Lecture Notes in Electrical Engineering 349

Mitsuo Gen Kuinam J. Kim Xiaoxia Huang Yabe Hiroshi *Editors*

Industrial Engineering, Management Science and Applications 2015

Lecture Notes in Electrical Engineering

Volume 349

Board of Series editors

Leopoldo Angrisani, Napoli, Italy Marco Arteaga, Coyoacán, México Samarjit Chakraborty, München, Germany Jiming Chen, Hangzhou, P.R. China Tan Kay Chen, Singapore, Singapore Rüdiger Dillmann, Karlsruhe, Germany Haibin Duan, Beijing, China Gianluigi Ferrari, Parma, Italy Manuel Ferre, Madrid, Spain Sandra Hirche, München, Germany Faryar Jabbari, Irvine, USA Janusz Kacprzyk, Warsaw, Poland Alaa Khamis, New Cairo City, Egypt Torsten Kroeger, Stanford, USA Tan Cher Ming, Singapore, Singapore Wolfgang Minker, Ulm, Germany Pradeep Misra, Dayton, USA Sebastian Möller, Berlin, Germany Subhas Mukhopadyay, Palmerston, New Zealand Cun-Zheng Ning, Tempe, USA Toyoaki Nishida, Sakyo-ku, Japan Bijaya Ketan Panigrahi, New Delhi, India Federica Pascucci, Roma, Italy Tariq Samad, Minneapolis, USA Gan Woon Seng, Nanyang Avenue, Singapore Germano Veiga, Porto, Portugal Haitao Wu, Beijing, China Junjie James Zhang, Charlotte, USA

Mitsuo Gen · Kuinam J. Kim Xiaoxia Huang · Yabe Hiroshi Editors

Industrial Engineering, Management Science and Applications 2015

Editors Mitsuo Gen Tokyo University of Science Tokyo Japan

Kuinam J. Kim Department of Convergence Security Inst. of Creative Advanced Tech., Sci. and Engg. Kyonggi University Suwon-si Korea Xiaoxia Huang University of Science and Technology Beijing (USTB) Beijing China

Yabe Hiroshi Tokyo University of Science Tokyo Japan

ISSN 1876-1100 ISSN 1876-1119 (electronic) Lecture Notes in Electrical Engineering ISBN 978-3-662-47199-9 ISBN 978-3-662-47200-2 (eBook) DOI 10.1007/978-3-662-47200-2

Library of Congress Control Number: 2015938793

Springer Heidelberg New York Dordrecht London © Springer-Verlag Berlin Heidelberg 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media (www.springer.com)

Preface

This LNEE volume contains the papers presented at the International Conference on Industrial Engineering, Management Science and Applications (ICIMSA2015) which was held in Tokyo, Japan on May 26-28, 2015.

ICIMSA2015 received over 350 paper submissions from various countries. After a rigorous peer-review process, 114 full-length papers were accepted for presentation at the conference. This is intended for maintaining the high standards of the conference proceedings.

The conference is intended to bring together the researchers and technologists working in different aspects of Industrial Engineering, Management Science and Applications. In addition to the contributed papers, internationally known experts from several countries were invited to deliver Keynote speeches at ICIMSA2015.

Much of the credit of the success of the conference is due to the topic coordinators who have devoted their expertise and experience in promoting and in general coordination of the activities for the organization and operation of the conference. The coordinators of various session topics have devoted a considerable time and energy in soliciting papers from relevant researchers for presentation at the conference. The Session Chairs of the different session played important role in conducting the proceedings of the session in a timely and efficient manner.

On behalf of the Organizing Committee, we would like to thank Springer LNEE for publishing the proceedings of ICIMSA2015. We also would like to express our sincere and grateful thanks to our Program Committee and Reviewers for providing extra help in the review process. The quality of a refereed volume depends mainly on the expertise and dedication of the reviewers.

Our sincere thanks to the Institute of Creative Advanced Technology, Engineering and Science (iCatse) for designing the conference web page and also spending countless days in preparing the final conference program in time for printing. We would also like to thank the ICIMSA2015 Secretariat and Staff for arranging a large number of the invitation letters and assisting in the various stages of the editorial work. Finally we would like to thank our organization committee for their several months of hard work in sorting out manuscripts from our authors.

We look forward to seeing all of you next year at ICIMSA2016 in Korea.

Mitsuo Gen Fuzzy Logic Systems Institute and Tokyo University of Science, Japan Xiaoxia Huang University of Science and Technology Beijing, China Kuinam J. Kim Kyonggi University, Republic of Korea Yabe Hiroshi Tokyo University of Science, Japan

Organizing Committee

General Chairs

Mitsuo Gen	Fuzzy Logic Systems Institute and Tokyo
	University of Science, Japan
Xiaoxia Huang	University of Science and Technology Beijing,
	China
Kuinam J. Kim	Institute of Creative Advanced Technologies,
	Science and Engineering, Republic of Korea
Yabe Hiroshi	Tokyo University of Science, Japan

Steering Committee

Nikolai Joukov	Chair of IEEE CS STCOS, USA
Borko Furht	Florida Atlantic University, USA
Bezalel Gavish	Southern Methodist University, USA
Kin Fun Li	University of Victoria, Canada

Publicity Chairs

Dan (Dong-Seong) Kim

University of Canterbury, New Zealand

Workshop Chairs

Kuinam J. Kim Donghwi Lee Kyonggi University, Republic of Korea University of Colorado, USA

Financial Chairs

Kyoungho Choi

Institute of Creative Advanced Technologies, Science and Engineering, Republic of Korea

Program Chairs

Adel Hejaaji

Engineering Services Management Limited [ESM LTD] ESSEX, UK

Organizers and Supporters

Institute of Creative Advanced Technologies, Science and Engineering (iCatse) Chinese Management Science Society (CMSS) Korean Industry Security Forum (KISF) Korea Information Assurance Society (KIAS) Kyonggi University University of Science and Technology Beijing Tokyo University of Science River Publishers

Program Committee

Chil-Chyuan Kuo Suksan Prombanpong Ramayah Thurasamy Siana Halim Yves De Smet Marco Aiello Catalina Lucía Alberto Llewellyn C.M. TANG M. Birasnav Enslin Johannes van Rooyen Supachart Iamratanakul Luciana Hazin Alencar Jui-Sheng Chou

