
IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

Impact of Gold Mining on Physical Properties of Inceptisols in Muaro
Sijunjung, West Sumatra Indonesia
To cite this article: Yulnafatmawita et al 2020 IOP Conf. Ser.: Earth Environ. Sci. 515 012041

 

View the article online for updates and enhancements.

This content was downloaded from IP address 110.137.102.65 on 22/06/2020 at 13:14

https://doi.org/10.1088/1755-1315/515/1/012041


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

International Conference of Sustainability Agriculture and Biosystem

IOP Conf. Series: Earth and Environmental Science 515 (2020) 012041

IOP Publishing

doi:10.1088/1755-1315/515/1/012041

1

 

 

 

 

 

 

 

Impact of Gold Mining on Physical Properties of Inceptisols in 

Muaro Sijunjung, West Sumatra Indonesia 

Yulnafatmawita1, S Yasin2, E F Kurnia1, and Z A Haris3, 4 

1 Soil Physics Laboratory, Agriculture Faculty, Andalas University, Padang, 25163 
2 Soil Chemistry Laboratory, Agriculture Faculty, Andalas University, Padang, 25163 
3 Post Graduate Student at Environmental Science, Padang State University, 

Campus Air Tawar, Padang 
4 Putra Indonesia University (UPI) – YPTK, Campus UPI Lubuk Begalung, 

Padang 

 

Corresponding author’s email address: yulnafatmawita@agr.unand.ac.id 

Abstract. Open mining causes some problems to the soil properties both in situ and ex situ or 

in the environment.  A research on the effect of gold mining on physical properties of 

Inceptisols was conducted in Nagari Muaro, District of Sijunjung West Sumatra Indonesia.  

The disturbed and undisturbed soil was sampled at the ex gold mining, and at the previous land 

use, especially rubber plantation and grassland.  Parameters analysed were soil texture, bulk 

density (BD), hydraulic conductivity (HC), soil organic matter (SOM), soil aggregate stability 

(SAS), and water content.  Based on laboratory analyses, it was found that gold mining process 

changed soil physical properties at the top 0-40 cm soil in Muaro Sijunjung. It decreased SOM 

content, soil HC, SAS index, TP, and increased soil BD or hardness compared to the previous 

land use.  The soil must be rehabilitated to increase its productivity and to anticipate 

environmental pollution.   
Keywords: Ex-Gold Mining, Inceptisols, Land Use, Muaro Sijunjung, Soil Physical Properties 

1. Introduction 

Mining activity especially open mining degrades the soil properties as well as the environment.  This 

is due to the activity of land clearance and soil excavation into deeper depth in the profile.  The soil, in 

general method, is just piled up in one area without separating between the fertile top soil and the 

subsoil or even with the parent materials.  This process degrades soil properties, especially the 

physical properties.  Furthermore, ex mining land without vegetation also zeroes CO2 capture from the 

atmosphere.  Since the area of ex mining increases by time, the concentration of CO2 in the 

atmosphere keeps accumulating causing global warming.  

Soil physical degradation due to open mining primarily causes erosion during heavy rainfall, 

especially in sloping areas.  Erosion does not only have impact soil in situ, but it also influences 

environment due to the toxic elements and the sedimentation in water bodies.   

Exposing mining soil, especially, deeper soil materials having toxic elements to soil surface have 

become a big problem, either for plant growth or for other living organisms, including human beings.  

Besides derived from the soil material itself, the toxic elements could be also abundant due to 
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chemical reagents used by people for gold processing during mining.  One of the chemical used in 

gold processing is mercury (Hg). 

Mercury as one of heavy metal affects plant growth.  Mondal et al [1] reported that 0.5-1.0 ppm Hg 

within salt solution suppressed shoot, root, and nodulation growth of Vigna radiata L. At higher level 

(1.0-1.5 ppm), mercury was accumulated within shoot > root > leaf > nodule of the Vigna radiata L.  

Furthermore, Patra and Sharma [2] suggested that the possible causes of mercury toxicity are due to 

the permeability alteration of the cell membrane, reactions of sulphydryl (-SH) groups with cations, 

affinity for reacting with phosphate and active groups of ADP or ATP, and replacement of essential 

ions, especially major cations.  

