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ABSTRACT

The design and development of the next-generation power-efficient CIGS solar cells are at the research forefront
due to their potential applications in renewable energy. Due to rich fundamental properties such as chemical and
physical structures of the CIGS layer, cell scaffolding, and its promising applications like low cost, easy inte-
gration, and high efficiency, the CIGS-based solar cell systems are of considerable interest and received
tremendous attention. In this article, we review the CIGS solar cells from the point of view of structural engi-
neering. We explain the intrinsic parts of crystalline, optical, and electronic structures of the CIGS absorber layer
up to the extrinsic part of the cell multilayer structure. For intrinsic structure, we primarily review the modi-
fication of the crystallinity or chemical composition of the CIGS and the effects that these modifications have on
the physical properties such as the adjustment of the bandgap grading, effect of impurity or doping, selenization,
oxidation processes, and the surface morphology and structure orientation. For extrinsic structure, the effect of
substrates, electrical back contact, windows, n-buffer, grid, and antireflection layers will be discussed further, as

well as the possibility of their tandem use with other solar cell thin films.

1. Introductions

Chalcopyrite Cu(In, Ga)Sey (CIGS)-based solar cells are promising
and widely used solar cells because of their remarkable efficiency, low
cost, and easy integration (Noufi and Zweibel, 2006; Ramanujam and
Singh, 2017). This is related to their tunable bandgap of approximately
1.0-1.12 eV and high absorption coefficient up to 10° em™! (Guille-
moles, 2002; Noufi and Zweibel, 2006; Ramanujam and Singh, 2017).
Solar cells based on CIGS have high efficiency that is similar to that of
crystalline silicon (c-Si) solar cells but are less expensive because CIGS
can absorb light using only ~2.0-2.5 mm layer thickness, which de-
creases the use of raw materials (Guillemoles, 2002; Noufi and Zweibel,
2006; Ramanujam and Singh, 2017). The CIGS-based solar cells are easy
to fabricate compared to c-Si based solar cells by growing it on various
rigid and flexible substrates by vacuum and non-vacuum techniques;
thus, CIGS-based solar cells are promising candidates for the next-
generation power-efficient solar cells (Adel et al., 2016; Badgujar
etal., 2015; Chen et al., 2017a, 2014; Choi and Lee, 2007; Delahoy et al.,

* Corresponding author.
E-mail address: nandang.mufti.fmipa@um.ac.id (N. Mufti).

https://doi.org/10.1016/j.solener.2020.07.065

2004; He et al., 2019; Kaelin et al., 2004; Kuo et al., 2016; Kushiya et al.,
2001; Lee et al., 2011; Liu et al., 2012; Nakada et al., 1999; Park et al.,
2003; Repins et al., 2008; Tsai et al., 2013; Venkatachalam et al., 2008).
In addition to CdTe thin films, CIGS is included in the second-generation
thin-film solar cells but CIGS is non-toxic compared to CdTe (Noufi and
Zweibel, 2006; Ramanujam and Singh, 2017). Besides its tunable
bandgap, CIGS is an excellent semiconductor material for creating tan-
dem solar cells. Some theoretical and experimental studies have been
conducted to obtain high efficient CIGS-based solar cells. Among them,
structural modifications of crystalline and electronic structures to tune
its functionalities are considered to be a general route to enhance the
CIGS-based solar cell efficiency (Asaduzzaman et al., 2016; Chen et al.,
2017b; Chirila et al., 2013; Han et al., 2012; Ishizuka et al., 2011; Liao
et al.,, 2013; Liu et al., 2011; Malitckaya et al., 2017; Puyvelde et al.,
2014; Salomé et al., 2013; Su et al., 2011; Sun et al., 2017).
Nevertheless, compared to c-Si, CIGS-based solar cells are not as
widely commercialized due to the difficulty of finding high quality and
large-scale of CIGS-based solar cell. It was found that the efficiency of
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the commercial CIGS module much lower than the obtained lab-scale
CIGS (Ramanujam and Singh, 2017). Electronic inhomogeneity is
considered to be an important key for efficiency limitation (Ramanujam
and Singh, 2017; Werner et al., 2005). A correct Cu-In-Ga and Se
composition are required to obtain appropriate band-gap, while those of
Cu-In-Ga-Se composition is very sensitive to the growth condition dur-
ing the fabrication process. Thus, considerable research and develop-
ment efforts have been conducted to overcome the limitations of CIGS,
particularly on their chemical and electronic structures. In this review
article, the exploitation of CIGS solar cells is described with an emphasis
on the chemical and physical issues of the CIGS layer and other com-
ponents of the cell. We review recent fabrication approaches and pro-
vide suggestions to improve the efficiency and stability of CIGS solar
cells from the point of view of structural engineering to develop the
functionalities of CIGS-based solar cells for renewable energy applica-
tions. We begin by reviewing the intrinsic structure such as grading
composition to obtain a bandgap grading. The effects of impurity or
doping are also briefly discussed including direct doping by the addition
of impurities to the CIGS layer directly during or after the coating pro-
cess and indirect doping, which is facilitated by the diffusion of related
materials from the substrates and/or buffer layers (Asaduzzaman et al.,
2016; Chirila et al., 2013; Malitckaya et al., 2017; Puyvelde et al., 2014;
Salomé et al., 2013; Shirakata, 2017; Sun et al., 2017). Moreover,
selenization and annealing processes, which are considered to be
important for tuning the electronic structure, are explained (Chen et al.,
2017b; Ramanujam and Singh, 2017). Thus, the design of the CIGS layer
morphology, which is used to control the reflection behavior, is dis-
cussed (Cai and Qi, 2015; Han et al., 2012; Ishizuka et al., 2011; Liao
et al.,, 2013; Liu et al.,, 2011; Shirakata, 2017; Su et al.,, 2011).
Furthermore, the extrinsic or multilayer structure of CIGS-based solar
cells is also reviewed including the effect of substrates and challenges of
developing flexible solar cells, the influence and necessity of electrical
back contact, the search for a proper n-type buffer layer, and the effects
of an additional layer (e.g., grid, window layers and antireflection) on
the performance of solar cells (Bhattacharya and Ramanathan, 2004;
Dhere et al., 2004; Heriche et al., 2016; Kessler and Rudmann, 2004;
Kushiya, 2004; Nakada et al., 2004; Qiao et al., 2018; Reinhard et al.,
2013). Finally, further development and challenges are briefly reviewed
such as the potential combination of the CIGS layer to form tandem solar
cells (Blanker et al., 2016; Chae et al., 2016; Elbar et al., 2015; Elbar and
Tobbeche, 2015; Guchhait et al., 2017; Lee et al., 2018; Moon et al.,
2015; Shen et al., 2018; Todorov et al., 2016, 2015; Werner et al., 2018;
Yamaguchi et al., 2018).

