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Abstract.  This research is aimed to design and analyze the performance of double dynamic vibration 

absorber (DVA) using a pendulum and a spring-mass type absorber for reducing vibration of two-DOF 

vibration system. The conventional fixed-points method and genetics algorithm (GA) optimization 

procedure are utilized in designing the optimal parameter of DVA. The frequency and damping ratio are 

optimized to determine the optimal absorber parameters. The simulation results show that GA optimization 

procedure is more effective in designing the double DVA in comparison to the fixed-points method. The 

experimental study is conducted to verify the numerical result. 
 

Keywords:  vibration; absorber; mass-spring; pendulum; GA 

 
 
1. Introduction 
 

The dynamic vibration absorber (DVA) is a device which is added on a body or structure to 

reduce vibration. The concept of DVA was firstly proposed by Frahm in 1909. Early studies 

outlined the basic theory and analytical method to optimize undamped and damped single mass 

DVA for the entire frequency range was conducted by Ormondroyd and Den Hartog in 1956. 

DVAs are widely used on structures and machinery to passively reduce vibration. One 

application of DVA is for reducing vibration of tower suspension bridge (Casciati and Giuliano 

2009). Other applications which DVAs were also used including controlling multi storey building 

vibrations (Seto et al. 2011), seismic protection of high towers (Giuseppe et al. 2008), reducing 

chatter during boring operation (Hu et al. 2013) and suppressing image transfer belt system 

vibration (Yu et al. 2013). Nigdeli and Bekdas (2013) evaluate the application of TMD for 

preventing Brittle Fracture of RC Building. 

The DVA performance will work effectively when the optimal DVA parameters are selected. 

For single degree of freedom (SDOF) vibration system, the optimal DVA parameters can be 

calculated directly using dynamic properties of SDOF main system. In this situation, the optimal 

natural frequency and damping ratio of the DVA are calculated as functions of DVA-structure mass  
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Design of double dynamic vibration absorbers for reduction of two DOF vibration system 

effectiveness of DVA designed by GA will be compared to the conventional DVA design using 
fixed-points method. Finally, the experimental study is conducted to verify the simulation result.  

 
 
2. System modelling 
 

2.1 Governing equation of the system 
 

 Two-DOF spring-mass system is used to simplify the building model as shown in Fig. 1. Two 
dynamic absorbers consist of a pendulum and a spring-mass system are attached to the second 
mass of the main system as depicted in Fig. 2. It is assumed that the relative axial displacements of 
connecting beam shown in Fig. 1 are much smaller than its lateral displacement and the rotating 
motion of the floors are neglected. Therefore, the spring stiffness in horizontal motion can be 
calculated using theory of beam element for fixed-fixed boundary condition. This stiffness is then 
easily found as 

 3
12 b b

b
b

E I
k 

                                  

(1) 

where Eb, Ib and ℓb are elastic modulus, inertia moment and length of beam, respectively. Because 
of each floor are connected by four beam elements, the equivalent stiffness can be calculated by 

 3
12

4 4 b b
e b

b

E I
k k   

                             

(2) 

The governing equation of Two-DOF building using double dynamic absorber as shown in Fig. 
2 can be written as 

1 1 1
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0 0 0 0 0
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 
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 
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e e d d
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k k x k
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m gR

     
                              



               

 (3) 

or 

              M x C x K x f                           (4) 

where R is the pendulum length. For simplification purpose, the damping components of the main 
system are set to be zero. This assumption is realistic for structural damping of the main system 
used in this case study. However, the damping components of the absorber cd1 and cd2 are added 
into the governing equation of the system as depicted in Eq. (3). By using the modal analysis  
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3.1.1 Equivalent system with pendulum type absorber 
Fig. 4(a) shows the SDOF equivalent model of main system for the first vibration mode at x2 

coordinate point with pendulum type absorber. The stiffness and mass of this equivalent model are 
obtained using Eq. (8). Governing equation of the system are written in matrix form as 

