Abstract: This paper offers a new method to control solar panel orientation. The technique is applied by varying the position and ratio of the added mass to the total mass of solar... View more

Metadata

Abstract:

This paper offers a new method to control solar panel orientation. The technique is applied by varying the position and ratio of the added mass to the total mass of solar panel, \(\frac{m}{m_0} \) (%). The added mass position is varied from the axis point up to the end point of the solar panel. The solar panel orientation is influenced by the moving mass position. The oscillation in solar panel caused by the moving mass is eliminated by adjusting the equivalent damping torque \(c \), and the solar panel maximum orientation is varied by changing the equivalent torsion spring \(k_z \). The simulation results proved that the solar panel orientation changed from 0° to 60.63° for parameter values \(\frac{m}{m_0} = 15\% \), \(r/0.5r \approx 35\% \), \(c_z = 3 \text{ Nm/rad/sec} \) and \(k_z = 1 \text{ Nm/rad} \). The ability of the system to control the orientation and ratio of \(\frac{m}{m_0} \) dan \(r/0.5r \) is effective to reduce energy consumption of the solar panel orientation controlling system.
Semi Active Control of Solar Tracker Using Variable Position of Added Mass Control
Ali Basrah Pulungan; Lovely Son; Syamsul Huda; Syafii; Ubaidillah
Publication Year: 2019, Page(s): 1 - 5
Abstract

Characteristics of Lead-Acid Battery Charging and Discharging Against Residential Load in Tropical Area
Syafii; Yona Mayura; Aejelina El Gazaly
Publication Year: 2019, Page(s): 1 - 6
Abstract

Characteristics of Lead-Acid Battery Charging and Discharging Against Residential Load in Tropical Area
Syafii; Yona Mayura; Aejelina El Gazaly
Publication Year: 2019, Page(s): 1 - 6
Abstract
Executive Committee

ADVISOR
- Dr. Ir. Hendri D.S. Budiono, M.Eng., Universitas Indonesia
- Ir. Insannul Kamil, M.Eng, Ph.D., Universitas Andalas

GENERAL CHAIR
Dr. Eng. Muhamad Sahlan, Universitas Indonesia

CO-CHAIR
Dr. Yudan Wulanza, Universitas Indonesia

INTERNATIONAL ADVISORY BOARD
- Prof. Benny Tjahjono, Conventry University
- Prof. Suk Young Kim, Yeungnam University South Korea
- Assoc. Prof. M. Akbar Rhamdani, Swinburn University Australia
- Prof. Ray-Guang Cheng, National Taiwan University of Science
- Prof. Shi-Wei Lin, National Taiwan University of Science
- Dr. Aya Hagishima, Kyushu University
- Prof. Afshin J. Ghajar, Ph.D., P.E., (School of Mechanical and Aerospace Engineering, Oklahoma State University)
- Prof. Diego Ramirez-Lovering, Monash University
- Associate Professor. David McCarthy, Monash University, Australia
- Prof. Samuel Kinde Kassegne, Ph.D, PE, San Diego State University
- Dr. Jerome Charmet, University of Warwick

STEERING COMMITTEE
- Dr. Ir. Muhamad Asvial, M.Eng., Universitas Indonesia
- Prof. Dr. Ing. Nandy Putra, Universitas Indonesia
- Dr. Dwi Marta Nurjaya, S.T., M.T., Universitas Indonesia
- Jos Istiyanto, S.T., M.T., Universitas Indonesia
- Dr. Eng. Arief Udhiarto, S.T., M.T., Universitas Indonesia
- Dr. Eng. Arief Udhiarto, S.T., M.T., IPM., Universitas Indonesia
- Dr. Ir. Imansyah Ibnu Hakim, M.Eng., Universitas Indonesia
- Dr. Badrul Munir, ST., M.Eng.Sc. I Universitas Indonesia
- Prof. Dr. Ir. Riri Fitri Sari, M.M. M.Sc., Universitas Indonesia
- Prof. Dr. Anne Zula, M.Sc., Universitas Indonesia
- Dr. Ir. Nahry, M.T., Universitas Indonesia
- Dr. Ir. Yuliusman, Universitas Indonesia
- Ir. Evawani Ellisa, M.Eng, Ph.D., Universitas Indonesia
- Ardiansyah, Ph.D., Universitas Indonesia
- Prof. Dr. Eng. Gunawarman, Universitas Andalas
- Ir. Taufik, M.T., Universitas Andalas
- Dr. Is Prima Nanda, MT., Universitas Andalas
- Dr. Hendra Suherman, Universitas Bung Hatta