2. Fabrication of CIGS-based solar cells

The CIGS-based solar cells can be fabricated on both rigid and flex-
ible substrates by various vacuum and non-vacuum techniques. For
example, co-evaporation (Repins et al., 2008), physical vapor deposition
(PVD) (He et al., 2019), pulsed laser deposition (PLD) (Tsai et al., 2013),
chemical vapor deposition (CVD) (Park et al., 2003), metalorganic
chemical vapor deposition (MOCVD) (Choi and Lee, 2007), electron
beam deposition (EBD) (Venkatachalam et al., 2008), molecular beam
epitaxy (MBE) (Nakada et al., 1999), and sputtering (Delahoy et al.,
2004; Kushiya et al., 2001) are vacuum techniques that can be utilized to
fabricate CIGS-based solar cells. CIGS solar cell fabrication starts with
the deposition of the electrical back contact layer on the substrates and
later finished by the coating of the window layer which is primarily
deposited using vacuum deposition methods, while, the n-buffer layer
can be coated using both vacuum and non-vacuum techniques (Choi and
Lee, 2007; Delahoy et al., 2004; He et al., 2019; Kushiya et al., 2001;
Nakada et al., 1999). The vacuum techniques can be distinguished by
how the material is deposited. Specifically, the material can be depos-
ited element by element with several stages of deposition (Choi and Lee,
2007; Nakada et al., 1999; Repins et al., 2008) or by direct deposition,
where, we can deposit the CIGS and other component layers in a single
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step (Chen et al., 2014; Delahoy et al., 2004; Kushiya et al., 2001; Tsai
et al., 2013). Using co-evaporation (e.g., PVD, MOCVD, and MBE tech-
niques), the CIGS layer growth can be achieved in several steps of de-
positions at various rates with a constant Se flux. The growth of CIGS in
several steps is essential to achieve a grading composition and a Cu-poor
layer on the CIGS surface. This can be achieved by the separated
deposition of In and Ga with Cu and also by controlling the amount of Cu
in the first and last stages of deposition (Ramanujam and Singh, 2017).
Of note, such graded composition to obtain a graded bandgap and Cu-
poor interface to reduce recombination are important to enhance cell
efficiency. This aspect will be explained in the next section. Neverthe-
less, a single steps process is essential to time and cost-efficiency. Spe-
cifically, PLD and sputtering can be completed by a single process due to
the unavailability of multiple element sources (Chen et al., 2014;
Delahoy et al., 2004; Kushiya et al., 2001; Tsai et al., 2013). The CIGS
can be directly grown by evaporating a quaternary CIGS target that is
made from the fine composition of a Cu-In-Ga powder in the constant Se
environment. Using PLD, CIGS can be produced only in a small area;
thus, this method is only suitable for lab-scale (Chen et al., 2014; Tsai
et al.,, 2013). The sputtering method can produce large CIGS areas,
which are suitable for industrial production (Delahoy et al., 2004;
Kushiya et al., 2001). Though high-quality samples can be obtained by
vacuum deposition, these approaches have several disadvantages such
as high cost and time consumption and poor uniformity over a large area
owing to a cosine flux distribution, which results in a sharp change in
film composition and lower Se incorporation (Kaelin et al., 2004;
Ramanujam and Singh, 2017). Vacuum methods are more efficient if the
cells are fabricated without a vacuum break in a full-stack deposition
tool (He et al., 2019). However, almost all deposition methods require a
post-selenization process (Chen et al., 2017b). Thus, the vacuum has to
be broken to perform additional selenization in rapid thermal processing
or reactive annealing to achieve the optimal formation of CIGS
composition.

The cost of production and complex vacuum processes compels re-
searchers to develop low-cost and simple non-vacuum methods (Adel
et al., 2016; Badgujar et al., 2015; Chen et al., 2017a, 2017b; Kaelin
et al., 2004; Kuo et al., 2016; Lee et al., 2011; Liu et al., 2012). The non-
vacuum techniques are better in and stoichiometric control and material
utilization, require low energy input and exhibit high compatible pro-
cessing compared to the vacuum techniques (Badgujar et al., 2015; Chen
et al., 2017a; Kuo et al., 2016; Lee et al., 2011; Liu et al., 2012). Non-
vacuum techniques can be used in a two-step process, for example,
deposition or printing of the CIGS precursor layer at low temperature
and then followed by the selenization process at high temperature (Adel
et al., 2016; Badgujar et al., 2015; Chen et al., 2017a; Kaelin et al., 2004;
Kuo et al., 2016; Lee et al., 2011; Liu et al., 2012). Moreover, according
to the deposition process, the first step to obtaining the precursor layer
can be classified into electroless deposition (chemical bath deposition
and electrodeposition) (Adel et al., 2016; Kaelin et al., 2004) and par-
ticulate/solution deposition (spin/spray coating and paste coating;
screen/inkjet printing, doctor-blade coating, and curtain coating)
(Badgujar et al., 2015; Chen et al., 2017a; Kuo et al., 2016; Lee et al.,
2011; Liu et al., 2012). In the electroless deposition, the precursor layer
is deposited using complexing agents to decrease all individual precur-
sor element potentials or make them similar to each other (Adel et al.,
2016; Kaelin et al., 2004; Ramanujam and Singh, 2017). Whereas, in the
particulate/solution deposition, the precursor material is initially
reduced to the particulate form with the desired stoichiometry. Thus, the
material can be deposited directly by a liquid binder as a transfer media
onto a substrate at specific substrate temperatures (Badgujar et al.,
2015; Chen et al., 2017a; Kaelin et al., 2004; Kuo et al., 2016; Lee et al.,
2011; Liu et al., 2012). Particulate materials can be prepared by several
methods such as solution precipitation, laser pyrolysis, and laser abla-
tion (Adel et al., 2016; Kaelin et al., 2004). After the deposition using
both electrodes and particulate/solution depositions, the CIGS layer is
performed by sintering the precursor layer in a controlled Se atmosphere
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(Kaelin et al., 2004). Recent work using a non-vacuum-based route has
been developed in our laboratory, namely the hot injection method. We
found that by relatively simple preparation and low-cost, we have suc-
cessfully grown a high-quality CIGS layer which comparable with pre-
vious work of CIGS fabricated by other techniques (Dewi et al., 2020).

The particulate/solution techniques are commonly used deposition
of non-vacuum techniques. Wherein, large-scale production with high
speed, less material waste, and low cost can be realized. However, the
efficiency is not sufficiently high because of high series resistance at the
electrical back contact and CIGS interface (Kaelin et al., 2004; Ram-
anujam and Singh, 2017). In general, the quality of the samples syn-
thesized by the non-vacuum techniques is not as good as the vacuum
techniques which reflect the low cell efficiency. Nevertheless, a non-
vacuum technique offers wider avenue and relatively easy to develop
the physics and chemical structures of the CIGS based-solar cell to
enhance efficiency. For instance, simply tuning compositions of the Cu,
In, Ga and the amount of doping during synthesizing of CIGS precursor,
controlling the Se composition during the selenization process, as well as
modifying the surface structure of the CIGS layer by heat treatments
(Han et al., 2012; Kuo et al., 2016; Ramanujam and Singh, 2017; Sun
et al., 2017).

We have compiled the efficiency of CIGS based solar cells fabricated
using various techniques as shown in Fig. 1. The fabrication techniques
used to grow the CIGS layer have enormous effects on cell efficiency.
Despite the complicated process of the vacuum techniques, the CIGS
based solar cell fabricated by using this method possesses cell efficiency
up to 20% (Contreras et al., 1999; Reinhard et al., 2013; Repins et al.,
2008). In general, the cell efficiency of CIGS based solar fabricated by
vacuum techniques has higher cell efficiency compare to non-vacuum
techniques due to better crystallinity of the CIGS layer. Nevertheless,
the efficiency of the cell fabricated by non-vacuum techniques can be
increased in numerous ways. For instance, the efficiency of the cell
fabricated by electrodeposition can be raised to 15.4% by adding the In
and Ga compositions thus annealed at high temperature (Bhattacharya
et al., 2000). The efficiency of the cell fabricated by ink printing also can
be optimized by femtosecond-laser annealing treatment which can be up
to 11.05% cell efficiency (Chen et al., 2017a). Moreover, the efficiency
of the cell fabricated by the doctor’s blade coating also can be increased
by up to 13.6% by controlling the Ga composition (Kapur et al., 2003).
We will discuss the physics and chemical structures modification related
to composition grading, doping, selenization, and surface morphology of
the CIGS based solar cell in more detail in the next sections.