Shimpei Matsumoto Ahm Shamsuzzoha Minghai Jiao Masaharu Tsujimoto

Ming Chi University of Technology, Taiwan King Mongkut's University of Technology Thonburi, Thailand Universiti Sains Malaysia, Malaysia Petra Christian University, Indonesia Université Libre de Bruxelles, Belgium University of Groningen, The Netherlands Universidad Nacional de Córdoba, Argentina University of Nottingham Ningbo China, China New York Institute of Technology, USA Tshwane University of Technology, South Africa Kasetsart University, Thailand Universidade Federal de Pernambuco, Brazil National Taiwan University of Science and Technology, Taiwan Hiroshima Institute of Technology, Japan University of Vaasa, Finland Northeastern University, China Tokyo Institute of Technology, Japan

Ahm shamsuzzoha Seren OZMEHMET TASAN Yoshinobu Tamura António Grilo

Fabrizio Maria Maggi V. Cruz Machado Md Mamun Habib Kittisak Jermsittiparsert Adel Hejaaji

Ulrich Reimer

Hardeep Singh Fatemeh Almasi

Yiliu Liu

Ryo HARUNA Ilias Santouridis

Purit Thanakijkasem

Chun-Cheng Lin Michel ALDANONDO Jinho Lee Mojahid F. Saeed Osman

Wasawat Nakkiew

Somlak Wannarumon KIELAROVA Jaekyung Yang Suprakash Gupta Alejandro Escudero-Santana RIKA AMPUH HADIGUNA Andreas Dewald Kit Fai Pun Abdol S. SOOFI El-Houssaine AGHEZZAF Chompoonoot Kasemset Ana Paula Ferreira Barroso Virgínia Helena Arimateia de Campos Machado Antonio Ruiz Molina

Sultan Oaboos University, Oman Dokuz Eylul University, Turkey Yamaguchi University, Japan Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Portugal University of Tartu, Estonia Universidade Nova de Lisboa, Portugal Universiti Utara Malaysia, Malaysia Rangsit University, Thailand **Engineering Services Management Limited** [ESM LTD] ESSEX, UK University of applied sciences St. Gallen, Switzerland Ferozepur College of Engg & Technology, India Amirkabir University of Technology (Tehran polytechnic), Iran Norwegian University of Science and Technology, Norway Kanazawa Gakuin University, Japan Technological Educational Institute (TEI) of Thessaly, Greece King Mongkut's University of Technology Thonburi, Thailand National Chiao Tung University, Taiwan Toulouse University - Mines Albi -, France Korea Naval Academy, Republic of Korea King Fahd University of Petroleum and Minerals, Saudi Arabia Advanced Manufacturing Technology Research Center (AMTech), Chiang Mai University, Thailand Naresuan University, Thailand Chonbuk National University, Republic of Korea Indian Institute of Technology (B H U), India Universidad de Sevilla, Spain Andalas University, Indonesia

University of Erlangen, Germany

The University of the West Indies, West Indies University of Wisconsin-Platteville, USA

Ghent University, Belgium

Chiang Mai University, Thailand Universidade Nova de Lisboa, Portugal

Universidade Nova de Lisboa, Portugal

University of Malaga, Spain

Contents

Regional Location Decision for Thai Garment Industry:An AEC PerspectiveWalailak Atthirawong, Wariya Panprung	1
Key Performance Indicators for Sustainable Campus Assessment:A Case of Andalas UniversityElita Amrina, Febriza Imansuri	<mark>11</mark>
Minimum Partial Encryption for JPEG/JPEG2000 Medical Image Protection Seong Min Yoo, Jun Hoo Park, Jae Cheol Ryou	19
The Optimal Hedging Strategy for Commodity Processors in Supply Chain Ehsan Bolandifar, Zhong Chen	27
Application of MFCA and Dynamic Programming in OperationsImprovement: A Case StudyAtchara Songkham, Chompoonoot Kasemset	35
Value Analysis of Coco Board for Production Sustainability Marianne B. Calayag	45
Effect of Temperature on the Colour and TSS Removal of Batik Dye Wastes in an Integrated Biological and Filtration Treatment System N.A. Ramlee, M.N. Mohd Rodhi, S.F. Abdul Manaf, F. Hamzah, A. Anuar, A. Datu Brandah	55
A Multi-agent Approach for Production Management Ana Paula M. Tanajura, Valdir Leanderson C. Oliveira, Herman Lepikson	65
Design of Experiment for Predicting Residual Stresses in Gas Tungsten Arc Welding Process	77

Hands-on Industrial Process Modelling Using the MATLAB System Identification Toolbox Abubakar Sadig Bappah	85
Model Based Design of Finger Exoskeleton for Post Stroke Rehabilitation Using a Slotted Link Cam with Lead Screw Mechanism Mohd Nor Azmi Bin Ab Patar, Takashi Komeda, Jamaluddin Mahmud, Cheng Yee Low	95
Quantile Estimation Using a Combination of Stratified Sampling and Control Variates Marvin K. Nakayama	105
A Simulation-Based Analysis for Inter Release Problem in Airport Baggage Handling Systems James T. Lin, Irene Liou, Chun-Chih Chiu	115
A New Two-Phase Approach for Petri Net Based Modeling of Scheduling Problems Reggie Davidrajuh	125
Simulation and Analysis of Impulse Faults in Power Transformer Kaveri Bhuyan, Saibal Chatterjee, Anwesa Yadav, Sarita Bansal, Sanat Kumar Paul	135
The Online Study Design for Different Study Location Environment,Using ICT and Social Methodology ToolPlatt Pangthong, Phudinan Singkamfu	143
Telematics Technology Development Forecasting: The Patent Analysisand Technology Life Cycle PerspectiveShu-Hao Chang, Chin-Yuan Fan	149
Empirical Study of Collaborative Learning Knowledge ManagementSystem for Thai StudentsKrittawaya Thongkoo, Chiraporn Thongkhu	159
Factors for Enterprise Resource Planning System Selection to SupportInformation Management of ManufacturersPorntida Kaewkamol	165
Low Level of Licensing Activities by Universities in Japan Shigenori Hata, Kumiko Miyazaki	173
Analysing Industry Clustering to Develop Competitive Advantage for Wualai Silver Handicraft	181

