Proceedings of the

7th Asia Pacific International Congress of Anatomists

17 - 20 March 2016

Organised by:

Department of Anatomy Yong Loo Lin School of Medicine

CONTENTS

Organizing Committee	
7 th APICA Program	
Welcome Message by Professor P. Gopalakrishnakone, Organising Chairman	The second second
Opening Address by Professor Ho Khek Yu, Vice-Dean, Yong Loo Lin School of Medicine 1	
Affiliated Organizations	
Acknowledgements	
Abstracts	
Plenary Lecturers	4
Symposium Lectures	11
Poster Presentations	E
Authors Index	1
Map of NUS (Kent Ridge Campus)	9

18 Mar-P069

EVALUATION OF ADOPTED WEIGHT DROP DEVICE TO INDUCE CONTUSIVE SPINAL CORD INJURY IN RATS: BEHAVIORAL AND HISTOPATHOLOGICAL STUDIES

Kanyaratana Bamrungsuk¹, Thanaporn Rungruang², Sorachai Srisuma¹, Sompol Tapechum¹,

Kanokwan Tilokskulchai¹, Supin Chompoopong^{2*}

Department of Physiology,² Department of Anatomy, Faculty of Medicine Siriraj hospital, Mahidol University, Bangkok 10700, Thailand.

*Corresponding Author: supin.cho@mahidol.ac.th

Recently, many experimental devices have been designed to construct standardized animal spinal cord injury (SCI) models, because electromagnetic SCI devices are expensive. To evaluate adopted weight drop device inducing contusive SCI, the fixed weight was used and dropped down from varied heights, then followed by behavioral and histopathological studies. Fifteen adult male Sprague Dawley rats were divided into laminectomy (MI) and severe injury (SI) groups. The C5 hemicontusion injury was performed and resulted in the right side hemiplegia and forepaw deficits. Both MI and SI rats showed the clubbing forepaw at 24 h after injury. The skilled locomotion using the horizontal ladder test was analyzed. The SI showed a significant increase in error scores, percentage of total rungs used and decrease in percentage of correct placement when compared to L group, p<0.05. The normal recovered placement (type II) was shown at day 7 after injury but higher numbers in MI than SI group. The somatosensory function using sticker removal test was also analyzed. The SI group showed a significant somotosensory deficit at day 3, 7 when compared to L group, p<0.05. Behavioral deficits were related to histopathological study using H&E counterstained with luxol fast blue staining, the higher degree injury, the larger area of lesion. The lesion was mostly in lateral funiculus related to rubrospinal and lateral surficespinal tract involving skilled movement of forepaw. Results indicate that this rat SCI model is more suitable, imple, reliable and it should be induced as moderate injury for allowing significant recovery of function.

Serwords: Hemicontusion injury, Spinal cord injury

18 Mar-P070

STOPATHOLOGICAL APPEARANCE OF THE BRAIN DUE TO HEAD INJURY AND KETAMINE STOXICATION IN RATTUS NORVEGICUS

Darwin¹ and Rika Susanti²

Departement and ² Forensic Departement, Faculty of Medicine, Andalas University, Padang-Indonesia

brain, comprised of the cortex, cerebellum and brain stemn is the control board for all functions of the body. Traumatic prain injury lead to impairments in physical, cognitive, speech or language and behavioral functioning. The matic brain injury are much more common due to head injuries, whereas non-traumatic injury is an injury occur as a stroke, tumours, infectious diseases, lack of oxygen or toxicity. Ketamin has used as an anesthetic, but it's as a material use in some countries. Overdose that results in a loss of consciousness or a lack of oxygen to the brain can lead manent brain damage.

examine the effects of blunt head injury and ketamine intoxication to the brain tissue damage, we studied the hystological examine of male Rattus Norvegicus brain after getting head injury and ketamin injection. Two groups of eight rats each, a head injury and the other two groups were treated with lethal dose ketamine intraperitoneal. The brain tissue were for hystopathological examination directly after treatmen and four after treatment to assess hemmorhage necrosis, and inflammation. This study was recomended by Research Ethic Committee of Andalas University.