22
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Fig. 1. The efficiency of CIGS based solar cell fabricated using various tech-
niques. The fs-LA stands for femtosecond annealing process and LP-PLA is
liquid-phase pulsed laser ablation. (Bhattacharya et al., 2000; Brown et al.,
2012; Chen et al., 2017a; Delahoy et al., 2004; Guo and Liu, 2012; He et al.,
2018; Kaelin et al., 2004; Kapur et al., 2003; Liu et al., 2013; Nakada et al.,
1999; Park et al., 2018; Repins et al., 2008).

Solar Energy 207 (2020) 1146-1157

3. Tuning optical and electronic properties by structural
engineering

The optical and electrical bandgaps of the CIGS absorber and
multilayer components are essential to obtain desirable efficient solar
cells. This relates to optimum bandgap for a CIGS is approximate ~1.14
eV as the activation energy for an electron to jump from the valence
band to the conduction band. Absorber bandgap of 1.4 eV is required to
absorb the solar spectrum and the CIGS efficiency decreases when the
bandgap is higher (Ramanujam and Singh, 2017). The CIGS bandgap
can be tuned by changing the intrinsic structure and of the multilayer
structure of the solar cells (Asaduzzaman et al., 2016; Bhattacharya and
Ramanathan, 2004; Cai and Qi, 2015; Chirila et al., 2013; Han et al.,
2012; Heriche et al., 2016; Ishizuka et al., 2011; Kushiya, 2004; Liao
etal., 2013; Liu et al., 2011; Malitckaya et al., 2017; Nakada et al., 2004;
Puyvelde et al., 2014; Salomé et al., 2013; Shirakata, 2017; Su et al.,
2011; Sun et al., 2017). As shown in Fig. 2, we separated the structural
manipulation into two parts, intrinsic (orange) and extrinsic (purple)
regions. The substrate and electrical back contact (green) are essential
for the indirect tuning of the intrinsic structure of the cell by the
incorporation of Na into the CIGS layer from the soda-lime glass (SLG)
substrate, which can improve the optical and electric properties of CIGS
(Asaduzzaman et al., 2016; Ramanujam and Singh, 2017; Repins et al.,
2008; Salomé et al., 2013; Sun et al., 2017).

In the intrinsic region, manipulation of the band gap can deal with
tuning of the Cu/Ga/In composition to obtain a graded bandgap to
improve the optical and electronic properties (Asaduzzaman et al.,
2016; Ramanujam and Singh, 2017; Repins et al., 2008). Specifically, at
the CIGS/buffer interface, band bending causes the conduction band
grading offset. Thus, if the Ga concentration is high, minor carrier
collection from the CIGS absorber reduces. The grading conduction band
profile can be tuned by decreasing the Ga atoms diffusion on the surface.
Therefore, it is important to vary Ga concentration carefully to achieve
the right bandgap with high efficiency. Moreover, doping by an alkali
metal such as Li, Na, K, Rb, and Cs or doping by Zn, and Sn can be used to
manipulate the bandgap of the CIGS absorber layer (Asaduzzaman et al.,
2016; Chirila et al., 2013; Malitckaya et al., 2017; Puyvelde et al., 2014;
Salomé et al., 2013; Shirakata, 2017; Sun et al., 2017). In addition to the
incorporation from the soda-lime glass (SLG) substrate, Na doping can
be achieved using an additional buffer layer before the CIGS layer
deposition (Salomé et al., 2013; Sun et al., 2017). It is well known that
doping Na and Zn can increase the free carrier density of the CIGS
absorber layer (Asaduzzaman et al.,, 2016; Chirila et al., 2013;
Malitckaya et al., 2017; Salomé et al., 2013; Shirakata, 2017; Sun et al.,

CIGS absorber
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Fig. 2. Bandgap diagram of CIGS-based solar cells. The optimization of solar
cell efficiency can be obtained by manipulating the bandgap structure using
structural engineering.
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2017). Besides, doping Na improves the texturing of the CIGS
morphology, which increases cell efficiency (Malitckaya et al., 2017;
Salomé et al., 2013; Sun et al., 2017). Similarly, K doping modifies the
CIGS surface morphology and facilitates diffusion of Cd in the Cu-
depleted surface, which results in the improved quality of the CIGS/
CdS interface (Chirila et al., 2013; Malitckaya et al., 2017). Modification
of the CIGS surface morphology is essential for enhancing cell efficiency
(Han et al., 2012; Ishizuka et al., 2011; Liao et al., 2013; Liu et al., 2011;
Su et al.,, 2011). These goals require research, which includes the
modification of the morphology into nanotip arrays to tune the optical
properties of CIGS (Liao et al., 2013; Liu et al., 2011).

Furthermore, the bandgap can be manipulated by modifying the
structure of the multilayer components of the cells. For example, the
influence of Cd in CdS, which is known as a donor that induces n-type
doping of the absorber surface region, modifies the bandgap at the
surface of CIGS. The choice of a proper n-buffer layer is interesting for
research, wherein, CdS is the best choice for the n-type buffer layer,
although Cd is toxic (Ramanujam and Singh, 2017; Repins et al., 2008).
Nevertheless, Cd-free layers, such as Zn(O, S, OH)x and Zn(O, S), have
been used as an n-buffer layer, wherein, its high bandgap can improve
the blue response of the solar cells (Bhattacharya and Ramanathan,
2004; Kushiya, 2004; Kushiya et al., 2001; Ramanujam and Singh,
2017). The decrease in the CdS layer thickness and the combination with
window layers, such as ZnO, can be used to minimize CdS usage
(Bhattacharya and Ramanathan, 2004; Kushiya, 2004; Kushiya et al.,
2001; Ramanujam and Singh, 2017). CIGS is a promising material for
tandem solar cells because of its tunable bandgap. The combination of
CIGS with organic and inorganic solar cells yields different bandgap
energies induce wider energy regions of the solar spectrum that can be
converted into electricity, therefore the cell efficiency increases (Bailie
et al., 2015; Blanker et al., 2016; Chae et al., 2016; Elbar et al., 2015;
Elbar and Tobbeche, 2015; Guchhait et al., 2017; Kaigawa et al., 2010;
Lee et al., 2018; Moon et al., 2015; Nakada et al., 2006; Nanayakkara
et al., 2017; Schmid et al., 2010; Shen et al., 2018; Todorov et al., 2016,
2015; Werner et al., 2018; Xiao et al., 2010; Yamaguchi et al., 2018).