Injured cereal seeds due to organic mercury materials caused abnormal germination and 

hypertrophy of the roots and coleoptile [2].  Ling et al [3] found that seed germination, root and 

coleoptile growth of the vegetable species were significantly reduced by mercury.  Among the species 

treated, Brassica oleracea was the most sensitive, while B. campestris was the most resist plants to 

mercury pollution.  Mercury stress more affected the coleoptiles growth and root elongation.  

However, all the treated species were significantly suppressed when the Hg2+ concentration increased 

to 0.8 mM. 

Furthermore, mercury as a heavy metal has high particle density that is (13.55 gcm-3).  If it is mixed 

with soil materials, it will increase soil bulk density, since soil material only has particle density 2.65 g 

cm-3in average.  Therefore, high Hg concentration in soil will affect the bulk density.  The higher the 

Hg concentration in soil is the bigger the soil BD or the soil is more compacted.  Bulk density affects 

soil total pore.  Total pore inversely correlates to the soil bulk density.  Less percentage of soil total 

porosity impacted on decrease of the soil hydraulic conductivity. Compact soil inhibits root growth 

and development which is due to unbalance water-air availability.   

Since the soil was turned into upside down, the texture of the soil generally is not as it is expected 

for plant growth.  It often turns into coarser, because the material is excavated far below the solum of 

the soil.  In addition, more gravels and stones on soil surface becomes barrier for soil cultivation.  The 

materials are not only cause the soil to be hard to till, but they also inhibit seed germination, root 

growth and development.  It means that physical properties of ex gold mining needs to evaluate in 

order to find out the best way in conducting the reclamation process. 

2.  Methods 

2.1 Research Site 

This research was conducted in Muaro Sijunjung, West Sumatra Indonesia (0o18’43’-1o41’46’ S and 

100o46’50”-101o53’50” E), on which people did gold mining illegally (Figure 1).  This area is located 

between 109 and 1,200 m above sea level (asl), with annual rainfall was > 2,000 mm, and monthly 

average was > 100 mm.  

Gold mining in the area was still semi-traditional. They just bought pieces of land from the local 

people and excavated it without concerning conservation or standard rule for mining.  The mining type 

used was mostly open mining.  Pasca mining, the miners just left the land without any treatment to 

recover the degraded land.   

2.2  Soil Sampling 

There were 4 different types of land use found, those were grassland, the mined grassland, rubber 

plantation, the mined rubber plantation.  These area is wide enough, therefore they are quite 

representative to be sampled.  The method of this research employed was purposive sampling, in 

which soil was sampled randomly at each of the four types of land use.  Site selection was based on 

land use and soil order.  In each land use (site), soil was sampled from original and the ex.mining land 

use. Two soil depths (0-20 and 20-40 cm) were sampled for disturbed, undisturbed, as well as 
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undisturbed aggregate soils with three replications for each land unit.  Undisturbed soil samples were 

taken using metal rings sizing 7 cm in diameter and 4 cm in height.  Soil order selected for sampling 

was Inceptisols. 

 

Figure 1.  Map of soil sampling in Muaro Sijunjung, West Sumatra, Indonesia 

Soil samples were brought and processed in soil laboratory, Agriculture Faculty, Universitas 

Andalas Padang.  Disturbed soil samples were air-dried, and then ground before being sieved using 2 

mm sieve for texture and 0.5 mm for organic carbon analyses.  Undisturbed aggregated soil samples 

were air dried before they were analysed.   

2.3  Soil Analysis 

Undisturbed soil samples were for bulk density (BD) and total pore analyses (using gravimetric 

method) as well as for hydraulic conductivity (using constant head permeameter method based on 

Darcy’s Law).  Soil bulk density (ρb) was measured by using gravimetric method, and the data was 

calculated using the formula (1).  Soil particle size analyses was conducted using sieve and pipette 

method [4] and the texture class was determine using textural triangle.  Soil aggregate stability was 

analysed using dry and wet sieving method [5].  Soil organic carbon content was analysed using wet 

oxidation method [6] and calculated by using formula (2).  Then, SOM content was conversed into the 

amount (Mg) within 40 cm soil depth per hectare (ha) by using formula (3). 

