Official Publication of the Turkish Society of Anatomy and Clinical Anatomy

anatomy
An International Journal of Experimental and Clinical Anatomy

Volume 9
Supplement 2
September 2015

Special Issue includes abstracts for the
XXIV International Symposium on Morphological Sciences
2nd–6th September, 2015, Istanbul, Turkey
Table of Contents

Volume 9 / Supplement 2 / September 2015

Editorial
Welcome Address of the Congress Presidents
H. Hamdi Çelik, Erdoğan Şendemir

XXIV International Symposium on Morphological Sciences
Committees and Biographies
Program Schedule

Abstracts
Invited Lectures
Oral Presentations
Poster Presentations
Author Index
Aim and Scope
Anatomy, an international journal of experimental and clinical anatomy, is a peer-reviewed journal published three times a year with an objective to publish manuscripts with high scientific quality from all areas of anatomy. The journal offers a forum for anatomical investigations involving gross, histologic, developmental, neurologic, radiologic and clinical anatomy, and anatomic teaching methods and techniques. The journal is open to original papers covering a link between gross anatomy and areas related to clinical anatomy such as experimental and functional anatomy, neuroanatomy, comparative anatomy, modern imaging techniques, molecular biology, embryology, morphologic studies of veterinary discipline, and teaching anatomy.

Publication Ethics
Anatomy is committed to upholding the highest standards of publication ethics and observes the following principles of Publication Ethics and Malpractice Statement which is based on the recommendations and guidelines for journal editors developed by the Committee on Publication Ethics (COPE), Council of Science Editors (CSE), World Association of Medical Editors (WAME) and International Committee of Medical Journal Editors (ICMJE). For detailed information please visit the online version of the journal which is available at www.anatomy.org.tr

Authorization
All persons designated as authors should have participated sufficiently in the work to take public responsibility for the content of the manuscript. Authorship credit should be based on substantial contributions to (1) conception and design or analysis and interpretation of data, (2) drafting of the manuscript or revising it for important intellectual content and, (3) final approval of the version to be published. The Editor may require the authors to justify assignment of authorship. In the case of collective authorship, the key persons responsible for the article should be identified and others contributing to the work should be recognized with proper acknowledgment.

Copyright
Copyright © 2015 by the Turkish Society of Anatomy and Clinical Anatomy, TSACA. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form without permission in writing from the copyright holder beforehand, exceptionally for research purposes, criticism or review. The publisher and the Turkish Society of Anatomy and Clinical Anatomy assume no liability for any material published in the journal. All statements are the responsibility of the authors. Although all advertising material is expected to conform ethical standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made of it by its manufacturer. Permission requests should be addressed to the publisher.

Publication Information
Anatomy (ISSN 1307-8298; e-ISSN 1308-8499) is published by Deomed Publishing, Istanbul, for the Turkish Society of Anatomy and Clinical Anatomy, TSACA. Due to the Press Law of Turkish Republic dated as June 26, 2004 and numbered as 5187, this publication is classified as a periodical in English language.

Ownership
On behalf of the Turkish Society of Anatomy and Clinical Anatomy, Ahmet Kağan Karabulut, MD, Ph.D, Korea

Responsible Managing Editor
Nihat Apaydın, MD, PhD, Ankara

Administrative Office
Phone: +90 312 447 55 52-53

Publisher
Deomed Publishing
Gür Sok. No.78 Kadıköy, Istanbul, Turkey
Phone: +90 212 414 83 43 (Fax) / Fax: +90 212 414 83 42
www.deomed.com / e-mail: medya@deomed.com

Submission of Manuscripts
Contributions should be submitted for publication under the following categories to:
Gülşin Sengüll, MD
Editor-in-Chief, Anatomy
Department of Anatomy, Ege University, Faculty of Medicine.
35100, Bornova, Izmir, Turkey
Phone: 0232 390 84 13
Fax: 0232 390 84 12
e-mail: gulsin.sengull@gmail.com; gulsin.sengull@ege.edu.tr

Categories of Articles
- Original Articles describe substantial original research that falls within the scope of the Journal.
- Teaching Anatomy section contains regular or ad hoc formats of papers which are relevant to teaching models or to introducing novel techniques, including especially the own experiences of the authors.
- Reviews section highlights current development in relevant areas of anatomy. The reviews are generally invited; other prospective authors should consult with the Editors-in-Chief.
- Case Reports include new, noteworthy or unusual cases which could be of help for basic notions and clinical practice.
- Technical Note articles cover technical innovations and developments with a specific technique or procedure or a modification of an existing technique. They should be sectioned like an original research article but not exceed 2000 words.
- Viewpoint articles give opinions on controversial topics or future projections, some of these are invited.
- Historical View category presents overview articles about historical sections from all areas of anatomy.
- Terminology Zone category is a platform for the articles which discuss some terminological controversies or opinions.