3.1. Intrinsic structure

Many attempts to enhance cell efficiency of CIGS-based solar cells
have been made such as double bandgap grading engineering (Asa-
duzzaman et al.,, 2016; Ramanujam and Singh, 2017; Repins et al.,
2008), doping (Asaduzzaman et al., 2016; Chirila et al., 2013;
Malitckaya et al., 2017; Puyvelde et al., 2014; Salomé et al., 2013;
Shirakata, 2017; Sun et al., 2017), and control of the surface structure/
morphology (Han et al., 2012; Ishizuka et al., 2011; Liao et al., 2013; Liu
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et al., 2011; Su et al., 2011). The CIGS absorber layer development is
important due to its main contribution to light absorption. CIGS is a
ternary compound p-type semiconductor that belongs to the I-III-VI,
family and crystallizes with the structure of tetragonal chalcopyrite
CuXYs (X = In, Ga, Al, and Y = Se, S), as shown in Fig. 3a. The lattice
parameter is related to the In/Ga composition of ¢ = 56-58 A x=0-1)
anda =1.1-1.15 A (x = 0-1), which is known as tetragonal distortion
that originates from Cu-Se, Ga-Se or In-Se bonds. The variation of In/
Ga composition induces an alteration in the bandgap (Ramanujam and
Singh, 2017). Thus, the optical bandgap can be tuned to match the solar
spectrum to improve open-circuit voltage (Voc). Tuning the bandgap to
change the conduction band offset is referred to as bandgap grading,
wherein, the bandgap increases from 1.04 eV to 1.7 eV when Ga replaces
all In. this graded bandgap composition can reduce recombination losses
and improve the electronic properties. In the CIGS layer, the high-
efficiency solar cells can be achieved with the (Cu)/(In + Ga) ratio in
the range of 0.88-0.92 and low Ga atomic ratio [Ga/(Ga + In)] around
0.26. The number of defects in the CIGS layer increases with Ga content.
In order to obtain high Voc and efficiency, Ga concentration has to be
carefully varied to obtain a wider bandgap > 1.14 eV (Ramanujam and
Singh, 2017). The backside grading can increase carrier collection and
short-circuit current density (Jsc) and decreases the recombination of
bulk/surface at the back contact interface created by Ga grading. A
graded bandgap of CIGS films can be fabricated by the deposition of CIS/
CGS bilayer or CGS/CIS/CGS trilayer systems (Noikaew et al., 2018).

Bandgap grading can reduce recombination losses and ensure a
highly efficient collection of charge carriers. Besides, doping is another
way to enhance cell efficiency by manipulating the chemical composi-
tion of CIGS (Asaduzzaman et al., 2016; Chirila et al., 2013; Malitckaya
et al., 2017; Puyvelde et al., 2014; Salomé et al., 2013; Shirakata, 2017;
Sun et al., 2017). In this article, doping is categorized into direct and
indirect doping. Indirect doping includes external structural manipula-
tion, which will be discussed in the next section. Direct doping by adding
an impurity to CIGS helps develop the CIGS performance; however, this
method is less popular than indirect doping facilitated by substrates (i.e.,
Na doping) (Asaduzzaman et al., 2016; Salomé et al., 2013; Sun et al.,
2017), n-buffer (i.e., Cd doping) (Nanayakkara et al., 2017), and addi-
tional layers such as a window layer (i.e., Zn doping) (He et al., 2019).
Direct doping can be realized by adding an impurity during or after the
CIGS growth. The addition of impurity after the CIGS layer process is
known as post-deposition treatment (PDT), can be executed by evapo-
rating the impurities under a selenium atmosphere on top of the CIGS
layer, as depicted in Fig. 3b (Chirila et al., 2013; Malitckaya et al.,
2017).

Alkali metals such as Li, Na, K, Rb, and Cs can tune the physical

RbF-PDT
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CsF-PDT
Sb layer SP solvent |
°Na,S ¢ Zn
evaporation evaporation
MoNa layer

2010 2011 2012 2013 2014 2015 2016 2017 2018

Publication year

Fig. 3. (a) Crystal structure of CIGS. (b) Different roles of light and heavy alkali metal doping on the CIGS layer. (c) Compilation of CIGS solar cells with doping and
its sources (Asaduzzaman et al., 2016; Chirila et al., 2013; Jackson et al., 2016, 2011; Malitckaya et al., 2017; Mansfield et al., 2015; Pianezzi et al., 2014; Puyvelde
et al., 2014; Salomé et al., 2013; Shin et al., 2011; Shirakata, 2017; Sun et al., 2017).
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properties of CIGS, which enhance cell efficiency; this has been
confirmed theoretically and experimentally (Chirila et al., 2013;
Malitckaya et al., 2017). Na element is a common impurity that en-
hances the performance of CIGS (Asaduzzaman et al., 2016; Repins
et al., 2008; Salomé et al., 2013; Sun et al., 2017). The doping with the
light element (Li, and Na) and heavy elements (Rb and Cs) alkali metals
differently impact the structure of CIGS, while, K has effects that are
similar to both alkali metal types (Malitckaya et al., 2017). Li and Na
prevail as impurities in the grain interior and prefer to occupy Cu sites as
substitutional neutral impurities or as positively charged impurity pairs
via the interstitial migration mechanism that increases Cu depletion due
to the out-diffusion of Cu and the in-diffusion of the dopant (Malitckaya
et al., 2017). Whereas, the heavy metal like Rb and Cs can make sec-
ondary phases formation with Se and In close to the surface. The
morphology of the buffer surface can be improved by these secondary
phases can improve by enabling alignment of the band. Moreover, they
have large energy band gaps which can improve the electrical properties
of the device. Besides, it is reported that doping of K relieves Cd diffusion
in the Cu-depleted of the CIGS layer, which improves the CIGS/CdS
interface quality and lowers optical losses, which yield cell efficiency of
up to 20.4% (Chirila et al., 2013; Malitckaya et al., 2017). In addition to
alkali metals, several other impurities (e.g., Sb and Zn) have been added
to enhance cell efficiency. The Sb element is used to promote the growth
of the preferred grand structure of CIGS film under relatively low-
temperature conditions and to improve carrier concentration and the
lifetime of the solar cells (Mansfield et al., 2015; Puyvelde et al., 2014).
Moreover, the Zn can be used to control carrier concentration where Zn
can be formed as an acceptor to yield the ZnCu donor, which makes the
CIGS film into n-type. The three-stage deposition process was used to
obtain the correct composition of Zn to achieve a p-type CIGS absorber
layer with high carrier concentration. As previously reported, Zn-doped
CIGS exhibits an efficiency of 14.5% and Voc of 0.658 V (Shirakata,
2017). We summarize the recent work on CIGS doped by alkali metals,
Zn, and Sb using various techniques such as using an SLG substrate,
introduction of an additional buried layer under CIGS, PDT, evaporation
during the growth process, and the addition of solvent in the Cu-In-Ga
precursor, as depicted in Fig. 3c.

To enhance the cell performance, manipulation of surface
morphology of the CIGS absorber layer can be adopted (Han et al., 2012;
Ishizuka et al., 2011; Liao et al., 2013; Liu et al., 2011; Su et al., 2011).
This approach relates to the deposition of n-type buffer layers on CIGS
layer, elemental inter-diffusion at CIGS/buffer layer interfaces, presence
of ordered vacancy defects, compositional deviation, and formation of
concomitant p—n junction (Han et al., 2012; Ishizuka et al., 2011; Su
etal., 2011). Controlling Se flux during CIGS growth affect the CIGS film
morphology, and thus concomitant solar cell parameters such as Voc and
fill factor (FF) due to the high reactivity of the Se (Ishizuka et al., 2011).
Moreover, the morphology of CIGS also depends on the preparation of
Cu-In-Ga precursors; wherein, the rough surface of the precursor results
in the CIGS thin films with poor crystallinity (Han et al., 2012; Su et al.,
2011). A smooth surface of the CIGS film increases reflection, which is
lowering cell efficiency (Liao et al., 2013; Liu et al., 2011). Therefore, an
antireflection layer is deposited to reduce Fresnel reflections on the cell
surface. However, the thermal mismatch between the antireflection
layer and the device can affect reliability degradation. Thus, the nano-
structured surface morphology of CIGS was developed to overcome this
problem. Specifically, a surface with conical arrays was created that has
a perfect antireflection effect on the gradual refractive index, as depicted
in Fig. 4 (Cai and Qi, 2015; Liao et al., 2013; Liu et al., 2011; Shirakata,
2017). The nanostructured CIGS film surfaces such as with nanopillar,
nanowire, and nanotip arrays induce the broadband and characteristics
of omnidirectional light-harvesting that enable shorter carrier diffusion
length and higher electron-hole pairs to increase the cell efficiency.
Compared with conventional CIGS (Fig. 4a), nanostructured CIGS
(Fig. 4b) is predicted to possess lower reflectance and higher light ab-
sorption, which enhances cell efficiency even with a much thinner
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Flat CIGS Nanostructured CIGS

Fig. 4. Modification of the surface structures and morphology of CIGS thin-film
affects its optical properties. (a) Propagation of incident light through a flat
surface of the CIGS layer (ng > n). (b) Multiple internal reflections of incident
light in the nanostructures CIGS layer. Adopted from (Cai and Qi, 2015).

thickness. Besides, an elemental concentration modification at the
nanostructured surface decreases shunt leakage and series resistance
and facilitates the formation of CdCu at the CdS/CIGS interface to
enhance carrier extraction, interface passivation, and better adhesion of
the window layer on the surface (Liao et al., 2013; Liu et al., 2011).