ρb ( g m-3) =  (1) 

Where, ρb is soil bulk density ( g m-3), DW is soildry weight (Mg), and Vt is total volume of soil 

(m3). 
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% SOM = 1.72 x % SOC (2) 

Where, SOM is sol organic matte and SOC is soil organic carbon. 

 (3) 

Where, SOM is sol organic matter (%), ρb is soil bulk density(Mg m-3), d is depth from soil surface 

(m), and Ha is area 10,000 m2. 

Data resulted were analyzed statistically using t-test, by comparing between original and the ex-

mining site within land use.  The general formula of the T-test with a separate sample is as follows: 

 

 

 

 

 

3. Results and Discussion 

Mining activities left some problems to the soil in the mining land as well as to the environment.  

Among the soil problem, especially soil physical properties, found was soil texture or particle 

sizedistribution, soil organic matter (SOM) content and stock, soil bulk density, soil total pore, 

aggregate stability and soil hydraulic conductivity. 

3.1  Soil Particle Size Distribution and Texture Class 

Based on Table 1 it is seen that mining conducted either at rubber plantation or at grassland in Muaro 

Sijunjung changed the soil particle size distribution.  Mining activity increased sand content either at 

0-20 cm or at 20-40 cm depth for both types of land use.  However, compared to the secondary forest 

land use, the sand content of the soil at forest was much higher either at the top 0-20 cm or at the 20-

40 cm depth.  A soil with high sand percentage means that the soil has low soil water retention, and 

therefore plant available water.  Water is a basic need for plant growth.  Low plant available water in a 

soil causes the crop growing on it will suffer from water stress.  It seemed that the secondary forest 

type in the research site was the land being abandon due to problematic soil.    

Open mining activities mixed soil layer between the top and the subsoil.  The subsoil and soil 

parent materials appeared on the soil surface, while some of the top soil was buried.  Therefore, the 

sand particles increased on the top soil.  Even, in the ex. mining land top soil was mixed with gravels 

and stones.  However, while during texture analyses, the particles ≥ 2 mm were discarded, because 

they are not considered as soil. 

Soil texture was dominated by finer particles, silt and clay, particles for all types of land use. Since 

texture is a soil property which is relatively stable, high sand particles in the unmined land seems to be 

the intrinsic property of the land.  As the soil was classified into Inceptisol or developing soil, it still 

had high coarse particles.  Based on texture triangle, the soil texture belonged to silty clay at the top 20 

cm soil depth for all types of land use and then varied at the deeper  (20-40 cm) soil depth. 

Table 1. Particle size distribution of soil under several land use at 0-20 cm and 20-40 cm depths 

Land Use 
Soil Particle Size Distribution Texture 

Class Sand (%) Silt (%) Clay (%) 

0-20 cm depth  

Forest 43.00 (±3.47) 35.55 (±2.59) 21.51 (±1.87) Clay  Loam 

Rubber Plantation 10.20 (±2.07) 48.20 (±4.74) 41.60 (±2.25) Silty Clay 

Mined  Rubber Plantation 12.46 (±0.86) 46.26 (±2.92) 41.26 (±2.15) Silty Clay 

Grass Land 3.00 (±0.67) 51.40 (±1.77) 45.60 (±2.31) Silty Clay 

Mined Grass Land 13.43 (±1.15) 43.83 (±2.26) 47.63 (±3.19) Silty Clay 
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20-40 cm depth  

Forest 42.6 (±3.08) 28.32 (±1.76) 33.36 (±2.18) Clay  Loam 

Rubber Plantation 8.26 (±1.19) 56.33 (±2.14) 35.40 (±1.10) Silty Clay Loam 

Mined  Rubber Plantation 12.23 (±1.35) 37.80 (±4.27) 49.96 (±3.35) Clay 

Grass Land 3.20 (±0.89) 44.40 (±2.72) 52.40 (±3.25) Silty Clay 

Mined Grass Land 21.60 (±1.24) 39.20 (±2.80) 39.20 (±3.81) Clay Loam 

Soils under rubber plantation and grassland were dominated by silt and clay particles.  However, 

mining activities caused higher sand content of the soil for both mining sites.  This was due to mixing 

process between top and sub soil even with parent materials of the soils.  As reported by Wiskandar 

[7] that soil texture of ex. coal mining in Jambi was dominated by sand (38%) at the top 20 cm soil 

depth.  The texture was classified into coarse texture soil, loam. 