The categories above are peer-reviewed. They should include abstract and keywords. There are also categories including letters to the Editor, Book Reviews, Abstracts, Obituary, News and Announcements which do not require a peer review process.

For detailed instructions concerning the submission of manuscripts, please refer to the Instructions to Authors.

Subscription
Please send your order to Deomed Publishing, Gür Sok. No. 78 Kadıköy, Istanbul, Turkey. e-mail: medya@deomed.com

- Annual rates: Institutional 100 EUR, Individual 50 EUR (include postage and local VAT). Supplements are not included in the subscription rates.
- Membership of the Turkish Society of Anatomy and Clinical Anatomy, TSACA includes a reduced subscription rate to this journal.
- Change of address: Please send to the publisher at least six weeks in advance, including both old and new addresses.
- Cancellations: Subscription cancellations will not be accepted after the first issue has been mailed.

The online version of this journal is available at www.anatomy.org.tr

Advertising and Reprint Requests
Please direct to publisher. e-mail: medya@deomed.com

Printing and Binding
Rotolit Press, Istanbul, Turkey. Phone: +90 212 629 05 59-60
Printed in Turkey on acid-free paper (September 2015).
Editorial Board

Honorary Editor
Doğan Akığ, Ankara, Turkey

Founding Editors
Salih Murat Akkin, Istanbul, Turkey
Hakan Hamdi Çelik, Ankara, Turkey

Former Editor-in-Chief & Advising Editor
Salih Murat Akkin, Istanbul, Turkey

Editor-in-Chief
Gülgün Şengül, Izmir, Turkey

Editors
Nilay Apaydın, Ankara, Turkey
Kyung Ah Park, Seoul, Korea
George Pexinos, Sydney, Australia
Luis Puellas, Murcia, Spain
Mustafa F. Sargon, Ankara, Turkey
Ümit S. Şehirli, Istanbul, Turkey
Shane Tubbs, Birmingham, Al, USA
Emre Ulupınar, Eskisehir, Turkey

Associate Editors
Vaclav Baca, Prague, Czech Republic
Çağatay Barut, Zonguldak, Turkey
Jon Cornwell, Dunedin, New Zealand
Ayhan Çömert, Ankara, Turkey
Zeljko Kurtoğlu, Maribor, Slovenia
Scott Lozanoğlu, Istanbul, Turkey
Levent Sinkoğlu, Antalya, Turkey
Cristian Stefan, Boston, MA, USA

Executive Board of Turkish Society of Anatomy and Clinical Anatomy
Ahmet Kağan Karabalut (President)
Mehmet Ali Mela (Vice President)
Ümit S. Şehirli (Vice President)
Emre Ulupınar (Secretary General)
Nilay Apaydın (Treasurer)
Davut Özdoğan (Member)
Gülgün Şengül (Member)