3.2. Extrinsic structure

The optimization of the cell efficiency can be reached by manipu-
lating the optical and electronic structure through the external compo-
nents of the cell, which consists of the substrate/electrical back contact/
CIGS/n-buffer layer/electrode window layer, as depicted in Fig. 5a. In
the basic configuration of CIGS-based solar cells, the n-buffer layer
transmits light to the CIGS where the electron-hole pairs are mainly
generated. Electrons within the diffusion length region are flowing from
p-type CIGS absorber layer to the n-type semiconductor buffer layer and
collected by the electrode window layer due to a built-in electric field
across the p-n junction interface. In the same way, holes are flowing
from the n-type semiconductor layer to the p-type absorber CIGS layer
and collected by the electrical back contact. An additional mechanism in
the CIGS layer is the back surface field (BSF) created by a Ga gradient
that reflects electrons toward the p-n junction and finally collected by
the n-type electrode BSF reduces minor carrier recombination at the
interface of CIGS and the electrical back contact side of the device
(Ramanujam and Singh, 2017; Singh et al., 2014; Yadav et al., 2015).

This mechanism can be maintained by choosing proper multilayer
parts to obtain a desirable structure with optimal performance. The
substrates have a significant impact on the performance of CIGS
(Badgujar et al., 2015; Kessler and Rudmann, 2004; Ye et al., 2010). For
example, the incorporation of indirect doping of Na from the SLG sub-
strate affects the inter-diffusion kinetics of Cu-In-Ga-S elements, which
result in a changed gradual bandgap profile and electronic properties, as
shown in Fig. 5b. The incorporation of Na elements improves solar cell
parameters (Voc, FF, and efficiency) due to reducing interfacial
recombination, wherein, Na bonded to Se as NaSey creates acceptor-type
Naln defects and forming NaCu defects, which reduces Cu-deficient at
the surface and charge compensation. The Na reduces the number of
compensating Vg donors, which enhances hole concentration and im-
proves conductivity. Moreover, Na tends to react with oxygen and in-
duces the indium oxide and gallium oxide formations. Na also can
decrease the Ga/(Ga + In) ratio toward the center of the CIGS layer and
created a gradient of bandgap in the CIGS layer. Moreover, the defect
formation by Na improves the structural morphology of CIGS grains
(Ramanujam and Singh, 2017).

Similar to the SLG substrate, CdS, which is usually used as an n-buffer
layer, can also improve cell performance by the incorporation of Cd
through CdS/CIGS interfaces, as shown in Fig. 5c. Cd penetrates far into
the CIGS, which results in an n-type material and leads to the formation
of a buried p-n homojunction in CIGS. However, the incorporation of Cu
possibly occurs and results in CusSe, which is a known semiconductor
with a bandgap of approximately 1.2 eV (He et al., 2019). The CuzSe
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Fig. 5. (a) Basic multilayer structures of the CIGS thin film-based solar cell. (b) SLG substrate can enhance the efficiency of CIGS by incorporating Na. (c) Incor-

poration of Cd and Cu into the CIGS and CdS buffer layers, respectively.

which is present on the surface is highly conductive lowers the cell
performance. The CuaSe segregation into the grain boundaries lowers
shunt resistance, which results in low solar cell parameters. Therefore,
the performance of Cu-rich CIGS solar cells is limited because of high
interface recombination (Depredurand et al., 2011; Deprédurand et al.,
2014). In contrast, Cu-poor CIGS solar cells reduce recombination be-
tween the CIGS/CdS interface, which results in better solar cell effi-
ciency. In addition, controlling of the thickness of the CdS layer is also
important because the CdS buffer layer absorbs high energy photons
(~2.4 eV) and transmits them into CIGS where the electron-hole pairs
are primarily generated. Thus, it is essential to growing a thick CdS
layer. Nevertheless, the growth of a CdS layer followed by the intrinsic
and doped ZnO layer, which acts as a window layer, can be adopted to
reduce the production cost by eliminating toxic Cd waste (Heriche et al.,
2016). Using this approach, the use of CdS can be reduced by decreasing
the CdS layer thickness, while ZnO works as an emitter layer. The in-
fluence of Cd as a donor can be achieved by incorporation Zn impurities,
which are also donors. Several materials have been tested as sub-
stitutions for the CdS layer such as (Zn, Mg)O/Zn(O, S, OH), ZnS(O, OH),
Zn(0, S), ZnSe, and InyS3 (Bhattacharya and Ramanathan, 2004;
Kushiya, 2004; Kushiya et al., 2001). Specifically, a Zn-based buffer
layer improves Jsc owing to its wider bandgap of Eg = 3.3 eV compared
to that of CdS bandgap with Eg = 2.42 eV (Bhattacharya and Ram-
anathan, 2004; Kushiya, 2004). However, when there is an excess of
oxygen during the deposition of the ZnO layer, this results in the for-
mation of CdZnSO in the CdS layer, which leads to the uncontrollable
diffusion of Zn further into the CIGS and in increased junction recom-
bination and reduced Voc (He et al., 2019).

As previously mentioned, indirect doping used to enhance the effi-
ciency of the cell can be realized with a buried layer. The control of Na
incorporation into the CIGS film can be achieved by an additional layer
before growing CIGS. Hence, it is possible to use flexible and rigid metal,
polymer, or ceramic substrates. Moreover, additional layers, such as
antireflection and grid layers, need to be account to obtain high effi-
ciency. MgF, is frequently used as an antireflection layer to reduce and
to control Fresnel reflection between air and the solar cells device
interface (Bhattacharya and Ramanathan, 2004; Ramanujam and Singh,
2017; Repins et al., 2008).

Mo is a common material that is used as an electronic back contact.
Besides, Mo can act as a reflector to reflect unused light back into the
absorber. Wherein, an improvement in reflection from the backside is
exhibited when a Mo-Cu alloy is employed as a rear contact
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(Ramanujam and Singh, 2017). Some groups use ITO as back contacts,
which performs almost the same function as metallic Mo back contacts.
ITO substrate is also common material that is used as a front contact, and
its function is similar to that of a grid (Nakada et al., 2004). The depo-
sition of a nontransparent but highly conductive metal grid is employed
to collect current and to reduce resistive losses from the low conduc-
tivity top contact and to reduce long-term effects of degradation
(Bhattacharya and Ramanathan, 2004; Li et al., 2011; Repins et al.,
2008). An increase in efficiency has been shown in CIGS-based solar
cells with a grid compared to that of the ungrided design (Li et al., 2011).