University-Industry Linkages (UILs) and Research Collaborations: Case of Thailand's National Research Universities (NRUs) Naparat Siripitakchai, Kumiko Miyazaki	189
Factors Affecting the Use of Information Technology for Collaboration among Government, Educational and Tourism Small Business Sectors Kannika Daungcharone	199
How Managerial Capabilities of Entrepreneur Leverage Innovative Capability of SMEs: A Perspective of TIM Qingrui Xu, Siyu Liu, Zhiyan Wu	207
Definition of Complex Hurst and Fractional Analysis for StockMarket FluctuationQing Zou, Yufan Hu, Jun Steed Huang	215
Water Cycle and Artificial Bee Colony Based Algorithms for OptimalOrder Allocation Problem with Mixed Quantity Discount SchemeChanikarn Praepanichawat, Charoenchai Khompatraporn,Chorkaew Jaturanonda, Chiranya Chotyakul	229
The Management of Assessment and Allocation of Marshalling Yards and Designation Their Catchment Areas Juraj Camaj, Jana Lalinská, Jaroslav Masek	241
Improving Vehicle Routing Decision for Travel Agency in Chonburi, Thailand Tantikorn Pichpibul	251
Differential Evolution Algorithm for Storage LocationAssignment ProblemWarisa Wisittipanich, Pongsakorn Meesuk	259
Master Production Scheduling for the Production Planning in the Pharmaceutical Industry Sivinee Wattitham, Tuanjai Somboonwiwat, Suksan Prombanpong	267
A Hybrid Genetic Algorithm for Simultaneous Scheduling of Machines and AGVs in FMS James T. Lin, Chun-Chih Chiu, Yu-Hsiang Chang, Hung-Ming Chen	277
Collaborative Agents Supporting Tactical Planning Activities – An Industrial Application Ana Paula M. Tanajura, Pinar Öztürk, Herman Lepikson	287
Minimizing Makespan Using Node Based Coincidence Algorithm in the Permutation Flowshop Scheduling Problem Ornrumpha Srimongkolkul, Prabhas Chongstitvatana	303

XIV Contents

An Inventory System of Packaging Materials: Case Study at PT. DjambiWaras JujuhanNilda Tri Putri, Jonrinaldi, Y.R. Risa Noviani	313
A Pattern In Formgiving Design: Giving Priority To a Principle Solution in Industrial Design Situation Rusmadiah Anwar, Shahriman Zainal Abidin, Oskar Hasdinor Hassan	331
Simulation of Logistic Operations Jana Lalinská, Kendra Martin, Čamaj Juraj	341
Contracting Decisions in Project Management – An Outline of the Dedicated Decision Support System Tomasz Błaszczyk, Paweł Błaszczyk	347
Factory Logistics Improvement Projects: Case Northern Thailand Sakgasem Ramingwong, Apichat Sopadang, Korrakot Yaibuathet Tippayawong	357
Enhancing Project Funding Decision QualityOfer Zwikael, Ying-Yi Chih	363
Software Project Team Selection Based on Enterprise Social Networks <i>Panos Fitsilis, Vassilios Gerogiannis, Leonidas Anthopoulos</i>	375
Study on the Agriculture Information Cloud Architecture and Application Peng Qing, Ming Ye, Guangyuan Liu	385
Enhanced Value Stream Mapping: Potentials and Feasibility of IT Support through Manufacturing Execution Systems <i>Markus Philipp Roessler, Ina Kleeberg, Moritz Kreder, Joachim Metternich,</i> <i>Klaus Schuetzer</i>	393
Automatic Oil Palm Detection and Identification from Multi-scaleClustering and Normalized Cross CorrelationTeerawut Wong-in, Tonphong Kaewkongka, Nagul Cooharojananone,Rajalida Lipikorn	403
A Comparison Approach for Accuracy Feature of Requirements Prioritization Models	411
A Novel Approach on Operation and Maintenance Guideline Using Semantic Processing and Clustering Ki Hoon Jang, Gyeong-June Hahm, Heejung Lee, Hyo-Won Suh	419

Rutting Load Equivalency Factors of Heavy Vehicles Operating in the Sothern Part of Malaysian Peninsula	429
Enhancing Virtual Manipulatives for After-School Tutoringin the Subtraction UnitWen-Chung Shih	439
Implementing an Information System Development Simulationin an Industrial Engineering Class: A Case StudySakgasit Ramingwong, Lachana Ramingwong	451
Exploring the ISO 14001 Environmental Management System (EMS) towards SMEs Organizational Performance: Case Study of Southern Malaysia Furniture Manufacturers A.H. Nor Aziati, Ng Seow Chian, Abdul Talib Bon, Y. Ngadiman, M.F. Ahmad	459
Happy Workers Work Happy? The Perspective of Frontline Service Workers	473
Analyzing Cargo Loss Severity of Electronics Productswith Decision TreeMu-Chen Chen, Pei-Ju Wu, Chih-Kai Tsau	477
A Comparison of Inventory Management between Decentralized and Centralized Distribution Networks with Backorder Kanokwan Singha, Parthana Parthanadee, Jirachai Buddhakulsomsiri	485
A Study on Hong Kong Rice Supply Chain Risk Management with Value Chain Analysis Anthony Lam, Tao Zhang, Kin Keung Lai	491
The Role of Product Development to Drive Product Success:An Updated Review and Meta-AnalysisYosephine Suharyanti, Subagyo, Nur Aini Masruroh, Indra Bastian	501
Management Practices of Thai Silk Product	511
Fuzzy Multi-objective Supplier Selection Problem:Possibilistic Programming ApproachDicky Fatrias, Ahmad Syafruddin Indrapriyatna, Difana Meilani	521
Value Adding and Improving Factors of Thai Long Steel Supply Chainfor ASEAN Economic CommunityApinun Chedchoosuwan, Tuanjai Somboonwiwat,Charoenchai Khompatraporn	531

