

20 0.09 0.19 0.34 

40 0.11 0.30 0.55 

80 0.16 0.47 0.80 

160 0.23 0.72 0.97 

320 0.35 0.93 0.99 

640 0.56 0.99 1.00 

 

Table 2 shows the empirical power under selected sample size and three conditions of effect sizes, 

small  
(𝛿 = 0.1), moderate (𝛿 = 0.25) and large (𝛿 = 0.4). This simulation study observed that the 

empirical power ranges from 9% to 100%. When effect size is small, the empirical power is far away 

from 80%. When effect size is moderate, the empirical power is more than 70% for sample size more 
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than 160. Meanwhile in, large effect size, the empirical power more than 80% when sample size is 80 

or more. 

The result of simulation study for estimated sample size and estimated power respectively for 

nonnormal error term are presented in this following Figure 2 and Table 3.  

 

 
 

Figure 2. Estimated Sample Size for Non-Normal Distribution of Error. 

 

Figure 2 informs us that sample size is small when effect size is large. Conversely, it needs large 

sample size if effect size is small. Meanwhile, Table 3 inform us the empirical power for nonnormal 

error term for selected sample size for three conditions of effect sizes. 

 

Table 3. Estimated Power for Non-Normal Distribution of Error. 

Sample size ( n ) 
Effect size ( 𝜹 ) 

𝜹 = 𝟎. 𝟏 𝜹 = 𝟎. 𝟐𝟓 𝜹 = 𝟎. 𝟒 

20 - - 0.27 

40 - 0.22 0.43 

80 0.10 0.36 0.65 

160 0.15 0.65 0.82 

320 0.29 0.72 0.89 

640 0.52 0.92 0.97 

4.  Summary 

In this present study, we reviewed the statistical power and sample size calculation for univariate case 

in quantile regression model. The statistical theoretical framework was then implemented to generate 

data using R software. There are two assumptions for the error term, normal distribution, and 

nonnormal distribution. This study resulted that for normal error term, sample size is large if the effect 

size is small. Meanwhile, the level of statistical power is affected by effect size as well, the more 

effect size the more level of power. For nonnormal error terms, it isn’t recommended to use small 

effect size, moderate effect size unless sample size more than 320 and large effect size unless sample 

size more than 160.  

This study described in how to calculate the statistical power and sample size in univariate case 

only based on quantile approach. For future work, we will explore the statistical power and sample 

size calculation for multivariate case then. 
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