Fig. 6a shows the possible construction of flexible CIGS-based solar
cells. Flexible CIGS-based solar cells are a special topic that will be
briefly explained in this section. Roll-to-roll manufacturing of CIGS-
based solar cells on flexible substrates enables the use of compact,
high throughput, low thermal budget, lightweight, and more flexible
deposition equipment than that used to produce rigid cells. Currently,
flexible substrates can be categorized into metal, polymer, and ceramic.
Metals can withstand very high deposition temperatures. However, they
usually have high density, are rough, and contain metallic impurities;
yet, their reactivity with Se is essential for the solar cell performance.
Therefore, the deposition of intermediate dielectric barrier layers is
usually used to provide electrical insulation between electrical back
contact and the substrate, serves as a diffusion barrier against impurities
from the substrate, and also lowers surface roughness. Compared to
metals, polymer substrates have lower roughness and density; polymers
are lightweight and electrically insulating. Polymer substrates cannot
sustain high temperatures above 500 °C, which is commonly used for
high-efficiency cell manufacturing. Thus, low-temperature deposition is
used, which results in a low-quality absorber layer. To solve this prob-
lem, ceramics, such as zirconia, have been recently used as a flexible
substrate with solar cell efficiency that is comparable to those on
enameled mild steel, stainless steel, or Ti (Dhere et al., 2004; Kessler and
Rudmann, 2004; Qiao et al., 2018; Reinhard et al., 2013). However,
their brittle behavior may be an issue for large-scale industrial
production.

We compile a recent work on CIGS-based solar cells grown on flex-
ible and rigid substrates in Fig. 6b. Wherein, the cell efficiency of using
flexible substrates can be similar to that of the cells fabricated on rigid
substrates. Development and optimization can be conducted to obtain
higher efficiency flexible CIGS-based solar cells, such as by direct and/or
indirect doping to the CIGS layer, selective intermediate dielectric bar-
rier layers, manipulation of CIGS surface morphology, control of CIGS
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Fig. 6. (a) Flexible CIGS-based solar cells. (b) The efficiency of the CIGS-based solar cells grown on several substrates (Brémaud et al., 2007; Chirila et al., 2011;
Contreras et al., 1999; Ishizuka et al., 2008; Jackson et al., 2011; Niki et al., 2010; Sun et al., 2017; Tober et al., 2003; Wuerz et al., 2012; Yagioka and Nakada, 2009).

structure orientation, reduction in optical and electronic losses.
Reduction in optical and electronic losses can be done by optimizing the
n-buffer, grid, window, and antireflection layers by adjusting the
bandgap grading (Dhere et al., 2004; Kessler and Rudmann, 2004; Qiao
et al., 2018; Reinhard et al., 2013).

Both intrinsic and extrinsic structure engineering have advantages
and disadvantages. Herein, we compile them in Table 1 for consider-
ation to fabricate a highly efficient CIGS-based solar cell. Particularly, a
CIGS-based tandem solar cell will be explained more specifically in the
next section. Both intrinsic and extrinsic structure engineering is
important to obtain CIGS-based solar cells with magnificent perfor-
mances, even though, they have a disadvantage. By structural engi-
neering using appropriate fabrication techniques, the combination of
various materials, substrates and tandem cells can be carefully selected,
which undoubtedly would lead to high efficiency CIGS-based solar cells
for renewable energy applications.

4. CIGS-based tandem solar cells

The development of tandem CIGS solar cell structure has attracted
attention due to the possibility of overcoming the Shockley—Queisser
limit of single-junction devices (Chae et al., 2016; Moon et al., 2015). As
shown in Fig. 7a, a tandem solar cell consists of the top wide bandgap
and bottom narrow-bandgap cells that absorb the short- and long-
wavelength parts of the light, respectively (Elbar et al., 2015; Elbar
and Tobbeche, 2015). To construct a tandem solar cell, it is essential to
obtain an optimal bandgap combination of a two-junction device
(Todorov et al., 2016). CIGS is an excellent material for tandem cells
since it has tunable bandgap which depends on composition ratios.
However, it is difficult to attain high-efficiency tandem cells such as
monolithic CIGS/CIGS tandem cells due to the destruction of the subcell
during the manufacture of the top cell (Chae et al., 2016; Moon et al.,
2015). Nevertheless, numerous types of solar cells can be combined with
CIGS cells, such as other thin film-based solar cells such as CIGS/
CuGaSe, (CGS) and CdZnTe/CIGS, which have theoretical efficiencies of
25% and 26%, respectively (Elbar et al., 2015; Elbar and Tobbeche,
2015). Moreover, organic-based solar cells include dye-sensitizer solar
cells (DSSCs) (Chae et al., 2016; Moon et al., 2015), perovskite-based
solar cells (Guchhait et al., 2017; Shen et al., 2018; Todorov et al.,
2016, 2015), and Si-based solar cells (Blanker et al., 2016; Lee et al.,
2018) which have been recently produced in tandem with CIGS-based
solar cells.

For example, CIGS cells satisfy the requirements for the top cell to be
formed with the CIGS cell, where the fabrication of this tandem solar cell
is simple and cheap due to the inexpensive raw materials. The tandem
solar cell of CGS/CIGS was reported to achieve a high Voc of 1.18 V with
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an efficiency of 7.4%. However, the current density mismatch between
the subcells induces a significant current loss. Therefore, an optimiza-
tion by adjusting the thickness of the top CGS absorber is conducted to
obtain an optimal value of Jsc (Elbar et al., 2015; Elbar and Tobbeche,
2015). Moreover, the CIGS cell can be combined with a DSSC subcell,
wherein, the optical bandgaps of DSSC of around 1.7 eV and CIGS of
around 1.1 eV are suitable for use as top and bottom cells, respectively.
From the manufacturing costs viewpoint, tandem solar cells of DSSC/
CIGS would be competitive solar cells due to their simple preparation
using solution processes. In DSSC/CIGS, the voltage and power con-
version efficiency was enhanced compared to that of single-junction
solar cells, and the cells showed an efficiency of 15%. However, the
use of iodide electrolyte leads to a serious instability issue because of the
p-n junction corrosion (Diantoro et al., 2019; Moon et al., 2015). Thus,
deposition of the ZnO/TiO, protection layer, a soft deposition of Pt on
the CIGS subcell, and substitution of the cobalt complex-based redox
electrolyte have been conducted to overcome this problem (Chae et al.,
2016; Moon et al., 2015).

Perovskite solar cells are ones of high efficient solar cells with high
absorptivity, small exciton binding energy, and long carrier diffusion
lengths (Guchhait et al., 2017; Maryam et al., 2019a). However,
corrosion and decomposition are the main issues that need to be over-
come in perovskite solar cells similar to DSSC solar cells. Nevertheless,
perovskite solar cells can be used as a tandem to enhance cell efficiency.
Perovskite/CIGS solar cells have excellent potential because they can be
manufactured on lightweight and flexible substrates, which offers wider
applications and low-cost production (Maryam et al., 2019a, 2019b;
Todorov et al., 2016). The recently reported efficiencies for the me-
chanically stacked two-terminal (2-T) and 4-T perovskite/CIGS tandem
solar cells are 19% and 23.9%, respectively (Guchhait et al., 2017; Shen
et al., 2018; Todorov et al., 2015). Moreover, another approach for
tandem solar cells is to produce a-Si:H/CIGS solar cells. The construction
of a top a-Si:H subcell does not affect the bottom CIGS subcell because it
requires a low-temperature deposition, which can be as low as 200 °C.
Using the top a-Si:H solar cell, the CIGS cell thickness can be reduced
more, and the use of expensive material, In, can be minimized. Yet, the
use of CdS/AZO window layers in CIGS cells can be replaced because a-
Si:H can absorb a large part of the photons with its wide bandgap.
Recently, a-Si:H/CIGS showed a Voc = 1.23 V, FF = 64%, Jsc = 9.95
mA/cm?, and an efficiency of 7.9% (Blanker et al., 2016; Lee et al.,
2018). We compiled the performance of several CIGS-based tandem
solar cells as shown in Fig. 7b, and we observed a gap between simu-
lation and experimental results. It is also important to note that the cell
efficiency of the CIGS-based tandem solar cells was influenced by the
architectures. The efficiency of CIGS-based tandem solar cells can be
explored more by modifying the crystalline and electronic structures of
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Table 1

Advantages and disadvantages of intrinsic and extrinsic structures engineering.