Analysis of Causal Competitive Factors of Thai Iron and Steel SupplyChain by DEMATEL MethodSupattra Rattanavijit, Tuanjai Somboonwiwat, Charoenchai Khompatraporn	541
Combining Balanced Scorecard and Data Envelopment Analysis to Design Performance Measurement for Supply Chain Actor and Regulator: A Case Study in Innovative Product in Indonesia Elisa kusrini, Subagyo, Nur Aini Masruroh	551
A Study of Consumers' Post Consumption Behaviour for Mobile Phone in Indonesia	563
Green Supply Chain Assessment to Operations Improvement for Can Packaging Industry Tuanjai Somboonwiwat, Tuangyot Supeekit, Patiyut Punta	575
Selection of Digital Marketing Channels: Application of ModernPortfolio TheoryTomás Frausto-da-Silva, António Grilo, Virgílio Cruz-Machado	585
The Effect of Stockout Cause and Brand Equity on Consumer Preferencein Online RetailingJun Ding, Qiang Lu, Xianghua Chu	599
Development of a Remote Controlled Mobile Robot for Toy Application Using RF Module in PIC Microcontroller <i>Rionel Belen Caldo, Donabel D. Abuan, Elmer P. Dadios</i>	609
Generalized Space Fourier Transform Method for the Analysis of Electrical Machines Ankita Dwivedi, S.K. Singh, R.K. Srivastava	617
Product Attribute Analysis for Customer Involvement in Value Creation Risdiyono	629
Influence of Gender of Customers on Service Quality	639
The Service Quality of Indonesia's Logistics Service Provider in Preparation for ASEAN Economic Community <i>Mahendrawathi ER, Thananya Wasusri, Hanim Maria Astuti,</i> <i>Anisah Herdiyanti</i>	647

Effects on Physical and Mechanical Properties of Thermochemical Treated Kenaf (Hibiscus Cannabinus) Fibres Composite Board Mohamad Nurul Azman Mohammad Taib, Mohd Ariff Jamaludin, Masitah Abu Kassim	657
Design Process Using Lean Six Sigma to Reduce the Receiving Discrepancy Report of ACE Logistics	665
A Study on Carbon Emission Effects of Foreign Direct Investment in Secondary Industry of Shandong Province Bin Xiong, Meng-jiao Wang	675
An Evaluation Performance of Log Periodic Dipole Antenna Based on the Parameter of Flux Density of the Solar Radio Burst Event Z.S. Hamidi, N.N.M. Shariff	685
Attitude and Opinion of Bicycle-Helmet Signal Pattama Longani, Orawit Thinnukool, Anusorn Yodjaiphet	693
Real Time Customer Satisfaction Index Afizan Azman, Luwe Cheng Wong, Mohd Fikri Azli, Siti Zainab, Kirbana Jai Raman, Sumendra Yogarayan	701
FLC-Based Indoor Air Quality Assessment for ASHRAE Standard Conformance Rionel Belen Caldo	711
Artificial Intelligent System to Stop Bots from Playing Online Games Gagandeep Singh, Pooja Choudhary, Vikrant Sharma	719
Multi-lane Detection Based on Original Omni-Directional Images Chuanxiang Li, Bin Dai, Tao Wu	727
A Framework for Text Classification Using Intuitionistic Fuzzy Sets Peerasak Intarapaiboon	737
An Adaptive Incremental Fuzzy TSK Controller Combined with Evolutionary Optimization Niusha Shafiabady, Rajprasad K. Rajkumar, Dino Isa, J. Michael Menke, M.A. Nima Vakilian	747
Ground Grid Integrity Testing Using Matlab Fuzzy Logic Toolbox Bryan M. Dimayuga, Kevin Martin E. Jaron, Alexander T. Montero, Mark Kenneth Z. Peros, Rionel Belen Caldo	759
Filtering as a Tool of Diversity in Ensemble of Classifiers Eva Volna, Martin Kotyrba, Vaclav Kocian	767

Mining High Utility Patterns in Different Time Periods Show-Jane Yen, Yue-Shi Lee	779
Content Based Image Retrieval Using Fuzzy Texton and Shearlet	
Transform	791
Assessing Lean Implementation	803
Concealing of Al ₂ (SO ₄) ₃ Stain by Spray Coating Process <i>Chachsanun Srisoy, Suksan Prombanpong</i>	813
Developing Interfaces Based on Services to the Cloud Manufacturing:	
Plug and ProduceEduardo Cardoso Moraes, Herman Augusto Lepikson,Armando Walter Colombo	821
Optimization of Teflon Spraying Process for Non-stick Coating	
Application	833
Multidimensional Process Analytical System for Manufacturing Management Poonphon Suesaowaluk	841
The Design of Machine Cluster for Loading and Unloading Slider in the Hard Disk Drive Manufacturing Amarin Wongsetti, Suksan Prombanpong	849
A Study of Downloading Game Applications	859
Explicating the Trends of China's Logistics Services for ElectronicCommerceMu-Chen Chen, Pei-Ju Wu, Wei-Hua Xiong	871
Measuring Customer Relationship Marketing Outcomes in the Greek Banking Sector Ilias Santouridis, Melania Stoumbou	881
Analysis of Websites of Top Global Logistics Providers by a Trust Building Framework Lachana Ramingwong, Sakgasit Ramingwong	891
An Empirical-Based Construction of the Multi-purpose ProcessReference Model for Hospital Supply ChainWirachchaya Chanpuypetch, Duangpun Kritchanchai	901

Smartphone Based Healthcare Platform and Challenges9Bofan Song, Bingwen Yu, Dan Zhu, Wei Jin, Ying Mu9	913
Operating Rooms Decision Optimization Integrating Surgery Planning and Nurse Rostering 9 Siyu Wang, Changyue Ma, Wei Xiang	919
Linking Hospital Supply Chain Processes and Performance to Identify Key Performance Indicator 9 Tuangyot Supeekit, Tuanjai Somboonwiwat, Duangpun Kritchanchai 9	927
Kansei's Physiological Measurement in Small-Medium Sized EnterprisesUsing Profile of Mood States and Heart RateMirwan Ushada, Tsuyoshi Okayama, Nafis Khuriyati, Atris Suyantohadi	939
Investigation of Customer and Technical Requirements for Designing an Ergonomics Notebook Soft Case Using Quality Function Deployment (QFD) Approach 9 Hilma Raimona Zadry, Defri Arif Irfansyah	949
Demographic Characteristics in Correlation with Household Electricity Use 9 Lusi Susanti, Prima Fithri, Karin Bestarina 9	959
Central Composite Design for the Experiments with Replicate Runs at Factorial and Axial Points Haeil Ahn	969
A Software Trustworthiness Measure Based on the Decompositions of Trustworthy Attributes and Its Validation	981
Review Relationship TPM as Mediator between TQM and Business	0.0.1
Performance 9 M.F. Ahmad, A.H. Nor Aziati, Abdul Talib Bon, Y. Ngadiman, Shiau Wei Chan 9	991
Theoretical Review of Critical Factors that Impact on Global Human Resource Practices: Case on Multinational Companies in Emerging Economies 9 Muhammad Mehmood Aslam, Syed Shaheer Hassan Rizvi, Asif Hameed	997
Ranking Measures for Sustaining Quality Excellence Practices: An Empirical Investigation 10 Mehran Doulatabadi, Sha'ri Mohd Yusof 10	009
Software Reliability Analysis Considering the Fault Detection Trends for Big Data on Cloud Computing	021