Scientific Advisory Board
Peter H. Abrahams Cambridge, UK
Halil İbrahim Açar Ankara, Turkey
Esa Adiguzel Denizli, Turkey
Marijan Adamkova Martin, Slovakia
Mustafa Aktekin Istanbul, Turkey
Serap Arbak, Istanbul, Turkey
Mahendra Kumar Anand Gujarat, India
Duygu Angelov Cologne, Germany
Alp Bayramoğlu İstanbul, Turkey
Brian Benninger Lebanon, OH, USA
Susana Biscotto Cordoba, Argentina
Dragica Bobinac Riječ, Croatia
David Bolender Milwaukee, WI, USA
Eric Bremner Innsbruck, Austria
Richard Halli Cabral Sao Paulo, Brazil
Saffiye Cevdil Istanbul, Turkey
Katerina D’Herde Genk, Belgium
Özlem Yılmaz Dilsiz Izmir, Turkey
Fabrice Duparc Rouen, France
Izzet Düyar Istanbul, Turkey
Mirela Eric Novi Sad, Serbia
Camher Ertokün Izmir, Turkey
Metin Ertil Büyük İzmir, Turkey
Reha Erzurumlu Balıkesir, Turkey
Ali Ferhat Esmer Ankara, Turkey
Georg Feigl Graz, Austria
António José Goncalves Ferreira Lisboa, Portugal
Quentin Fogg Melbourne, Australia
Christian Fontaine Ville de France
Rod Green Bendigo, Australia
Bruno Grignon Nancy, France
Nadir Gülakon Ankara, Turkey
Yakup Günüşalan İstanbul, Turkey
Mürefet Hayran Ankara, Turkey
David Heylings Norwich, UK
Lazar Jelev Sofia, Bulgaria
David Kachik Prague, Czech Republic
Saimet Kapağan Erzurum, Turkey
Ahmet Kağan Karabalut Konya, Turkey
Neccet Kocabıyık Ankara, Turkey
Cem Kocak Samsun, Turkey
Mustafa Ayaşburt Kurt Bursa, Turkey
Piaye Kervançaoğlu Gaziantep, Turkey
Hee Jin Kim Seoul, Korea
Scott Lozanof COLUMBIA, OH, USA
Marios Loukas Grenada, West Indies
Veronica Matta Padova, Italy
Mehmet Ali Mela İzmir, Turkey
Petro Matusch Timisoara, Romania
Bernard Moxham Cardiff, Wales, UK
Konstantinos Natsis Thessaloniki, Greece
Helen Nicholson Dunedin, New Zealand
Davit Özdoğan Malatya, Turkey
P. Hands Oxlade Chicago, IL USA
Adrian Oztürk Istanbul, Turkey
Mehmet Hakan ÖzTÜRK Menemen, Turkey
Friedrich Paulsen Erlangen, Germany
Wojciech Pawlina Rochester, MN, USA
Tuncay Veyaç Pekin Ankara, Turkey
Vid Persaud Winnipeg, MB, Canada
David Porter Louisville, KY, USA
Jose Ramon Samudo Madrid, Spain
Mustafa Sarılı İzmir, Turkey
Tatsuo Sato Tokyo, Japan
Mohammadali M. Sheja Birmingham, AL, USA
Ahmet Sinav Gaziantep, Turkey
Talos Skandalakis Athens, Greece
Ahmet Songur Ankara, Turkey
Osman Salaik Istanbul, Turkey
Büşra Şentürk İzmir, Turkey
Ibrahim Tekdemir Ankara, Turkey
Hironobu Tokuno Tokio, Japan
Trifon Tsotlis Thessaloniki, Greece
Mehmet İbrahim Tuğlu Mersin, Turkey
Selçuk Tuna Ankara, Turkey
Ülger Türe İstanbul, Turkey
Mehmet Üzel İstanbul, Turkey
Iren Varga Bratislava, Slovakia
Tuncay Varol Manisa, Turkey
Charles Watson Sydney, Australia
Andreas H. Wolgel Graz, Austria
Bülent Yalçın Ankara, Turkey
Gazi Yaşargil Istanbul, Turkey
Hiroshi Yoshifuchi Gunma, Japan

Volume 9 / Supplement 2 / September 2015
XXIV International Symposium on Morphological Sciences
2nd–6th September, 2015, Istanbul, Turkey

Honorary Council
Hakan Hamdi Çelik
Erdoğan Şendemir

Secretary General
Ümit S. Şehiri

International Coordinators
Guido Macchiarelli
Diogo Pais
Gordana Teofilovski-Parapid
Yasuo Uchiyama

National and Public Relations Coordinator
Mehmet Ali Malas

Finance Coordinator & Treasurer
Cem Cemil Denk

Scientific Coordinator
Muzaffer Şeker

Organizers of the Scientific Program
Salih Murat Akkin
Serap Arbak
Özhan Eyigör
A. Kağan Karabulut
Levent Sarıkçıoğlu
Mustafa F. Sargon
Gülgün Şengül
Emel Ulupınar
Ahmet Usta