SCIENTIFIC PUBLICATION PARTNER
- Dr. Eng. Radon Dhelika, B.M. Eng., Universitas Indonesia
- Eny Kusrini, Ph.D., Universitas Indonesia
- Dr. Eng. Reni Desmiarti, Universitas Bung Hatta

TECHNICAL PROGRAM COMMITTEE
- Wahyuaji N. Putra, S.T., M.T., Universitas Indonesia
- Aji Setyo Arifin, ST., M.T., Ph.D., Universitas Indonesia
- Dr. Ing. Yulia N. Harahap, ST. M.Des.S., Universitas Indonesia
- Dr. Oknovia Susanti, Universitas Andalas
Elita Amrina, Ph.D., Universitas Andalas
Dr. Aulia, Universitas Andalas
Dr. Eng. Zulkamaini, Universitas Andalas
Nurhamidah, M.Eng., Universitas Andalas
Dr. Jonny Wongso, Universitas Bung Hatta
Israhuddin, M.T., Universitas Dharma Andalas
Ridho Aidil Fitrah, M.T., Universitas Dharma Andalas

SPONSORSHIP COMMITTEE

Annisa Marlin, ST., MSc., Universitas Indonesia
Abstract
This paper offers a new method to control solar panel orientation. The technique is applied by varying the position and ratio of the added mass to the total mass of solar panel, \(\frac{m}{m_T}\) (%). The added mass position is varied from the axis point up to the end point of the solar panel. The solar panel orientation is influenced by the moving mass position. The oscillation in solar panel caused by the moving mass is eliminated by adjusting the equivalent damping torque \(c\), and the solar panel maximum orientation is varied by changing the equivalent torsion spring \(k\). The simulation results proved that the solar panel orientation changed from 0 to 60,63 for parameter values \(\frac{m}{m_T} = 15\%\), \(\frac{r}{0.5r} = 35\%\), \(c = 3\) Nm/rad/sec and \(k = 1\) Nm/rad. The ability of the system to control the orientation and ratio of \(\frac{m}{m_T}\) dan \(\frac{r}{0.5r}\) is effective to reduce energy consumption of the solar panel orientation controlling system. © 2019 IEEE.
Abstract—This paper offers a new method to control solar panel orientation. The technique is applied by varying the position and ratio of the added mass to the total mass of solar panel, \(m/m_p \) (%). The added mass position is varied from the axis point up to the end point of the solar panel. The solar panel orientation is influenced by the moving mass position. The oscillation in solar panel caused by the moving mass is eliminated by adjusting the equivalent damping torque \(c_e \), and the solar panel maximum orientation is varied by changing the equivalent torsion spring \(k_e \). The simulation results proved that the solar panel orientation changed from \(0^\circ \) to \(60,63^\circ \) for parameter values \(m/m_p = 15\% \), \(r/0,5r_t = 35\% \), \(c_e = 3 \) Nm/rad/sec and \(k_e = 1 \) Nm/rad. The ability of the system to control the orientation and ratio of \(m/m_p \) dan \(r/0,5r_t \) is effective to reduce energy consumption of the solar panel orientation controlling system.

Keywords—orientation, control, solar panel, oscillation

I. INTRODUCTION

The conversion of solar energy into electrical energy can be conducted using a solar panel system. However, the fixed system of solar panels usually have a low efficiency value which is less than 20% [1]. The efficiency can be increased by setting the orientation in the solar panels by implementing either passive or active solar tracker system [2].