Effect of Vibration Transmissibility on Fatigue Lifetime of Electronic Devices	1
Liu Yang, Ying Chen, Zenghui Yuan, Liqun Chen	
Reliability Importance of the Channels in SafetyInstrumented Systems1041Yiliu Liu, Mary Ann Lundteigen	l
Fatigue Damage Ratios for Heavy Vehicles Operating in the SouthernPart of Malaysian Peninsula1055Osama Mahmoud Yassenn, Intan Rohani Endut, Mohamed Ahmed Hafez,Siti Zaharah Ishak, Nurul Elma Kordi	5
Process Reliability Modeling Based on Nonlinear Correlation Analysis	5
Identification of Public Awareness in Preventive Maintenancefor Personal Automobile1073Y. Ngadiman, A.H. Nor Aziati, Abdul Talib Bon, M.F. Ahmad,Raja Zuraidah Raja Mohd Rasi, Martin Yaw Swee Hock	3
A Novel Analysis of Clinical Data and Image Processing Algorithms in Detection of Cervical Cancer	1
Author Index)

Key Performance Indicators for Sustainable Campus Assessment: A Case of Andalas University

Elita Amrina^{*} and Febriza Imansuri

Department of Industrial Engineering, Andalas University, Padang, Indonesia elita@ft.unand.ac.id, febrizaimansuri14@gmail.com

Abstract. Sustainable campus has became an important issue amongst universities around the world. Universities can generate a significant impacts to environment due to the high usage of energy, extensive transportation, massive waste, high consumption of materials, and extensive development of buildings and facilities. Thus, there is a need to assess the sustainable campus performance. This paper proposes a set of key performance indicators (KPIs) for sustainable campus assessment consisting of six categories divided into a total of 35 indicators. Analytical Hierarchy Process (AHP) method is applied to determine the importance weight of the KPIs. The results indicated the most important category for the sustainable campus assessment is education with an importance weight of 0.2665, while energy and climate change is regarded as the least important category. It is hoped the proposed KPIs can assist the universities to achieve the higher performance in sustainable campus.

Keywords: Analytic hierarchy process, key performance indicators, performance, sustainable campus, university.

1 Introduction

Nowadays, campus sustainability has become an increasingly issue of global concern for university policy makers and planners as a result of the realization of the impacts the activities and operations of universities have on the environment [1]. Like manufacturing, an university can also generate a significant impact to environment. It might becaused of the high usage of energy, extensive transportation, massive waste, high consumption of materials, and extensive development of buildings and facilities [2]. Increasing concerns to sustainability have forced universities to consider sustainability into their strategies and activities.

A sustainable university defined as a higher educational institution, as a whole or as a part, that addresses, involves and promotes, on a regional or global level, the minimization of negative environmental, economic, societal, and helth effects generated in the use of their resources in order to fulfill its functions of teaching, research, outreach and partnership, and stewarship in ways to help society make the

^{*} Corresponding author.

[©] Springer-Verlag Berlin Heidelberg 2015

M. Gen et al. (eds.), *Industrial Engineering, Management Science and Applications 2015*, Lecture Notes in Electrical Engineering 349, DOI: 10.1007/978-3-662-47200-2_2

transition to sustainable lifestyle [3]. According to the definition, sustainable campus must address the integration all the three aspects of sustainability of environmental, economic, and social in a better balance. University has several activities and complex operations which potentially generate significant environmental impacts. Sustainability must affects every sphere of a university, from the classrooms and laboratories, to housing, transportation and other services, and to the entire campus [1]. Therefore, assessing the sustainable campus has become a necessity.

In this study, a literature review was carried out in an attempt to identify key performance indicators (KPIs) used to assess the sustainable campus. One of the most commonly used indicators for the sustainable campus assessment is referred to the UI Greenmetric World University Ranking consisting of six categories and a total of 33 indicators [4]. It is a world university ranking for universities to assess and compare campus sustainability efforts [4]. The UI Greenmetric World University Ranking is the first attempt to make a global ranking of universities' sustainable behavior [5]. This paper proposes a set of Key Performance Indicators (KPIs) to assess the sustainable campus. The Analytical Hierarchy Process (AHP) methodology is applied to weighting the KPIs. It is believed that the proposed KPIs can aid universities to improve their sustainable campus performance.

2 Methodology

The methodology has two main stages. First, the key performance indicators (KPIs) for sustainable campus assessment were identified and derived from the literature. The KPIs were then validated to a case of university. Second, the importance weight of the KPIs is determined using Analytic Hierarchy Process (AHP) methodology.

Analytic Hierarchy Process (AHP) first introduced by Thomas L. Saaty in 1971 has become one of the most widely used methods for multiple criteria decision making (MCDM) problems. It is a decision approach designed to aid in making the solution of complex multiple criteria problems to a number of application domains [6]. It has been known as an essential tool for both practitioner and academics to conduct researches in decisions making and examining management theories [7]. AHP as a problem solving method is flexible and systematic that can represent the elements of a complex problem [8].

AHP method has several benefits [7]. First, it helps to decompose an unstructured problem into a rational decision hierarchy. Second, it can elicit more information from the experts or decision makers by employing the pair-wise comparison of individual groups of elements. Third, it sets the computations to assign weights to the elements. Fourth, it uses the consistency measure to validate the consistency of the rating from the experts and decision makers.