Social Program Coordinator
Mehmet Üzel

Organizers of the Social Program
Özgür Çakmak
Ayşin Kale
Ural Verimli
O-15

Relationship between concentration of alkaline phosphatase with bone destruction in periodontal disease patients

Kasuma N†, Darwin E†∗

†Department of Oral Biology, Faculty of Dentistry University of Andalas, West Sumatra, Indonesia; †∗Department of Histology, Faculty of Medicine University of Andalas, West Sumatra, Indonesia

Periodontitis is a chronic inflammatory process which affect connective tissues surrounding the tooth (gums, periodontal ligaments, and alveolar bone) leading to attachment loss. Periodontitis may progress to bone destruction and tooth loss if it is left untreated. Clinical characteristics of periodontal disease include bleeding and friable gums, gingival recession, deepening pockets surrounding the tooth (indicating loss of anchoring attachments), and eventual tooth loosening. Alkaline phosphatase is a hydrolase enzyme, which is synthesized and secreted by polymorphonuclear neutrophils during inflammation and by osteoblast during bone formation and also by periodontal ligament fibroblast during periodontal regeneration. Creating a local bone environment of alkalinity to help bone mineralization. Acute infection causes bone destruction mechanism. Chronic periodontal inflammation increase levels of acid and alkaline phosphatase and by all products from bacteria and the destruction of tissues that support the teeth. When the inflammation spread along the transseptal fibers, it will shows a resorption of the alveolar bone crest. Due to the severity of the periodontal inflammation and bone turnover rate will increase ALP concentration. In severe periodontitis, the increasing bone turnover intensifies bone destruction by osteoclast. The purpose of this study is to examine the relationships between concentrations of alkaline phosphatase with bone destruction in periodontal patients disease. This research involved 60 people with 20 healthy samples, 20 mild gingivitis samples, and 20 mild periodontitis samples. To see a normal distribution, Kolmogorov Smirnov Test is used (p<0.05). Post-hoc Bonferroni test is taken to test the differences each variables. Conclusion of this research is there are significant differences in the levels of Alkaline Phosphatase on the terms.

O-17

Uric acid induces glomerulosclerosis, tubular injury and renal fibrosis through transforming growth factor, 1 elevation and fibroblast expansion

Romi MM†, Arifin N†, Tranggumo U†∗, Sari DCR†∗

†Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; †∗Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia

Uric acid (UA) is an independent factor of cardiovascular diseases and induces renal damage. Transforming Growth Factor β1 (TGFβ1) is well known as a profibrotic factor in kidney and associated with fibroblast expansion. Here, we elucidate TGFβ1 modulation of hyperuricemia induced renal fibrosis in mice. Hyperuricemia is induced in Swiss Background mice (3-4 month, 30-35 gram, n=21) using intraperitoneal injection of 125 mg/kg of uric acid daily. NaCl injection was used in control mice. Mice were sacrificed in 7 (UA7) and 14 days (UA14) injection. Uric acid and creatinine serum is measured from retro-orbital blood serum before renal harvesting. Paraffin section is made, deparaffinized, then stained for Periodic Acid Schiff (PAS) and Sirius Red for glomerulosclerosis, tubular injury and fibrosis quantification. We extracted RNA and made cDNA, then run Reverse Transcriptase PCR (RT-PCR) for nephrogen, podocine, MCP-1 and ICAM-1. PDGF-R, immunostaining was done for quantification of fibroblast number. TGF-β1 was measured using ELISA. p<0.05 was used as significant difference during data analysis. Injection of UA induced significant elevation of uric acid and creatinine level after 7 and 14 days followed by significant increase of glomerulosclerosis and tubular injury score in uric acid group compared to control (p<0.05). Both UA7 and UA14 groups also
NILA KASUMA

with an oral presentation.

has participated in the scientific program of the XXIV International Symposium on Morphological Sciences held in Istanbul, September 2-6, 2015.