The Passive tracker operates based on solar radiation with varying designs, such as shape memory alloy or thermal expansion. In general, passive tracker consist of simple structure, requires less installation equipment without additional electricity supply, and cheap [3]. However, this tracker has disadvantages as well such as its dependency of sunlight existence and less efficiency (between 2% -23% compared to a fixed system) [3]-[5].

Meanwhile, the active tracking system is classified into two types, i.e. single axis tracker and dual axis tracker. These tracker are operated by using electric motor as its actuator. Several studies revealed that the active solar tracker either using single axis or dual axis were able to increase energy efficiency higher than the fixed solar panel system [6]-[11]. The efficiency was increased up to 29.37% in average [12].

Although the active tracking system is able to provide better efficiency compared to other types; the literature [13] shows that the energy loss in the system is high during operation due to the presence of additional units and joint motion. The daily average energy consumption of the actuator in a single axis active tracking system is estimated to be around 14%-28% of the energy produced, this energy consumption is required for each different weather condition. While the increase in energy produced by using a single axis tracker is around 12%-20%.

Another problem with active trackers is the possibility of miss-tracking and control system failures that can be caused by a failure on the sensor [13]. Moreover, another research claims that there is an interference in the form of oscillations due to the movement of the tracker [3]. The oscillation occurs because of no existence of damper system on the active tracker. Therefore it needs a stable and no oscillation control system that can follow slow solar movements. Based on those explanations, the solar tracking system must consider the tracking axis configuration, the optimization of movement and the appropriate control system to obtain higher efficiency [14].

To avoid the possibility of oscillations due to the change of orientation, it is better to add mass, adjust damping, and control the stiffness value. This control system used in this solar panel orientation is called as a semi-active system. The utilization of the semi-active control system is expected to be able to reduce the energy consumption since a mass can still move with a minimum energy.

II. SEMI ACTIVE CONTROLLER

Semi active control system is known as a system which is its properties can be changed without any external energy. The varying techniques of semi-active control can be implemented by controlling the mass, damping, and rigidity [15].

Semi-active dampers have varying attenuation properties so they can be adjusted by reducing the vibration perceived by the receiver. One of the semi-active control methods is by using MR (Magneto Rheological) fluid damper. This damper can be controlled by varying the current injected to the damper in real time and can produce a large damping force. The use of this damper can control the bridge response, with support of 69% [16].

Another semi-active control method is Semi-Active Stiffness Dampers (SASD) which consists of cylinders filled with fluids, pistons, and valves controlled by motors. The motor regulates valve openings, thus it controls the flow of thick fluid (such as oil) and adjusts the damping coefficient in real time [17]. These Semi-Active Stiffness Dampers...
(SASD) have been developed with Resetting Semi-Active Stiffness Dampers (RSASD) [18]. This system works by adding stiffness to the system when the valve is closed and removing the energy absorbed when the valve is open.

The element of mass or inertia is assumed to be a rigid object; which can obtain or lose kinetic energy when there is a change in speed. The moment of inertia in rotational motion expresses the measure of the object's ability to maintain the velocity of an object's motion when it is rotating. The ability of an object to rotate is determined by the magnitude of the moment inertia. The object will be more difficult to rotate when the value of inertia moment is getting greater otherwise the rotating object is also difficult to stop if its moment of inertia is too large [19].

In mass rotational motion with a small angle \(\theta \), the large equation of torque can be written:

\[
J \ddot{\theta} + c \dot{\theta} + k \theta = \tau
\]

(1)

With \(\tau \) is the amount of torque (Nm), \(c \) is the equivalent of torque attenuation (Nm/rad/sec), and \(k \) is constant equivalent torsion spring (Nm/rad). If gravity is appeared at a distance of \(\Delta \) from the point of axis, the torque equation can be written:

\[
J \ddot{\theta} + c \dot{\theta} + k \theta = mg \Delta \cos \theta
\]

If \(\Delta = r \), then;

\[
J \ddot{\theta} + c \dot{\theta} + k \theta = mgr \cos \theta
\]

(3)

The \(c \) or \(k \) values are set in order to keep the solar panels from oscillation.