The hemorrhage and congestion in groups with head injury and ketamine intoxication shows a hemorrhage magestion. Its appear that neuron cells become hypercromatic and perivasculer space were edema mainly in gray the hemorrhage and congestion in groups with head injury was higher than ketamine intoxication. The location of proups with head injury were in subarachnoid and parenchym, with erythrocyte in the tissue, whereas in group metamine intoxications, the haemorhage were on intracerebral and subarachnoid. This is due to head injury causes the tissue were taken autolysis, necrosis and inflammation was not seen in the brain tissue of all groups, because the tissue were taken makely and three hours after treatment.

we conclude that head injury and ketamine intoxication causes brain injury in different way

brain injury, head injury, ketamine

Histopathological appearance of the brain due to head injury and ketamine intoxication in rattus norvegicus

Eryati Darwin1 and Rika Susanti2

¹ Histology Departement and ² Forensic Departement, Faculty of Medicine, Andalas University Padang-Indonesia

Background

The brain, comprised of the cortex, cerebellum and brain stemn is the control board for all functions of the body. Traumatic or non traumatic brain injury lead to impairments in physical, cognitive, speech or language and behavioral functioning. A traumatic brain injury are much more common due to head injuries, whereas non-traumatic injury is an injury occur as a result of stroke, tumours, infectious diseases, lack of oxygen or toxicity. Ketamin has used as an anesthetic, but its as a recreational use in some countries. Overdose that results in a loss of consciousness or a lack of oxygen to the brain can lead to permanent brain damage.

Aim of Study

To determine the effects of bluntheadinjury and ketamine intoxication to the brain tissue damage

Methods

Thirty two of male Rattus Norvegicus were divided into four groups, two groups were head injury, and the other two groups were treated with lethal dose ketamine. The brain tissue were prepared for histopathological examination directly after treatment and after death to assess hemmorrhage, congestion, necrosis and inflammation. The appearance is calculated using scores. This study was recommended by Research Ethic Committee of Andalas University.

Results:

The histopathological appearance of brain tissue:

- Groups with head injury shows that a hemorrhage and congestion was higher thanketamineintoxication. The location of hemorrhage were in subarachnoidand parenchym, with erythrocyte in the tissue
- Groups with ketamineintoxication shows the location of hemorrhageandcongestionwere intracerebraland subarachnoid
- Neuron cells become hypercromatic and perivasculer space were edema mainly in gray mate
- No autolysis, necrosis andinflammationseen inthe brain tissueofall groups, because the tissue were taken before inflammatory process occurs.
- Differences in locationhemorrhage is due to head injurycauses direct trauma to the brains blood vessels, whereasketaminepoisoningcauses increasedCO2pressurein the brainsblood vessels

Table: Brain histopathological appearance in heaad injury groups and ketamin intoxication groups

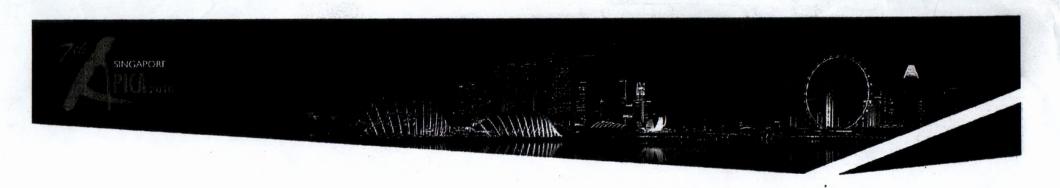

Groups	Hemorrhage scores	Congesti scores	Inflammation	Necrosis
Head Injury	1	1	0	0
Ketamin Intoxication	2	2	0	0

Figure 1: Histopathological appearance of the brain due to head injury (a,), and due to ketamine intoxication (b,c)

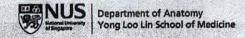
Conclusion

Head injury and ketamine intoxication causes brain damage duehemorrhageandcongestionin different places; in connection with a different mechanism

Certificate of Attendance

This is to certify that

Prof. Dr. Eryati darwin


attended the

7th ASIA PACIFIC INTERNATIONAL CONGRESS OF ANATOMISTS

held in Singapore from 17 March to 20 March 2016

Emeritus Professor Copala Frishnakone,P Chairman

Organizing Committee, 7th APICA 2016