Prof. Dr. Erdogan Zengünmer

Prof. Dr. Hakan Hamdi Gelek
Relationship Between Concentration of Alkaline Phosphatase with Bone Destruction in Periodontal Disease Patient

Kasuma N.¹, Darwin E. ²

¹ Faculty of Dentistry University of Andalas, West Sumatera, INDONESIA
² Faculty of Medicine University of Andalas, West Sumatera, INDONESIA

Abstract

Periodontitis is a chronic inflammatory process which affect connective tissues surrounding the tooth (gums, periodontal ligaments, and alveolar bone) leading to attachment loss. Periodontitis may progress to bone destruction and tooth loss if it is left untreated. Clinical characteristics of periodontal disease include bleeding and friable gums, gingival recession, deepening pockets surrounding the tooth (indicating loss of anchoring attachments), and eventual tooth loosening. Alkaline phosphatase is an enzyme synthesized and secreted by polymorphonuclear neutrophils during inflammation, osteoblast during bone formation, periodontal ligament fibroblast during periodontal regeneration creating a local bone environment of alkalinity to help bone mineralization. This research involved 60 people with 20 healthy samples, 20 mild gingivitis samples, and 20 mild periodontitis samples. To see a normal distribution, Kolmogorov Smirnoff Test is used (p > 0.05). Post-hoc Bonferroni test is taken to test the differences each variables. Conclusion of this research is there are significant differences in the levels of Alkaline Phosphatase on the terms of the PDI group, which is highest in the mild periodontitis with mean = 135.74 ± 15.08 ng / dl. The condition of mild periodontitis rose 5.5-fold compared to healthy conditions.

Keyword: Alkaline Phosphatase, periodontal disease, periodontitis, bone destruction

Introduction

Periodontitis is a chronic inflammatory disease and infection of periodontal tissue begins with colonization and growth Gram-negative anaerobic bacteria and spirochetes. Periodontitis will cause attachment loss, bone destruction, mobility of teeth and loss of teeth. Periodontitis is innate and adaptive immune responses. Lytic enzymes with stimulated osteoclastogenesis causes host-mediated destruction of soft tissue (Graves and Cochran, 2003).

Diagnosis of periodontitis is generally simple; by measuring gingival pocket depth; measuring Periodontal Disease Index and dental X-ray, but to diagnose and to determine disease progression, treatment evaluation, researchers have been used biological marker which can be found in gingival crevicular fluid. One of the enzymes of tissue degradation is Alkaline Phosphatase (ALP). (Dabra, 2012).
ALP is intracellular enzymes which is found particularly in bones. Destructive processes in alveolar bone in advanced stages & acute phase increase ALP concentration. After periodontal therapy, ALP level turns into normal (Yoshie, et al, 2007). Humans have 4 types of ALP based on enzyme source: Tissue - nonspecific alkaline phosphatase (TNAP); Placental Alkaline Phosphatase (PLAP); Germ Cell Alkaline Phosphatase (GCAP); Intestinal Alkaline Phosphatase (IAP) (Milan, 2006). TNAP works in bone mineralization in periodontitis. Acute infection causes the mechanism that causes bone destruction. Chronic periodontal inflammation resulting in increased levels of acid and alkaline phosphatase, all produced from bacteria and the destruction of the tissues supporting the teeth. When the inflammation has spread along the fibers transeptal, it will show the presence of resorption of the alveolar bone crest. Due to the severity of the periodontal inflammation, bone turnover rate and ALP concentration increase. In severe periodontitis, the increasing bone turnover intensifies bone destruction by osteoclast. The purpose of this study is to see the relationship between ALP level and bone destruction in periodontal disease patients.

Method

This study is a cross sectional comparative study in 3 groups of sample based on Periodontal Disease Index (PDI) by Ramfjord. Samples were taken by consecutive sampling technique based on exclusion and inclusion criteria. The excluding criteria was consuming antibiotics and antiinflammatory during the last 3 months, smoker, pregnant, menstruation, have a systemic disorder such as diabetes mellitus, and got a history of periodontal treatment during the last 3 months. All subjects were informed of the purpose and informed consent was obtained from all the individuals and local ethical committee approval that was in accordance with the last update of Helsinki declaration was obtained.