In some cases, a mathematical model is required to represent the actual system. The moment of inertia of a mass in the orientation setting of the solar panel is modeled as a solid rectangular object shown figure (1) with the following equation:

\[
J_x = m \left[\frac{(a^2 + b^2)}{12} \right]
\]

(4)

Where:

- \(J_x \) = moment of inertia (kgm2)
- \(m \) = mass of objects (kg)
- \(a \) = wide (m)
- \(b \) = long (m)

Figure 1. Rectangular solid object

III. SIMULATION AND RESULTS

The new solar tracker is developed by setting the orientation of solar panels by using variable position of the added mass control with a certain distance from the axis point. The moving mass is conducted by applying lower power stepper motor. The change in position causes an imbalance in the solar panel which lead an orientation change in the solar panel. To avoid the possibility of oscillation, a damper system is used to keep the solar panels in the stable position.

A. Design

The design of this orientation control system uses a 250 Wp solar panel with dimensions of 1196 x 541 x 30 mm, and weighs 7 kg. Control orientation consists of three parameters, namely mass, damper and stiffness. The mass and stiffness value is obtained from static analysis, while the damper value is based on dynamic analysis. The system design will be simulated using a trajectory with a length of \(r \) equal to the length of the solar panel. The mass that will move in the trajectory has a relative weight to solar panel weight \(m/m \) (%) and the distance from the symmetrical axis relative to the half-length of the trajectory \(r/0.5r \) (%). Value determination of each parameter is used to obtain an orientation angle \(\theta \)° from 0° to 60°. To avoid oscillation while changing the orientation, the constant value of \(c \) is adjusted, but in this simulation the equivalent values of \(c \) and \(k \) are used. The following is the system design which will be simulated;

B. Simulation

The solar panel orientation simulation test is carried out by assuming that the axis point is the system's balance point. The friction force in the orientation system is also assumed to be so small that it can be ignored. The simulation consists of four cases, in each case the best parameter values will be taken based on the desired orientation angle of 60°. The following is a simulation test for each case:
Case A;

Case A is a simulation test given the constant value of \(\frac{m}{m_p} \), \(c_r \), and \(k_r \) respectively 15%, 3Nm/rad/sec, and 1 Nm/rad. While \(\frac{r}{0.5r_t} \) value is given, 35%, 40%, and 50% with the result shown in graphs in figure 3.

Based on these results, the best \(\frac{r}{0.5r_t} \) value was obtained at 35% with an angle of 60.63°. For \(\frac{r}{0.5r_t} > 35% \), it can cause the overshoot to appear in the system response. The value of \(r / 0.5r_t = 35\% \) will be used as the constant \(\frac{r}{0.5r_t} \) in the following cases. Comparison between orientation angles based on \(\frac{r}{0.5r_t} \) value can be seen in figure 4.

Case B;

In case B the simulation test is carried out by giving the values \(\frac{r}{0.5r_t} \), \(c_r \), and \(k_r \) constant, \(\frac{r}{0.5r_t} = 35\% \), \(c_r = 3\text{Nm/rad/sec} \), \(k_r = 1\text{Nm/rad} \) and the value of \(\frac{m}{m_p} \) given 15%, 20%, 25% and 30% with results seen in the graph in figure 5.

Based on these results, the best \(\frac{m}{m_p} \) value is obtained at 15% with an angle of 60.63°. This value will be used as the constant \(\frac{m}{m_p} \) value in the following cases. For the value of \(\frac{m}{m_p} > 15\% \) can cause overshoot on the system. The orientation angle obtained for each \(\frac{m}{m_p} \) value is shown in figure 6.

