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ABSTRACT 

The presence of long memory time series is characterized by autocorrelation function which 
decrease slowly or hyperbolic. The best suited model for this time series phenomenon is 
Autoregressive Fractionally Integrated Moving Average (ARFIMA) that can be used to model 
historical stock price in financial data analysis. This research is aimed to assess the ARFIMA 
modeling on long memory process with parameter estimation method of Geweke and Porter 
Hudak (GPH), and applied to opening price of Kedaung Indah Can Tbk Stock from May 2nd 2005 
until March 26th 2012. The best suited model is found ARFIMA(5,0.452,4) where for short time 
forcasting is shown very close to actual stock price with small standard error. 

Keywords: Long memory process, autoregressive fractionally integrated moving average, stock price, 
Geweke and  Porter Hudak method. 
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1. INTRODUCTION 

The concept of long memory process has developed and gave its substantial evidence to describe the 

phenomenon in time series such as data behavior in financial and macroeconomics. The presence of 

long memory can be defined from an empirical approach in terms of the persistence autocorrelations 

between observed time series data. The extent of the persistence is detected by data stationary along 

the process, that is characterized by autocorrelations which decrease slowly or hyperbolic associated 

with class of autoregressive moving average. 

The most noted definition of long memory process has been given by Haslet and Raftery (1989), they 

said that the data are categorized as long memory is marked with autocorrelations function plot does 

not fall exponentially but decrease slowly or hyperbolic. The phenomenon of this long memory in time 

series was introduced by Hurst (1951) in different data sets. Granger and Joyeux (1980) and Hosking 

(1981), developed a model suited for long memory process that is Autoregressive Fractionally 
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Integrated Moving Average (ARFIMA), where the best model explained time series in the form of short 

memory and long memory with differencing parameter as a real numbers. 

The study of long memory process, particularly regarding to ARFIMA model is developed in many 

data analysis over both time and space, and one of its most attraction is suited to long run predictions 

and effects of shocks to conventional macroeconomic approach. Therefore, in this study it will be 

shown long memory process using ARFIMA models with differencing parameter estimation method by 

Geweke and Porter Hudak (GPH) to historical data from the opening price Kedaung Indah Can Tbk 

stock. The used of ARFIMA model in this study because it can estimate differencing parameter 

directly and it is not necessary at the beginning to know the value of the order from autoregressive 

and moving average. 

2. LONG MEMORY PROCESS AND AUTOREGRESSIVE FRACTIONALLY                    
INTEGRATED MOVING AVERAGE 

There are several possible definitions of long memory process and its properties. According to Palma 

(2007), let ),()( htt XXCovh ���  be the Autocovariance Function (ACVF) at lag h of the stationary 

process �tX t :{  where tX is data at time t. The long memory process is presence if satisfy 

.)( ���
�

���h

h�

Furthermore, Wei (1990) has explained that a process }{ tZ  where tZ satisfy difference equations  

tt
d ZX �	 is called white noise if it is a sequence of uncorrelated random variables from a fixed 

distribution with mean zero, and variance 2
 and 0),( �� �htth ZZCov�  for all 0�h .

Long memory model is divided into short memory and long memory process by using ARFIMA model. 

In the following Brockwell and Davis (1991) give some important definition related to ARFIMA model. 

Definition 1. The process },1,0,{ ���tX t  is said to be an ARFIMA(0,d,0) process with )21,21(��d

if }{ tX  is a stationary solution with mean zero with the difference equations 

tt
d ZX �	

where }{ tZ  is white noise. The process }{ tX  is often called fractionally integrated noise. 

Definition 2. The process },1,0,{ ���tX t  is said to be an ARFIMA(p,d,q) process with )21,21(��d

or a fractionally integrated ARMA(p,q) process if }{ tX  is stationary and satisfies the difference 

equations 

,)()( tqt
d

p ZBXB 
� �	
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where }{ tZ  is white noise, fractional difference operator dd B)1( ��	 , and 
� , are polynomials 

degrees of  p and q respectively. 

Hosking (1980) has explained that the fractional difference operator on the ARFIMA(p,d,q) model is an 

expansion of the binomial 
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B is the backward shift operator, and )(X�  is the gamma function, so that 
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Spectral density is a positive real function of the frequency variable associated with a deterministic 

function of time. Palma (2007) has explained spectral density as follows 
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with 22
0 |)()(|)2()( �� �
�
� ii eef ���  is the spectral density of ARMA(p,q) and �  is the frequency of 

the periodogram. 