3 Identification of KPIs

This study starts with the development of key performance indicators (KPIs) for sustainable campus assessment through the literature review. The KPIs have been mostly adopted from the UI Greenmetric World University Ranking [4]. Besides, the

13

KPIs were also taken from the Alshuwaikhat and Abubakar's campus sustainability framework [1], sustainable UKM programme's framework [9], University of Nottingham's campus sustainability indicators [10], and University of Connecticut's campus sustainability indicators [11]. All the six categories and 33 of a total 35 indicators of the proposed KPIs are identified and derived from the UI Greenmetric World University Ranking. Another two indicators of category of the energy and climate change were taken from the other literatures. As a result, the KPIs of sustainable campus assessment consist of six categories divided into a total of 35 indicators were identified as shown in Table 1.

Categories	Indicators		
1. Setting and Infrastructure	1. Open space area/total area		
1. Setting and minastructure	2. Open space area/total people		
	3. Area on campus covered in forested vegetation		
	4. Area on campus covered in planted vegetation		
	5. Non-retentive surfaces/total area		
	6. Sustainability budget/total university budget		
2 Energy and Climate Change	7. Energy efficient appliances usage		
2. Energy and Climate Change	8. Renewable energy usage policy		
	 8. Kenewable energy usage policy 9. Total electricity use/total people 		
	10. Energy conservation program 11. Green Building		
	 Climate change adaptation and mitigation program Greenhouse gas emission reduction policy 		
	14. Smooking area policy on campus		
	15. Sustainable food program on campus		
2 Wests	16. Recycling program for university waste		
3. Waste			
	17. Toxic waste recycling		
	18. Organic waste teatment (garbage)		
	19. Inorganic waste teatment (rubbish)		
	20. Sewerage disposal		
4. Water	21. Policy to reduce the use of paper and plastic on campus		
4. water	22. Water conservation program		
5 Tana	23. Piped water		
5. Transportation	24. Total cars entering/total people		
	25. Total bicycles/total people		
	26. Transportation policy on limiting vehicles on campus		
	27. Transportation policy on limiting parking space		
	28. Campus buses		
	29. Bicycle and pedestrian policy		
6. Education	30. Sustainability courses / total courses		
	31. Sustainability research funding/total research funding		
	32. Sustainability publications		
	33. Sustainability events		
	34. Sustainability organizations (student)		
	35. Sustainability website		

Table 1. The KPIs of sustainable campus assessment

The KPIs of sustainable campus assessment are then validated to a case of university located in Padang, West Sumatra, Indonesia. Established in 1956, Andalas University is the oldest university outside of Java Island, and the fourth oldest university in Indonesia. Currently, Andalas University has 15 faculies and about 25,000 students. In 2014, Andalas University has been accredited by National Accreditation Board for Higher Education with rank A (excellent). In term of sustainable campus, Andalas University has placed rank 146th and become ranked 8th of Indonesian universities in UI Greenmetric World University Ranking 2014.

A total of 5 members of green campus team from the university were consulted to validated the KPIs. The experts suggest that all categories and indicators of the KPIs are highly important. Thus, proposed as the KPIs to assess the sustainable campus.

4 Determining the Importance Weight of KPIs

Analytic Hierarchy Process (AHP) methodology was applied to determine the importance weight of the KPIs of sustainable campus assessment. The methodology consists of constructing the hierarchy, conducting the pairwise comparisons, constructing the pairwise comparisons matrix, computing the consistency ratio, and calculating the importance weight. Details are given as follows.

4.1 Constructing the Hierarchy

The proposed key performance indicators (KPIs) for sustainable campus assessment are then used in constructing a hierarchy. The three groups were defined and constructed in the hierarchy including goal, categories, and indicators. In the

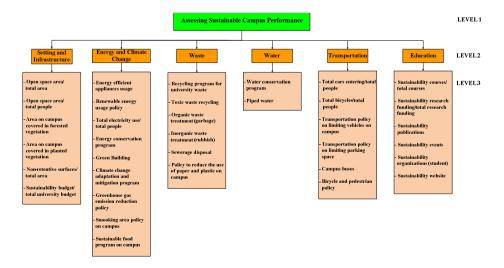


Fig. 1. The hierarchy structure of KPIs

hierarchy, assessing sustainable campus performance is set to be the goal. The next level consists of six categories of setting and infrastructure, energy and climate change, waste, water, transportation, and education. The third level consists of the indicators that described each of categories with a total of 35 indicators. The hierarchy is depicted in Fig. 1.

4.2 Conducting the Pairwise Comparisons

Once the hierarchy has been constructed, the importance weight of the KPIs should be calculated. A pairwise comparison questionnaire was then designed. A total of 30 experts from Andalas University were consulted to give their preferences on the KPIs. Those experts consist of dean and vice dean of each faculty in Andalas University. The pairwise comparisons were determined between categories, and indicators within each category of the KPIs. A Saaty' scale of 1 to 9 (1= equally, 3= moderate, 5= strong, 7= very strong, 9= extreme) was used to reflect these preferences. The consistency ratio (CR) was used to check the consistency of the pairwise comparisons for each expert. The CR values are less than 0.1 which means it matches the consistency test. If it is not yet consistent, the comparison has to be repeated again.

4.3 Constructing the Pairwise Comparisons Matrix

The preferences from the 30 experts were geometrically averaged and the pairwise comparisons matrices were then constructed. For example, the pairwise comparison matrix of the categories of sustainable campus assessment as below:

All the diagonal elements of the matrix are equal to 1 as the elements are compared with themselves. The values of elements in the upper triangular matrix are obtained from the averaged preferences of pairwise comparisons and the reciprocals of these values are presented in the lower triangular matrix.

4.4 Computing the Consistency Ratio

The consistency ratio (CR) is used to check the consistency of pairwise comparisons and a value of less than 0.1 is acceptable [8]. The consistency test was performed to all the combined pairwise comparison matrixes. The results show that the consistency ratio (CR) values ranged from 0.0000 to 0.0081, which means that all the pairwise comparisons are consistent since the values are within the acceptable level recommended by Saaty [8]. It indicates that the experts have assigned their preferences consistently in determining the importance weights of the KPIs to assess sustainable campus performance.

4.5 Calculating the Importance Weight

The importance weight of KPIs are then calculated using the Expert Choice software. Table 2 presents a summary of the results of the importance weights of the KPIs of sustainable campus assessment. The importance weights show the importance value of one indicator over other indicators. In term of categories, education is the highest importance weight with a value of 0.2665. It is not suprisingly since the main function of an university in education field. Universities have responsibility in sustainable development to promote the sustainability culture to its students, staff, and community [2]. It followed by water with an importance weight of 0.2005. Clean water has become one of the main problems faced by any people in any place of the world. Universities with a high number students, staffs, and communities should be consider the need of clean water for their activities.