GCF was collected in sterile test tubes from each person between 8.00 and 12.00 am. All subjects were requested to avoid eating and drinking 1 hours before sampling. GCF was collected with Absorbing Paper Strip method. Patients sit on dental chair then to rinse with a solution of 2% chlorhexidin. Paper points is inserted by using the technique of superficial intracrevicular then left for 3 minutes. then each tube was frozen at -20°C until sending to biochemistry laboratory. Another GCF collection was done only in patient group during 30 days. After 60 saliva samples were sent to biochemistry lab at one time to avoid the problems of several setting up of the unit. Samples were analyzed using Elisa Kit for ALP, homo sapiens (Human), sE91472Hu with detection range 3.12-200 ng/ml and sensitivity 1.36 ng/ml USCN product by spectrophotometer variant hemoglobin testing analyzer called Bio rad. The measurement of ALP in GCF which collected from gingival pocket from three groups is tested using ELISA sandwich method. Laboratory test performed on biomedical laboratory Faculty Medicine of Andalas University. SPSS statistically software using Post-hoc Bonferroni test is taken to test the differences each variables (p > 0.05).
Result

According to Table 1 there is significant difference between ALP level in mild periodontitis and mild gingivitis as well as healthy group based on Periodontal Disease Index (p<0.05).

Table 1. Difference of Alkaline Phosphatase levels (ng / dl) in Gingival crevicular Fluid with Periodontal Disease Based on PDI

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>PDI</th>
<th>f</th>
<th>Mean</th>
<th>SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>Healthy</td>
<td>20</td>
<td>24,68</td>
<td>19,74</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Mild Gingivitis</td>
<td>20</td>
<td>88,85</td>
<td>20,31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mild Periodontitis</td>
<td>20</td>
<td>135,74</td>
<td>15,08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>60</td>
<td>83,09</td>
<td>18,38</td>
<td></td>
</tr>
</tbody>
</table>

There are significant differences in the levels of ALP highest in the mild periodontitis with mean = 135,74 ± 15,08 ng / dl. Mild gingivitis patients likely to have elevated levels of ALP 3.6-fold. Mild periodontitis rose 5.5-fold compared to healthy conditions.

Tabel 2. Differences of each group with Post-hoc Bonferroni test based on Periodontal Disease Index (PDI).

<table>
<thead>
<tr>
<th>ALP Level</th>
<th>Healthy</th>
<th>Mild Gingivitis</th>
<th>Mild Periodontitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Mild Gingivitis</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
</tr>
<tr>
<td>Mild Periodontitis</td>
<td>0,00</td>
<td>0,00</td>
<td>-</td>
</tr>
</tbody>
</table>

There is significant difference of ALP level between healthy and mild gingivitis group, healthy and mild periodontitis, mild gingivitis and mild periodontitis group (p<0.05).
Discussion

The increased activity of ALP, indicates that the pathological destructive process had affected the alveolar bone, which means that periodontal disease had significantly advanced. Alkaline Phosphatase is bone metabolism enzyme. ALP is enriched in the membranes of mineralizing tissue cells (e.g. osteoblasts) and PMN granules. ALP is produced by some oral bacteria, (gram-negative microorganisms) in subgingival plaque (Dabra, 2012).

ALP is the main glycosylated protein present in bone which is bound to osteoblast cell surfaces via a phosphoinositol linkage within mineralized matrix, plays an as-yet-undefined role in mineralization of bone (Whyte, 1994; Clarke, 2008). Major source of ALP during inflammation has been proposed to be neutrophils, then cause bone loss. Neutrophil predominance in the pocket epithelium and the pocket itself. ALP regulate mineralization process. ALP increases the concentration of phosphorus, growth inhibitors of hydroxy apatite and phosphoprotein (Usal et al., 2008). The source of ALP are polymorphonuclear neutrophils during inflammation, osteoblasts for bone formation, periodontal ligament fibroblasts during periodontal regeneration.

ALP bind and regulate calcium and phosphate mineral deposition by regulating the amount of hydroxyapatite formed. This enzyme is first identified to indicate the location of the inflammation. When osteoblasts form bone, and fibroblast regenerate the periodontal ligament, ALP production increased. Among the enzyme in GCF, ALP is one of the first identified, which are membrane-bound glycoprotein produced by the cells in the periodontium and gingival crevice. There is a double involvement in the process of periodontal inflammation and healing/regeneration. (Perinetti et al., 2008)

Reference


Millan, Jose Luis. Alkaline Phosphatases Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. 2006. Journal List Purinergic Signal