The value of ACVF from ARFIMA(0,d,0) model is given by 

,
)1(
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)1(
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0 dh
dh

d
dh
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where (.)�  is the gamma function, h is lag, n is the number of observations. Autocorrelation Function 

(ACF) is a correlation of time series between }{ tX  and }{ htX � . The equation of ACF can be written as 

follows

.
)1(
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)1()(0 dh
dh

d
dh
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The Partial Autocorrelation Function (PACF) is a correlation between }{ tX  and }{ htX �  if there are 

time lag influence from 1, 2, 3, ... , h-1. The PACF was as follows 

,
)( dn

d
nn �
��

and )( ndnn ��  for large n.
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According to Boutahar and Khalfaoui (2011), and Hosking (1981), the main characteristics of an 

ARFIMA(p,d,q) model as follows 

1. If 21� d , then tX  is invertible. 

2. If 21!d , then tX  is stationary. 

3. If 021 !!� d , then ACF )(h�  decreases more quickly than the case 210 !! d , this model is 

called short memory. 

4. If 210 !! d , then tX  is a stationary long memory model which is the ACF decays hyperbolically 

to zero. 

5. If 21�d , then spectral density is unbounded at zero frequency. 

The reason for choosing this family of ARFIMA(p,d,q) process for modeling purposes is therefore 

obvious from characteristic differencing parameter d. The effect of the d parameter on distant 

observation decays hyperbolically as the lag increases, while the effects of the �  and 
  parameters 

decay exponentially. Thus d may be chosen to describe the high lag correlation structure of a time 

series while the �  and 
  parameters are chosen to describe the low lag correlation structure. Indeed 

the long term behavior of an ARFIMA(p,d,q) process may be expected to be similar to that of an 

ARIMA(p,d,q) process with the same value of d, since for very distant observations the effects of the 

the �  and 
  parameters will be negligible.  

3. EMPIRICAL RESULT 

This section is to give emperical result of data analysis to describe ARFIMA model. The best suited 

ARFIMA model for historical stock price is using to forecast long run prediction. 

3.1. Data and Methods 

We perform the analysis of long memory process from Kedaung Indah Can Tbk stock in the period 

May 2nd 2005 until March 26th 2012 during 344 weeks. This historical stock prices data is used to 

obtain time series model and its forecasting. The analysis follows these steps: 

1. Model Identification 

Iidentification of patterns for time series  is using  plot of ACF and PACF, and then using Augmented 

Dickey Fuller (ADF) test to identifying its stationarity. In the case of mean is not stationary, it is used 

differencing with parameter d, for the short memory process differencing d as an integer number, 

while for long memory process, carried out with differencing d as an real number is located at 

210 !! d .

2. Parameter Estimation 

One of the differencing parameter estimation method is using GPH. This estimator suggests that the 

parameter d, which is also called the long memory parameter, can be consistently estimated from 
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least squares regression, that is obtained from a logarithmic regression of spectral density. Estimation 

of long memory parameter d, denoted by GPHd̂ , is defined as follows 

�
�

�

�

�

��
�� m

j jj

m

j jjjj
GPH

xx

yyxx
d

1
2

1

)(

))((ˆ ,

where 21nm � is number of fourier frequancies for n observations, jx is jth data observation and jy
is jth variable for spectral density. 

3. Diagnostic Checking 

After going through the parameter estimation steps, the next steps in the testing of ARFIMA modeling 

is residuals, whether they are independent, have zero mean and constant variance. This assumption 

is tested by Ljung-Box test (see Wei, 1990). In addition, the residual must satisfy the assumption of 

normal distribution, because the parameter p and q in ARFIMA are estimated using maximum 

likelihood. To test whether the residuals are normally, can be done using Kolmogorov Smirnov test. 

4. Forecasting 

The next steps in the analysis of time series is a forecasting. Bisaglia (2002) has explained that there 

are some criteria within selection of model. 

(i) Akaike Information Criterion  (AIC). 

The model selected is a model with the lowest AIC value. The equation is used to count the AIC value 

is

).1(2)ˆln( 2 ���� qpnAIC n


(ii) Akaike Information Criterion with Correction (AICC). 

The model with the lowest AICC value is selected, were AICC equation as follow 

.
)2(
)1(2)ˆln( 2

���
��

��
qpn
qpnnAICC n


(iii) Bayesian Information Criterion (BIC). 

The model selected is a model with the lowest BIC value. The equation of BIC as follow 

nqpnBIC n log)1()ˆln( 2 ���� 


where 2ˆ n
  is variance of white noise model, and n is number of observations. 

According to Brockwell and Davis (1991), the best linear estimation of htX �  is htX �
~

. Assume that the 

model of causality and invertibility, so then it is obtained time series forecasting as follows    

...,~~,~
2

1

2
112

1
11 jt

t

j
jtt
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j
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where �  is parameter for times series model.  
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3.2. Model Identification 

The first step to make model identification is by using time series plot. The plot of opening price data 

from Kedaung Indah Can Tbk stock price are presented in the following figure 

          Figure 1. Opening Price Data of Kedaung Indah Can Tbk. 
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Figure 2. ACF of Opening Price Kedaung Indah Can Tbk Stock Before Differencing. 
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Figure 3. PACF of Opening Price Kedaung Indah Can Tbk Stock Before Differencing. 