Structures
engineering

Advantages

Disadvantages

Intrinsic structure
Composition
grading

Doping

Surface
morphology

Extrinsic structure
Substrate
Rigid

Flexible

n-buffer layer
CdS

Zn-based

Additional layers
Back contact

e Improves optical and
electronic properties
(Ramanujam and Singh,
2017)

Usable to obtain a precision
and desire bandgap of the
CIGS layer (Ramanujam and
Singh, 2017)

Improvement of CIGS layer
microstructures lead to better
cell performances (
Asaduzzaman et al., 2016;
Chirila et al., 2013; Malitckaya
et al., 2017; Puyvelde et al.,
2014; Ramanujam and Singh,
2017; Salomé et al., 2013;
Shirakata, 2017; Sun et al.,
2017)

Improve the antireflection
effect (Cai and Qi, 2015;
Liao et al., 2013; Liu et al.,
2011; Shirakata, 2017)
Modify elemental
concentration of CIGS layer
surfaces result in better
interface junction with n-
buffer as well as a window
layer (Liao et al., 2013; Liu
et al., 2011)

SLG substrate is known as the
most efficient substrate to
achieve high-efficiency cell of
20.3% through the
incorporation of Na into a CIGS
layer (Asaduzzaman et al.,
2016; Ramanujam and Singh,
2017; Repins et al., 2008;
Salomé et al., 2013; Sun et al.,
2017)

High throughput, low-thermal
budget, lightweight and more
flexible in use than rigid cells (
Reinhard et al., 2013)

Cd in CdS known as the best
donor inducing n-type doping
on the CIGS layer surface (
Ramanujam and Singh, 2017;
Repins et al., 2008)

Improves the Jsc and the blue
response of the solar cells due
to its wider band gap compare
than CdS (Bhattacharya and
Ramanathan, 2004; Kushiya,
2004)

e Mo metal has good electrical
properties and low
resistivity. Mo also can
reflect unused light back
into the CIGS layer
(Ramanujam and Singh,
2017)

Complicated fabrication and
difficulty in control Cu and Ga
+ In compositions (Noikaew
et al., 2018; Ramanujam and
Singh, 2017).

Uncontrollable doping leads to
the formation of detrimental
impurity (He et al., 2019)

o Difficult to obtain
homogenous
nanostructured CIGS film
over a large area

e Damage elemental
composition and difficult to
control composition grading

The cell cannot be modified for
wider applications,
particularly for flexible solar
cell

Metal substrate are high
density, rough, contain
metallic impurities, and
very reactive with Se
(Reinhard et al., 2013)
Narrow thermal deposition
for polymer substrate

The ceramic substrate is
brittle (Ishizuka et al., 2008;
Reinhard et al., 2013)

Toxic (Ramanujam and Singh,
2017; Repins et al., 2008)

Uncontrollable Zn
incorporating on CIGS layer
leads to the formation of
detrimental impurity (He

et al., 2019)

Mo metal layer is expensive
and required an additional
fabrication process. Mostly
metal substrate is high
density and rough
(Reinhard et al., 2013)

ITO has poor electric
properties compare to Mo
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Table 1 (continued)
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Structures
engineering

Advantages

Disadvantages

Buried layers

Window

Antireflection

Grid

Tandem solar cells

Thin film

Organic

Perovskite

Si-based

e ITO glass is transparent,
cheaper than Mo metal and
acts as an electrode substrate
thus no need additional
bottom electrode layer
reducing fabrication cost
(Nakada et al., 2004)

e A layer containing alkali
metals elements, Zn and Sb
act as doping seeds (indirect
doping) to improve CIGS
layer microstructures leads
to better cell performances
(Bhattacharya and
Ramanathan, 2004;
Kushiya, 2004; Mansfield
et al., 2015; Puyvelde et al.,
2014; Shirakata, 2017)

e Dielectric barrier layer acts
as electrical insulation
between the metal substrate
and electrical back contact
and serves as a diffusion
barrier against impurities
from the substrate (Herz
et al., 2002)

Zn-based window layer reduce

CdS usage and avoid front

surface recombination (

Bhattacharya and

Ramanathan, 2004; Kushiya,

2004; Kushiya et al., 2001;

Ramanujam and Singh, 2017)

Control and reduce Fresnel

reflection at the interface

between air and the device to
enhance the efficiency (

Bhattacharya and

Ramanathan, 2004;

Ramanujam and Singh, 2017;

Repins et al., 2008)

To collect current, reduce

resistive losses and reduce

long-term effects of
degradation (Bhattacharya and

Ramanathan, 2004; Li et al.,

2011; Repins et al., 2008)

Typical thin-film solar cell such
as CGS cell is particularly
satisfied due to ease fabrication
and less usage of raw material
components (Elbar et al., 2015;
Elbar and Tobbeche, 2015)

Low manufacturing costs due
to its simple preparation of
solution processes (Chae et al.,
2016; Moon et al., 2015)

Its excellent cell efficiency
compare than other class solar
cells results in magnificent cell
efficiency combination (
Guchhait et al., 2017; Shen

et al., 2018; Todorov et al.,
2016, 2015)

Construction of top Si-based
sub-cell will not affect the
bottom CIGS sub-cell because it
requires a low-temperature
deposition, especially when we
use monolithic tandem
construction (Blanker et al.,
2016; Lee et al., 2018)

metal. ITO has no elemental
doping such as Na as SLG
does, hence required direct
or indirect doping to CIGS
layer

Uncontrollable Zn
incorporating on CIGS layer
leads to the formation of
detrimental impurity (He

et al., 2019)

e Leads to the formation of
detrimental impurity (He
et al., 2019)

Reliability degradation due
to thermal mismatch with
the device

Reliability degradation due
to thermal mismatch with
the device (Liao et al., 2013)

o Reliability degradation due
to thermal mismatch with
the device

Damage of the bottom sub-cell
during the construction of the
top sub-cell, especially when
we use monolithic tandem
construction (Elbar et al.,
2015; Elbar and Tobbeche,
2015)

Corrosion and decomposition (
Chae et al., 2016; Moon et al.,
2015)

Corrosion and decomposition

e Tunnel recombination
junction lowering electrical
performance

e Cracks and a poor roughness
induced by the grains of
CIGS bottom sub-cell, espe-
cially when we use mono-
lithic tandem construction
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Fig. 7. (a) Basic structure of the tandem solar cell. (b) Compilation of cell efficiencies (theoretical and experimental) related to different tandem materials with CIGS-
based solar cells using a variety of tandem architectures (Bailie et al., 2015; Blanker et al., 2016; Brémaud et al., 2007; Chae et al., 2016; Chirila et al., 2011;
Contreras et al., 1999; Elbar et al., 2015; Elbar and Tobbeche, 2015; Guchhait et al., 2017; Ishizuka et al., 2008; Jackson et al., 2011; Kaigawa et al., 2010; Lee et al.,
2018; Moon et al., 2015; Nakada et al., 2006; Nanayakkara et al., 2017; Niki et al., 2010; Schmid et al., 2010; Shen et al., 2018; Tober et al., 2003; Todorov et al.,
2016; Werner et al., 2018; Wuerz et al., 2012; Xiao et al., 2010; Yagioka and Nakada, 2009; Yamaguchi et al., 2018).

both subcells, as previously explained. Hence, the efficiency of CIGS-
based tandem solar cells can approach the theoretical results.