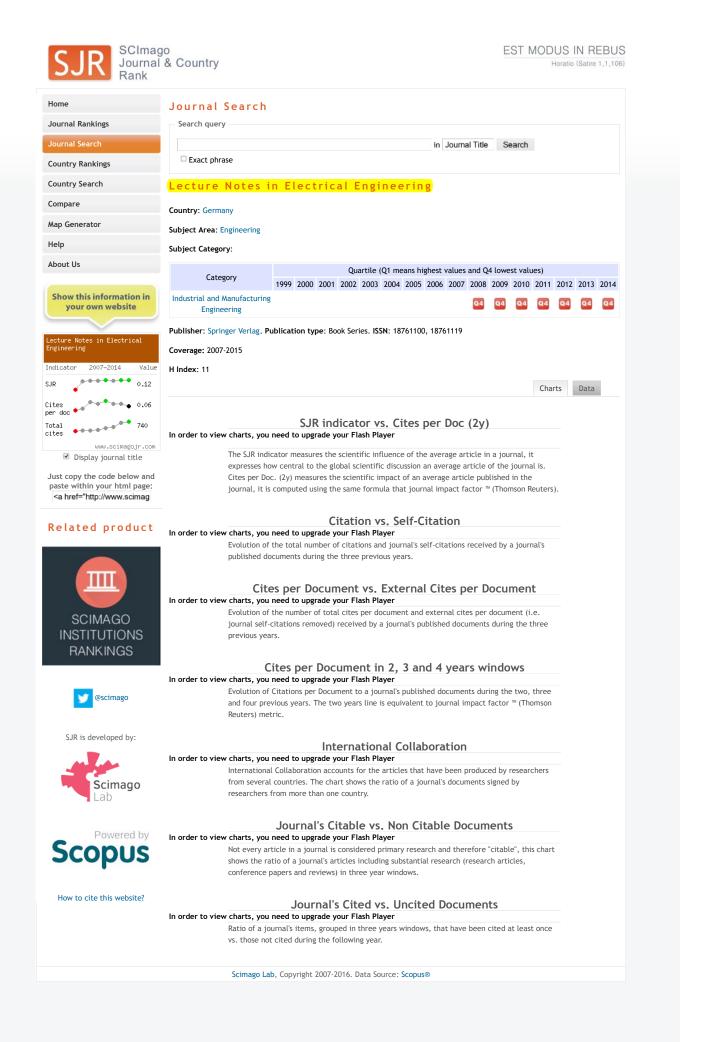
Categories	Weight	Indicators	Weight
1. Setting and	0.1234	1. Open space area/total area	0.0150
Infrastructure		2. Open space area/total people	0.0134
		3. Area on campus covered in forested vegetation	0.0237
		4. Area on campus covered in planted vegetation	0.0170
		5. Non-retentive surfaces/total area	0.0145
		6. Sustainability budget/total university budget	0.0392
2. Energy and	0.1156	7. Energy efficient appliances usage	0.0145
Climate Change		8. Renewable energy usage policy	0.0174
		9. Total electricity use/total people	0.0084
		10. Energy conservation program	0.0172
		11. Green Building	0.0157
		12. Climate change adaptation and mitigation program	0.0121
		13. Greenhouse gas emission reduction policy	0.0131
		14. Smooking area policy on campus	0.0081
		15. Sustainable food program on campus	0.0096
3. Waste	0.1630	16. Recycling program for university waste	0.0398
		17. Toxic waste recycling	0.0191
		18. Organic waste teatment (garbage)	0.0306
		19. Inorganic waste teatment (rubbish)	0.0284
		20. Sewerage disposal	0.0202
		21. Policy to reduce the use of paper and plastic on campus	0.0248
4. Water 0.2005	0.2005	22. Water conservation program	0.1490
		23. Piped water	0.0510
5. Transportation	0.1309	24. Total cars entering/total people	0.0151
Ĩ		25. Total bicycles/total people	0.0106
		26. Transportation policy on limiting vehicles on campus	0.0248
		27. Transportation policy on limiting parking space	0.0206
		28. Campus buses	0.0376
		29. Bicycle and pedestrian policy	0.0224
6. Education	0.2665	30. Sustainability courses / total courses	0.0299
		31. Sustainability research funding/total research funding	0.0272
		32. Sustainability publications	0.0510
		33. Sustainability events	0.0513
		34. Sustainability organizations (student)	0.0654
		35. Sustainability website	0.0422

Table 2. The importance weights of KPIs

The third category is waste with an importance value of 0.1630. This category is most related to environmental. As mention earlier, universities generate massive waste as a result of their activities and operations. Waste management is needed to solve this problem and to promote sustainability in campus environment. The next categories are transportation with a value of 0.1309, setting and infrastructure (0.1234), and energy and climate change (0.1156).

In term of indicators, water conservation program (0.1490) is regarded to the most important indicator. This indicator is of water category which suggested as the second highest important category. It followed by sustainability organizations (students) with an importance value of 0.0654, sustainability events (0.0513), piped water (0.0510), and sustainability publications (0.0510). Those indicators are categorized in education, and water category of the KPIs. Of all the indicators of KPIs of sustainable campus assessment, smoking area policy on campus with an importance weight of 0.0081 is suggested as the least important indicators.

5 Conclusions


An university can generate a significant environmental impacts due to the high usage of energy, extensive transportation, massive waste, high consumption of materials, and extensive development of buildings and facilities. Thus, it is essential to assess the sustainable campus performance. This paper has developed a set of Key Performance Indicators (KPIs) for sustainable campus assessment. The KPIs are identified and derived from the literature and then validated to a case of university. Based on the results, six categories divided into a total of 35 indicators are proposed as the KPIs of sustainable campus assessment. The importance weight of the KPIs then determined using Analytic Hierarchy Process (AHP) methodology. First, the hierarchy structure is established based on the proposed KPIs of sustainable campus assessment. Next, the pairwise comparisons conducted to the policy makers from the case of university using Saaty's scale of 1-9. The pairwise comparisons matrix are then contructed and the consistency ratio (CR) is computed. Finally, the importance weights of the KPIs is calculated.