Texture is a soil property affecting soil characteristics. It especially influences other soil physical 

properties such as soil bulk density and total pore besides affecting soil chemical and biological 

properties.  Soil BD (Fig. 2a) tended to linearly increase (R2=0.45) and total pore (Fig. 2b) linearly 

decrease (R2=0.46) as the sand percentage increased. 

  

Figure 2.   Relationship between sand particle 

percentage and BD of soil under several types of 

land use at 0-20 cm and 20-40 cm depth in Muaro 

Sijunjung 

Figure 2.   Relationship between sand particle 

percentage and TP of soil under several types of 

land use at 0-20 cm and 20-40 cm depth in Muaro 

Sijunjung 

High coarse soil particles have high soil bulk density and less soil pores.  As the more the solid 

materials, the higher the soil weight within a specific volume unit of the soil.  Therefore, the bulk 

density becomes higher.  As bulk density inversely relates to soil pores, high bulk density  causes low 

soil total pores [8,9].   

3.2  Soil Bulk Density (BD) and Total Pore (TP) 

Based on Fig. 3a it is seen that soil bulk density tended to increase as rubber plantation and grassland 

were mined.  It followed the tendency of coarse (especially sand) particles in both of the exmining 

sites.  Higher sand particle percentage led to increase in soil BD.  Coarse particles had low percentage 

of total pores, therefore it has higher weight at a certain unit volume than those at unmined sites. 
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Figure 3. (a) Bulk density and total pore of land 

use at 0-20 cm and 20-40 cm depth in Muaro 

Sijunjung 

Figure 3. (b) Bulk density of soil under several 

types of land use at 0-20 cm and 20-40 cm depth 

in Muaro Sijunjung 

Soil bulk density only increased by 7% at the top 20 cm and 1% at 20-40 cm soil depth as the 

rubber plantation was mined and then abandoned.  The same tendency was also found under grassland.  

The soil BD at grassland was significantly higher for both depths compared to that at rubber 

plantation.  Under normal condition, bulk density of soil under rubber plantation was higher, 

especially at the top 20 cm soil, than that at grassland.  This was found to be true since soil surface 

under rubber plantation was routinely passed by farmers when extracting the rubber solution (latex).  

Additionally, dispersed latex during collecting it into soil also affects in solidifying process of the soil 

particles.   

Soil BD increased by 7% as the rubber plantation and grassland were mined.  If it is compared to 

forest land use, the soil BD increased by 32 and 31% at original and by 42 and 41% at mined sites, 

respectively at rubber plantation and grassland, on the top 20 cm soil depth.  While at soil depth 20-40 

cm, the soil BD between original and mined sites were not significantly different, but it increased by 

28% as forest land use was changed into rubber plantation either for the original or for the mined site.  

At grassland, the soil BD increased by 26% and 33% as the forest land use was changed into grassland 

and mined grassland, respectively. 

On the other hand, soil TP decreased by land use change from rubber plantation and grassland at 

both soil depths as they were mined (Fig. 3b).  Under rubber plantation, soil TP decreased by 6.7% at 

top 20 cm and by 3% at 20-40 cm soil depth, while under grassland the TP decreased by 3% and 10% 

for 0-20 and 20-40 cm soil depth respectively at the mined sites. It seems that soil TP as well as the 

BD under both mining sites were not significantly different even though they came from different 

types of land use having different BD and TP values. 

Compared to forest, soil total pore decreased by 21 and 12% at rubber plantation and grassland, and 

then decreased again by 26 and 25% as both types of land use was mined, respectively at the top 20 

cm soil depth.  Furthermore, at the 20-40 cm soil depth, the soil TP decreased by 20 and 15%as the 

forest was converted into rubber plantation and grassland, then further decreased by 21 and 23% as 

both types of land use were mined, respectively. 