 
1 1 1
2 1 1 2 2

02
11 1 1

0 0 0
sin

0 0 0
d d

dd d d

x x xM m m R K K
X t

cm R m R m gR

            
             

           


  
 
 

      
(10) 

The normalized amplitude of the main system is calculated by  

 
   

       

22 2 2
1 1 1 1
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1 1 1 1 1 1 1 1 1 1
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h f hX

X h h h f h h f

 

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  
         (11) 
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1
1
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m R
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3.1.2 Equivalent system with mass-spring type aAbsorber 
The SDOF equivalent model of main system for the second vibration mode at the x2 coordinate 

point with mass-spring type absorber is depicted in Fig. 4(b). The stiffness and mass parameters 
for this equivalent model are calculated using Eq. (9). Equations of motion of the system can be 
expressed in 

2 2 2
2 22 2 2 2 2

0
2 22 2 2

0
sin

0 0
d d d d

d d d d dd d d

x c c x xM K k k K
X t

x c c x xm k k
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
 

 
    (12) 

The main system normalized amplitude is written by  
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3.1.3 Optimum tuning frequency and damping ratio 
The optimum tuning frequency of absorber using two fixed-points method has been derived by 

Den-Hartog (1956). The optimum tuning frequency for the pendulum and mass-spring type 
absorber are expressed as follows 

1
1

1

1optf 
 

 ; 2
2

1

1optf 
 

                         (14) 
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The optimum damping ratios are given by 

 
 

2 1
1

1

3

8 1opt 




; 
 

2 2
2

2

3

8 1opt 




                     (15) 

 
3.2 GA optimization procedure 

 
The genetic algorithm (GA) is an optimization and search technique based on the principles of 

genetics and natural selection (Haupt and Haupt 2004). This method selects one population 
composed of many individuals utilizing specified criteria, which minimize the cost function. The 
method was developed by John Holland and popularized by one of his students, David Goldberg.  

In the case of dynamic absorber design, generally two optimization criteria can be used for 
obtaining the optimal absorber parameters. In the first criterion, the objective is to minimize the 
maximum amplitude ratio of the response of the primary system to excitation force or motion. In 
another criterion, the objective is for reducing the total vibration energy of the system in the 
overall frequencies.  

In this research, the first optimization criterion is used for calculating the optimum parameters 
of dynamic absorber using GA procedure. To achieve this purpose, the objective function is 
formulated as the sum of the maximum amplitude ratio in the frequency region that is close to 
each natural frequency of the main system. For two-DOF building model with dynamic absorbers 
as shown in Fig. 1, the cost function is calculated by 

    1 2max max 1Cost function wF w F                     (16) 

Variable w in Eq. (16) denotes the weighting number. Variables F1 and F2 are functions which 
describe the amplitude ratio between response and excitation signal. These two functions are 
evaluated for frequency range near to the first and the second natural frequency of main structure. 
These amplitude ratios can be obtained by calculating the absolute value of frequency response 
function as given by  

     
   2

1

N
jr kr

jk
r r r r

F
k m i c

 
 

  
 

                    (17) 

Where 

 
1 11 at L RF F                                (18) 

 
2 22 at L RF F    

                           
(19) 

Variables L1 and R1 denote the left and right side boundary of the first frequency function.  
The same rule is also applied to L2 and R2 for the second frequency function. The optimized 
variables for optimization are frequency ratios f1 and f2 and damping ratios 1 and 2. For two-DOF 
building model with double dynamic absorbers, variable f1 and f2 are calculated using Eq. (14). 
Meanwhile, variable 1 and 2 are calculated from Eq. (15).  

Fig. 5 shows the GA algorithm procedure in calculating the optimal parameter of double 
dynamic vibration absorber. The algorithm begins with defining the cost function, variables and 
GA parameters such as population size, number of parameters, fraction of population kept and  
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