Case C;

The constant value is \(\frac{r}{0.5r_t} = 35\% \), \(\frac{m}{m_p} = 15\% \), \(k_r = 1\text{Nm/rad} \) and the value of \(c_r \) is set with values: 1Nm/rad/sec, 2Nm/rad/sec, 3Nm/rad/sec and 4Nm/rad/sec with results seen in the graph in figure 7.
Based on these results, the best c_τ value is obtained, which is 3Nm/rad/sec with an angle of 60.63°. This value will be used as the constant c_τ value in the next case. For a value of $c_\tau < 3$Nm/rad/sec, it can cause overshoot and oscillation. Whereas for $c_\tau > 3$Nm/rad/sec, it is obtained a long time for steady state. All orientation angle from every c_τ variation can be seen in figure 8.

According to the results of the simulation test, the best value of each parameter is obtained: $r/0.5r_t = 35\%$, $m/m_p = 15\%$, $c_\tau = 3$Nm/rad/sec and $k_\tau = 1$Nm/rad. These values produce a orientation angle of the solar panel of 60.63°. Therefore, setting the mass, damper and stiffness parameters can be used as solar panel orientation control parameters.

C. Energy Consumption Analysis

The moving mass is conducted by applying lower power stepper motor. The stepper motor can work properly if it has the appropriate voltage for each coil in each step. The speed of the stepper motor depends on/off time of the coil, so to determine the maximum speed based on the characteristics of the torque versus step-rate (pulses per second or pps).

As shown in figure 2, the orientation control solar panel is using trajectory in form of lead screw which will be rotated by stepper motor. The lead screw in this case has the efficiency $\eta_s = 86\%$, while the linear distance (s) equal with...
trajectory \(r_t = 541 \) mm, the added mass of the object \(m = 1.05 \) kg, \(\theta = 60,63^\circ \) and time \(t = 1.0 \) sec. Then the average power needed to drive the lead screw is [20]:

\[
P_{avg} = \left(m \cdot g \cdot \sin \theta \cdot S / t \right) \cdot (1 / \eta_s)
\]

(5)

Where:

- \(P_{avg} \): average power (watt)
- \(m \): mass (kg)
- \(g \): gravitational constant (9.8 m/s²)
- \(S \): linear distance (m)
- \(t \): time (sec)
- \(\theta \): Solar panel orientation (degree)
- \(\eta_s \): lead screw efficiency (%)

Then:

\[
P_{avg} = \left((1.05 \cdot 9.8 \cdot \sin(60,63) \cdot 0.541) / 1.0 \right) \cdot (1 / 0.86)
\]

\[P_{avg} = 5.64 \text{ W}
\]

The electrical power that can be produced by solar panels in this simulation test is a maximum of 250 Wp. While the average power consumption for the drive is 6.47 watt. Therefore, if the electrical power produced by solar panel compared with the power consumption for the drive, this system only consume 2.26%. It can be said that the use of the proposed method is effective in reducing energy use for the orientation of solar panels compared to single axis active tracking system which is estimated to be around 14%-28% of the energy produced.

IV. CONCLUSION

According to the results of the simulation test, the best value of each parameter is obtained: \(r_t/0.5t = 35\% \), \(m/mp = 15\% \), \(\tau_t = 3Nm/rad/sec \) and \(\tau = 1Nm/rad \). These values produce a orientation angle of the solar panel of 60,63°. Therefore, setting the mass, damper and stiffness parameters can be used as solar panel orientation control parameters. The ability of the system to control the orientation is effective to reduce energy consumption of the solar panel orientation controlling system.

ACKNOWLEDGMENT

The author gratefully acknowledge the assistance rendered by Directorate General of Higher Education Ministry of Research, Technology, and Higher Education for publication funding support under Applied Research (Penelitian Terapan) Grant 2019.

REFERENCES

This certification is awarded to Mrs./Mr. Ali Basrah Pulungan, Lovely Son, Syafii, Syamsul Huda and Ubaidillah for acceptance, fully registration, and presentation of the paper with the title of Semi Active Control of Solar Tracker Using Variable Position of Added Mass Control in The 16th International Conference on Quality in Research (QiR) held on 22-24 July 2019 at Padang, West Sumatra.