3.3  Soil Organic Matter Content and Stock 

SOM stock at the top 40 cm soil profile under mining sites decreased by 35 % and 47% from previous 

rubber plantation and grassland, respectively.  If compared to forest land use, mining caused SOM 

stock decreased by 44% and 56% respectively for mined rubber plantation and mined grassland. As 

rubber plantation and grassland were mined, the SOM content decreased by 62% and 74% at 0-20 cm 

depth and by 53% and 60% at 20-40cm depth, respectively, compared to forest land use. 
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Figure 4. (a) Soil organic matter content and 

stock of land use at 0-20 and 20-40 cm soil 

depth in Muaro Sijunjung 

Figure 4. (b) Soil organic matter content under 

several types of land use at 0-20 and 20-40 cm soil 

depth in Muaro Sijunjung 

However, it just decreased by 39% and 56% at 0-20 cm and by 35% and 43% at 20-40 cm depth, 

respectively from previous land use. The highest SOM stock within 40 cm depth of soil profile was 

found under forest and then followed by rubber plantation and grassland types land use. 

Soil organic matter content under mining sites was much lower than those in the previous land use, 

rubber plantation and grassland, at both depths (Fig. 4a).  However, the concentration at both sites was 

not significantly different.  This was due to the fact that the physical condition of the soil after being 

mined in which the soil surface having higher SOM content was buried or mixed with the subsoil 

having lower SOM content.   

 At unmined sites, SOM content at the top 20 cm soil was much higher than that at the 20-40 cm 

soil depth.  Soil OM content at 20-40 cm soil depth was approximately 74 % at rubber plantation and 

62 % at grassland of that at the top (0-20 cm) soil depth.  Higher SOM content at the top soil was 

found to be true since SOM source derived from the above ground, especially litter from vegetation 

and animal residue, was much higher than that from the below ground.  The SOM source below 

ground was only derived from root death, root exudatess, and soil organisms.  The percentage was 

much lower than that above ground SOM source.  As reported that higher SOM content was found at 

top soil than the deeper layer [10]. 

Soil organic matter content at mining site was influenced by the SOM content of the previous sites.  

As the rubber plantation had higher SOM content than the grassland, the mining site also had higher 

SOM than the grassland mining site.  Land use change from forest to rubber plantation and grassland 

decreased the SOM stock by 38-28%, 41-30%, respectively at 0-20 and 20-40 cm soil depth.  As 

rubber plantation and grassland were mined, the SOM stock decreased by 62% and 74% at 0-20 cm 

depth and by 53% and 60% at 20-40cm depth, respectively, compared to the forest land use.   

As the SOM content was conversed into the weight in a unit volume, it was found that the amount 

of SOM stock at the top 40 cm soil profile of those 4 types of land use was presented in Fig. 4b.  The 

amount of SOM stock was much lower (<50%) at the mining sites than that at the previous sites.  

Total SOM at rubber plantation was 465.54 T/ha in the top 40 cm soil depth.    This value was much 

higher than that at grassland (305.29 T/ha) > mined rubber plantation (174.09 T/ha) > mined grassland 

(135.31 T/ha).   

Lower SOM stock recovered on the top 40 cm soil of mined sites was due to the fact that the depth 

soil being excavated was much deeper than 40 cm.  Therefore, some of the SOM moved to the soil 

below 40cm. 
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Figure 5. (a) Relationship between SOM content 

and BD as well as TP of land use at 0-20 cm and 

20-40 cm depth in Muaro Sijunjung 

Figure 5. (b) Relationship between SOM content 

and BD of soil under several types of land use at 

0-20 cm and 20-40 cm depth in Muaro Sijunjung 

The SOM stock decreased by 72.61% as the rubber plantation was mined, while it decreased by 

55.68% at the grassland.  The decrease in SOM stock was mainly due to mixing soil materials from 

the top and the deeper soil depth during mining process.  This was due to the mining activity 

conducted by people was generally illegal.  There was no rule they had to follow.   