The results show the importance value of one indicator over other indicators. Category of education is regarded as the most important category of the KPIs, followed by water, and waste. In term of indicators, water conservation program is suggested to the highest important indicator, followed by sustainability organizations (students), sustainability events, piped water, and sustainability publications. It is hoped the KPIs can aid the policy makers and planners of university to achieve a higher performance in the context of sustainable campus. Future research will focus on developing a tool to assess sustainable campus performance.

Acknowledgments. The authors would like to thanks to Andalas University, Padang, Indonesia and Directorate General of Higher Education, Indonesia for research funding with scheme of Hibah Bersaing No: 52/H.16/HB/LPPM/2015.

References

- Alshuwaikhat, H.M., Abubakar, I.: An Integrated Approach to Achieving Campus Sustainability: Assessment of the Current Campus Environmental Management Practices. Journal of Cleaner Production 16, 1777–1785 (2008)
- Gunawan, T.E., Prayogo, D.N., Mardiono, L.: Eco-sustainable Campus Initiatives: A Web Content Analysis. In: Proceedings of the 3rd International Conference on Technology and Operations Management (2012)
- Velazquez, L., Munguia, N., Platt, A., Taddei, J.: Sustainable University: What Can be the Matter? Journal of Cleaner Production 14, 810–819 (2006)
- 4. Universitas Indonesia.: Guidelines of UI GreenMetric World University Ranking (2014), http://www.greenmetric.ui.ac.id
- Grinsted, T.S.: Sustainable Universities from Declarations on Sustainability in Higher Education to National Law. Journal of Environmental Economics 2, 29–36 (2011)
- Saaty, T.L.: The Analytic Hierarchy and Analytic Network Measurement Processes: Application to Decisions Under Risk. European Journal of Pure and Applied Mathematics 1, 122–196 (2008)
- Cheng, E.W.L., Li, H., Ho, D.C.K.: Analytic Hierarchy Process: A Defective Tool When Used Improperly. Measuring Business Excellence 6, 33–37 (2002)
- Grinsted, T.S.: Sustainable Universities from Declarations on Sustainability in Higher Education to National Law. Journal of Environmental Economics 2, 29–36 (2011)
- Chan, F.T.S., Chan, H.K., Lau, H.C.W., Ip, R.W.L.: An AHP Approach in Benchmarking Logistics Performance of the Postal Industry. Benchmarking: An International Journal 13, 636–661 (2006)
- Fadzil, Z.F., Hashim, H.S., Che-Ani, A.I., Aziz, S.: Developing a Campus Sustainability Assessment Framework for the National University of Malaysia. Int. J. Environmental, Ecological, Geological and Mining Engineering 6(6), 44–48 (2012)
- 11. University of Nottingham.: Sustainability Report 2012-13 (2013), http://www.nottingham.ac.uk/sustainability
- 12. University of Connecticut.: Campus Sustainability Design Guidelines (2004), http://www.ecohusky.uconn.edu/pcc/sustainabledevelopment.html

is a preview of SCOPUS. there to learn more about accessing SCOPUS with our Integr	ation Services. Visit also our S	COPUS	Info Site.		
				atches auth	horship based on a certain criteria. If a document cannot be
confidently matched with an author identifier, it is grouped					
			Print	E-mail	Follow this Author Receive emails when this author
Amrina, Elita Universitas Andalas, Department of Industrial	About Scopus A	Author Ide	entifier View potential author r		Follow this Author publishes new articles
Engineering, Padang, Indonesia			Other name formats: An An	nrina, E.	Get citation alerts
Author ID: 49862661700					Add to ORCID
Documents: 6	Analyze au	thor outpu	ıt		Request author detail corrections
Citations: 7 total citations by 7 documents	I				2
h-index: 1 Co-authors: 3	View <i>h</i> -grap	bh			Documents
Subject area: Engineering , Business, Management and Ad	counting View More				Doct
6 Documents Cited by 7 documents 3 co-auth	ors				0 2010 2015
documents View in search results format			Sort on: Date Cit	ted by	Years Citations
	_				
Export all Add all to list Set document ale	rt Set document feed				Author History
ey performance indicators for sustainable manufacturing valuation in cement industry	Amrina, E.,Vilsi, A.L.	2015	Procedia CIRP	0	Publication range: 2010 - 2015 References: 94
Show abstract Related documents					Source history:
ey performance indicators for sustainable campus	Amrina, E.,Imansuri, F.	2015	Lecture Notes in	0	 IEEE International Conference on Industrial Engineering and Engineering Management View documer
ssessment: A case of Andalas university			Electrical Engineering		IEEE International Conference on Industrial Engineering and Engineering Management View documer
Show abstract Related documents		0044			International Journal of Business and Management Science
nterpretive structural model of key performance indicator or sustainable manufacturing evaluation in cement	s Amrina, E.,Vilsi, A.L.	2014	IEEE International Conference on Industrial	0	View documer
ndustry			Engineering and Engineering		Show Related Affiliations
Show abstract Related documents			Management		
nterpretive structural model of key performance indicator	s Amrina E Yusof S.M.	2012	IEEE International	0	
or sustainable manufacturing evaluation in automotive ompanies	,,,,,,		Conference on Industrial Engineering and	-	
onpaneo			Engineering Management		
Show abstract Related documents			Mullugement		
ey performance indicators for sustainable manufacturing	Amrina, E., Yusof, S.M.	2011	IEEE International	7	
valuation in automotive companies			Conference on Industrial Engineering and		
			Engineering Management		
Show abstract Related documents					
Anufacturing performance evaluation tool for Malaysian	Amrina, E.,Yusof, S.M.	2010		0	
utomotive small and medium-sized enterprises			Business and Management Science		
Show abstract Related documents					_
bisplay 20 v results per page			Page	e 1	
				p of page 🔺	
The data displayed above is compiled exclusively from articles publis The data displayed above is subject to the privacy conditions contain		quest con	ections to any inaccuracies or provi	ue any iurine	er reedback, please contact us (registration required).
About Soonus		~	istomor Sozios		
About Scopus Language What is Scopus 日本語に切	Customer Service 替える Help and Contact				
Content coverage 切换到简体		·文			
Scopus Blog 切換到繁體 Scopus API	甲ズ				