As a comparison, we also compile the efficiency of the CIGS based
solar cell with and without tandem as shown in Fig. 8. Superior cell
efficiency could be obtained in tandem solar cell, however, degradation
of the cell efficiency also could be emerged in this manner. The effi-
ciency of single CIGS-based solar cells even higher than CGS/CIGS and a-
Si:H/CIGS tandem solar cells presumably due to electronic in-
homogeneity (Ramanujam and Singh, 2017; Werner et al., 2005). The
fabrication process of subsequent subcell tandem on top of CIGS could
be affected by the uncontrollable of the chemical structure of the CIGS
layer. While a corrosion issue still the main problem when we use
organic and perovskite as subcell tandem.

The performance of CIGS-based tandem solar cells also depends on
their architecture, which is categorized on the interconnection scheme,
and the fabrication sequence, for example, monolithic, mechanical
stacks, and spectrum-split architecture as shown in Fig. 9a, the mono-
lithic stack integration consists of a bottom and top cells, which are
connected with 2-T in a series configuration. The subcells are electrically

27 °
Single c-Si
24
Perovskite/CI%S
o

- 21 Single CIGS_ Single perovskite
X
= 18
§ Single DSSC
S 15 °
(5] )
F 12 DSSC/CIGS {
w : " )

9 Single CGS cGs/cIGS Single a-Si:H

°
o
6 AIGS/CIGS a-Si:H?CIGS
CIS/CIGS
o
3

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Publication year

Fig. 8. A comparison of single CIGS-based solar cell and CIGS-based tandem
solar cells. (Blanker et al., 2016; Chae et al., 2016; Fortes et al., 2018; Green
et al., 2018; Kaigawa et al., 2010; Moon et al., 2015; Nakada et al., 2006; Niki
et al., 2010; Repins et al., 2008; Schmid et al., 2010; Shen et al., 2018; Upad-
hyaya et al., 2013; Xiao et al., 2010; Yang et al., 2018; Young et al., 2003).

connected by a conductive layer to transport the carrier through a
recombination layer or tunnel junction from one subcell to another. The
operation of these tandem devices may be similar to that of a single solar
cell, which simplifies their integration in a photovoltaic system and
requires fewer materials, fewer deposition steps, and lowers the pro-
duction costs. Besides, only a single substrate is required, which reduces
the series resistance losses associated with large-area modules. Based on
Kirchhoff’s law, the subcells that are connected in series equal to the
sum of two subcells resulting in high voltages, which reduces resistive
losses in the photovoltaic system. However, the series connection im-
plies the need for current matching, which limits the choices of materials
in terms of bandgaps and makes the system more sensitive to spectral
variations. Thus, current matching must be maintained to have a similar
photocurrent because the device performance will be lowered by the cell
with the lowest current. Moreover, because the top cell is deposited onto
the bottom cell, the fabrication process should not affect the bottom cell
and the bottom cell must prevail as a suitable substrate with a suitably
textured surface (Todorov et al., 2016; Werner et al., 2018; Yamaguchi
et al., 2018).

Furthermore, a mechanically stacked tandem device consists of
vertically stacked two separately developed cells. This architecture al-
lows independent fabrication and offers process simplicity. Thus,
optimal fabrication conditions that are specific to each subcell can be
used (e.g., cell polarity, substrate roughness, process temperature, and
solvents). Mechanically stacked devices can be divided into two designs
depending on how many terminals are used, i.e., 2-T (Fig. 9b) and 4-T
(Fig. 9¢). Wherein, the tandem is constructed as a stack of two sepa-
rate top and bottom cells but they are connected in series with two-
terminal or four-terminal outputs, respectively. This tandem is not
required for interfacial tunneling, and the current matching condition
can be controlled, which widens the choice of the subcell bandgap and
makes the system less sensitive to spectral variations. However, for this
architecture to be viable, it is essential to minimize parasitic absorption
and fabrication costs because of the doubling of all power electronics
such as cables, inverters, and bifacial transparent electrodes (Todorov
et al., 2016; Werner et al., 2018; Yamaguchi et al., 2018).

Moreover, spectrum-split architecture, which is still a 4-T device that
consists of a dichroic filter or mirror that splits the light toward the high
and low bandgap subcells, is shown in Fig. 9d. The subcells are operated
individually without any integration. Thus, the choice of subcells and
manufacturing system integration is very flexible. Each device can be
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Fig. 9. Architectures of tandem solar cells. (a) 2-T monolithic, (b) 2-T mechanically stacked, (d) 4-T mechanically stacked, and (d) 4-T spectrum-split.

optimized as if it operates as a stand-alone solar cell and only requires
two conductive layers, which reduces the optical loss. This architecture
is advantageous because standard cells can be used without any specific
adaptation. However, the added cost of a filter limiting the economic
viability of this tandem architecture for nonconcentrated photovoltaic
systems, and 4-T limits the commercial potential of this architecture.
Such approaches, which require solar tracking, cannot efficiently collect
the diffuse light present in the solar spectrum, and their performance
may be strongly affected by module soiling. An example of this type of
tandem has been demonstrated with an impressive total potential effi-
ciency of 28% (Todorov et al., 2016; Werner et al., 2018; Yamaguchi
et al., 2018).

5. Summary

The optimization and development of CIGS-based solar cells allow
achieving over 20% light-to-electricity efficiency using various vacuum
and non-vacuum deposition techniques. Modifications of intrinsic and
extrinsic structures to tune their functionalities are considered to be a
general route to enhance cell efficiency. The fabrication of intrinsic
structures, such as composition grading, can be realized by controlling
the amount of Cu-In-Ga on the front and back parts of the CIGS layer
during the deposition process. Thus, similar to composition grading, the
addition of an impurity or doping, such as alkali metal elements, during
or after the deposition is a promising way to enhance cell efficiency.
Doping can be achieved by incorporating the elements from substrates
or an additional buried layer below the CIGS layer. Composition grading
and doping are essential to manipulate the physical properties and
structures of the CIGS layer. The structure and morphology of CIGS are
important not only for tuning the optical and electrical bandgaps but
also for the formation and elemental inter-diffusion at the n-buffer
layer/CIGS interfaces, the concomitant p-n junction formation, the
presence of compositional deviations or ordered vacancy defects and
reflection behavior. Therefore, nanostructured CIGS presents a solution
in addition to optimizing the proper n-buffer, window, grid, and anti-
reflection layers. The choice of combination layers with the CIGS layer
and modification of the extrinsic structure of the CIGS solar cell remains
interesting research areas. Other promising research directions include
the search for a CdS free layer, a transparent conducting layer, substi-
tution of the famous SLG substrate to avoid the presence of an additional
Na buried layer, and the selection of proper flexible substrates. The
flexible substrate is essential for the development of functionalities of
CIGS solar cells. Thus, several types of flexible substrates (e.g., metal,
polymer, and ceramic) have been tested to grow flexible CIGS-based
solar cells. The development of extrinsic structures leads to the crea-
tion of CIGS-based tandem solar cells. The combined cell efficiency in-
creases because the wider energy regions of the solar spectrum can be
converted into electricity. Several architectures of tandem solar cells (e.
g., monolithic and mechanical stacks, and spectrum-split architectures)
can be used to achieve high conversion efficiencies. Besides, CIGS solar
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cells can be combined with other solar cells (e.g., thin-film, DSSC,
perovskite- and Si-based solar cells) to realize an excellent tandem solar
cell.
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