The highest SOM stock within 40 cm depth of soil profile was found under forest and then 

followed by rubber plantation and grassland type of land use.  SOM stock at the top 40 cm soil profile 

under mining sites decreased by 35 % and 47% from previous rubber plantation and grassland, 

respectively.  If compared to forest land use, mining caused SOM stock decreased by 44% and 56% 

respectively for mined rubber plantation and mined grassland. 

However, the SOM stock at mined sites just decreased by 39% and 56% at 0-20 cm and by 35% 

and 43% at 20-40 cm depth, respectively from both rubber plantation and grassland types of land use.  

Decrease in SOM had decreased soil aggregate stability and increased soil bulk density.   

Open mining without following the rules will cause soil degradation such as environmental 

pollution either in situ or ex situ.  Erosion is the highest change to happen since the location has high 

annual rainfall.  Based on BMKG data, it was found that the site area had 2299 mm annually and > 

100 mm monthly rainfall in average during the last 10 years (2007-2016).  The highest rainfall reached 

794 mm and the lowest was 15 mm in a month.  This condition was highly dangerous for the area 

around the mining sites. 

3.4  Hydraulic Conductivity and  Soil Aggregate Stability 

Soil hydraulic conductivity between rubber plantation and grassland was significantly different.  

Grassland having lower SOM but lower or better BD than those at rubber plantation, therefore the 

grassland soil was easier to transmit or to pass water.  The rate of the HC was higher on the top (0-20 

cm) than that on the lower (20-40 cm) depth for each types of land use (Fig. 6a).  

At both mining sites, the soil hydraulic conductivity rate was lower than the previous sites.  This 

mostly due to the effect of low soil aggregate stability index, the soil was easily degraded and 

dispersed.  The dispersed particles were blocked the pores resulting in lower soil HC rate. 

5a 
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Figure 6. (a) Soil hydraulic conductivity and 

aggregate stability at 0-20 cm and 20-40 cm 

depth in Muaro, Sijunjung Regency 

Figure 6. (b) Soil hydraulic conductivity under 

selected land use at 0-20 cm and 20-40 cm depth 

in Muaro, Sijunjung Regency 

Soil hydraulic conductivity rate was much higher on the top 20 cm soil then that on the 20-40 cm 

soil depth.  Soil HC at forest land was the highest and significantly different from the others.  

However, at the lower depth it did not show significant difference among them.  This is probably due 

to the effect of sand dominated soil texture and high SOM content at the forest land.  Coarse particles 

having high percentage of macro pore easily transmit water.   

Then, high SOM content at forest land helped stabilizing soil aggregates (Fig. 6b).  Therefore, the 

soil structures was not easily degraded, in other words, it keeps transmitting water well. As reported 

earlier that soil having high SOM content had stabile aggregates [8].  The highest the SOM content the 

highest the rate of hydraulic conductivity of Ultisol in tropical area [11]. Soil HC rate decreased by 

38%, 40%, 60%, and 45%, respectively at rubber plantation, grassland, mined rubber plantation, and 

mined grassland compared to that at forest land use.  As mining sites had higher sand particle content 

(Table 1) having no ability to floccule as well as lower SOM content (Fig.4) functioning in creating 

and stabilizing soil aggregates, the aggregate stability index become low.   

Soil aggregate stability decreased by 19%, 19-21% as forest was converted into rubber plantation 

and grassland, respectively at 0-20 and 20-40cm soil depth.  As rubber plantation and grassland were 

mined, the SAS decreased by 45% at 0-20 cm depth and by 38% and 36% at 20-40 cm depth 

compared to the original types of land use, rubber plantation and grassland, respectively. 

4. Conclusion 

Based on data resulted it could be concluded that the soil physical properties in ex gold mine sites 

were worse than theose of the original (unmined) types of land use.  Mining activity had increased 

sand particles and bulk density (± 7%), decreased total pores (± 3-7%), SOM (± 53-74%), soil 

hydraulic conductivity (38-60%), and soil aggregate stability (36-45%) for both (0-20 and 20-40 cm) 

soil depths compared to the original types of land use.  Compared to the forest type of land use, these 

sol physical properties were quite worse. 
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