Based on Figure 1, it can be seen that the time series is not spread fairly stationary. Therefore, it 

needs to do differencing. In addition, it is also examined the ACF and PACF to identify with certainty 

the stationary property. Figure 2 shows autocorrelation of each lag hyperbolic decreased slowly 

towards zero, while Figure 3 shows cut lag after lag p. This indicates stationarity and long memory 

process, to solve this problem, the suited model which can be used is ARFIMA(p,d,q) model, where d

is long memory parameter. 

3.3. Parameter Estimation 

Differencing parameter d is estimated by using GPH method on opening price data from Kedaung 

Indah Can Tbk stock, by developing macro on MATLAB 5.3 program, it is obtained a value of long 

memory parameter d is 0.452. 

     Figure 4. Opening Price Data of Kedaung Indah Can Tbk Stock After Differencing. 
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Figure 5. ACF of Opening Price Kedaung Indah Can Tbk Stock After Differencing d = 0.452. 

    

5 10 15 20 25

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

Lag

P
ar
tia

l A
C
F

Figure 6. PACF of Opening Price Kedaung Indah Can Tbk Stock After Differencing d = 0.452. 

Plot the time series after differencing can be seen in Figure 4, in addition ACF and PACF plot after 

differencing is presented in Figure 5 and Figure 6. Figure 5 shows that the lag q is cut at lag 1, 2, 4, 

and 5, whereas in Figure 4.2.3 show that the lag p is cut at lag 1, 2, 5, 12, and 19. Therefore, there 

are few estimates of ARFIMA(p,d,q) model to be tested. After going through the process of sorting 

between the AIC, AICC, and BIC, ARFIMA model is obtained (5,0.452,4) as the best model with the 

value of AIC = 3309.67, AICC = 3310.33, and BIC = 3348.07. 

3.4. Diagnostic Checking 

After obtained a model with significant parameters, it is necessary to do diagnostic tests including 

checking residuals wheter they are independent and normally distribution or not. To examine the 
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independent of residual, it is used Ljung-Box test. The results of Ljung-Box test is obtained with         

p-value = 0.9171 "#  for " = 0.05, this means that the ARFIMA(5,0.452,4) model has been qualified by 

the independent of residual white noise. In addition to testing the residuals are independent, also 

tested whether the residuals are normally distributed using the Kolmogorov Smirnov test. Results 

obtained from the Kolmogorov Smirnov is a value of D = 0.054 and p-value = 0.2685 "# . This means 

that the residuals is normally distributed. Therefore ARFIMA(p,d,q) model which can be used at this 

stage of the forecasting is ARFIMA(5,0.452,4) model. 

3.5. Forecasting 

On the opening price data from Kedaung Indah Can Tbk stock is obtained ARFIMA(5,0.452,4) as the 

best model that can be used in forecasting. The model can be written as follows 

tt ZBXB )()( 4
452.0

5 
� �	

������� tXBBBBBB 452.05432 )1()1108.07113.02534.02094.07863.01(

.)8494.04354.01572.070681( 432
tZBBBB ����

Table 1: Forecasting Result of Indah Can Tbk opening stock price. 

Date Actual Forecast Se

02/04/2012 215 248.9972 29.56453 
09/04/2012 245 248.7835 34.89799 
16/04/2012 250 233.1545 39.15815 
23/04/2012 255 241.9793 41.40609 
30/04/2012 240 240.8529 41.14317 

Index: se is square error. 

Figure 7. Opening Price Data of Kedaung Indah Can Tbk Stock and Forecasting. 
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The forecasting results of ARFIMA(5,0.452,4) model for April 2012 are shown in Table 1 and Figure 7. 

Table 1 is showing that result of forecasting for April 2012 having value which is close enough to its 

actual data. This is to confirm ARFIMA model has given best suited for long memory process.

4. CONCLUSION 

In this paper, it is studied forecasting long memory time series for stock price with model 

autoregressive fractionally integrated moving average. This model is denoted by ARFIMA(p,d,q), that 

is

,)()( tqt
d

p ZBXB 
� �	

where }{ tZ  is white noise, ,1)( 1
p

pp BBB ��� ���� � ,1)( 1
q

qq BBB 


 ���� �  and d	 is the 

fractional difference operator with d real number is located at .210 !! d  The model ARFIMA(p,d,q) is 

applied to the opening price data of Kedaung Indah Can Tbk stock from May 2nd 2005 until March 

26th 2012, the best suited model is ARFIMA (5,0.452,4). This model is good enough to forecast short 

time prediction for long memory time series where forecasting result is very close to actual data with 

small square error. 
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