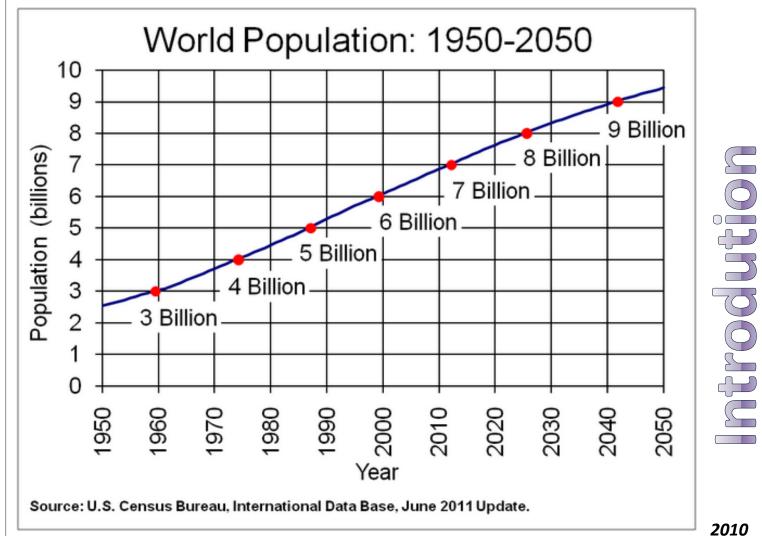
Genome Analysis and Resistance Breeding in Agriculture

JAMSARI

Presented at 2nd IGN-TTRC Seminar 20 August 2013-Surabaya

Agricultural Mission: Securing of food availability


- Food quantity (developing countries)
- Food quality (developed countries)

World Population Growth

Growth Population VS Food Production

 Rising of world population from 6.8 billion (2010) to over 9 billion (By 2050)- 10 billion by 2100 (United Nations, 2011)

meant: a 70% increase in food demand!

The increasing of food price !!! (ADB-2007)

Need for Increase of Crop Production

• From 1999 -2020 increase up to 80% (Pinstrup-Anderson and Lorch, 1997).

 from 590-600 MMT to 840 MMT by 2020 must be achieved.

Challenges!

Food production and food security faces several challenges

- Land evolution for agricultural production to non agricultural actvities:
- Global climate changes;
- Abiotic stresses: drought, heat shock, UV radiation, etc.
- Biotic stresses: pest and weeds attack

Challenges!

- Cultural techniques improvement is "deminishing return".
- Genetic potency must be exploited via genetic based modification = breeding efforts

Role of Plant Breeding

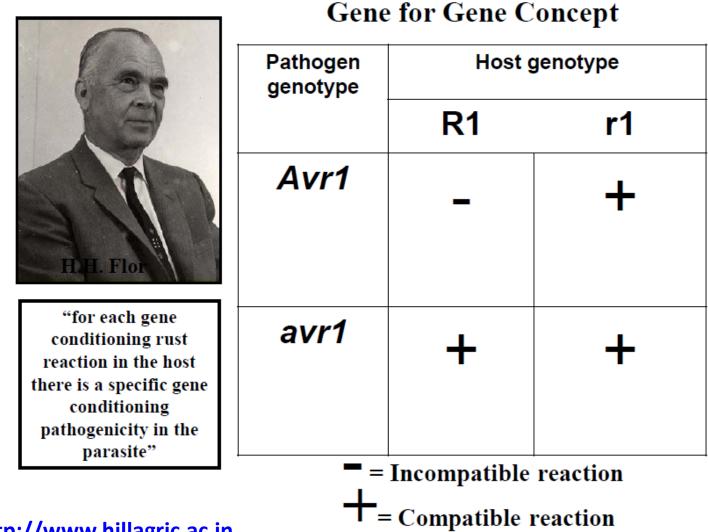
- To enable stable yields with lower inputs of fertilizers, energy and water use,
- To produce safe and quality food,
- To meet the demand of a projected raise in human population and livestock production.

Resistance Breeding, plant-pathogen interaction

- Improvement of crop production regarding pest and disease management.
- Pathogens cause huge yield losses in the agriculture every year with large economic losses and damage to ecosystems
- Global yield loss of 16% (Oerke, 2006).
- 26-29% for sugar beet, barley, soybean, wheat and cotton, to 31-40% for maize, potato and rice (Oerke, 2006).

Lab of Biotechnology and Plant Breeding, Faculty of Agriculture Andalas University-Padang West Sumatera

 \bigcirc


Genetic Modification Based Approach

 Since disease attack dealing with interaction between plant-pathogen, they must be in compatible manner:

Involving:

- plant genetic background
- >pathogen genetic background

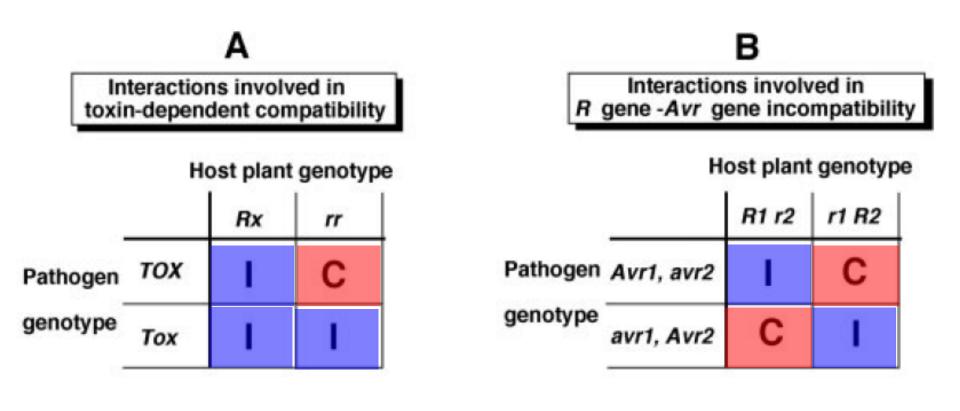
Gene for Gene Concept (Flor, 1942: Phytopathology)

Source: http://www.hillagric.ac.in

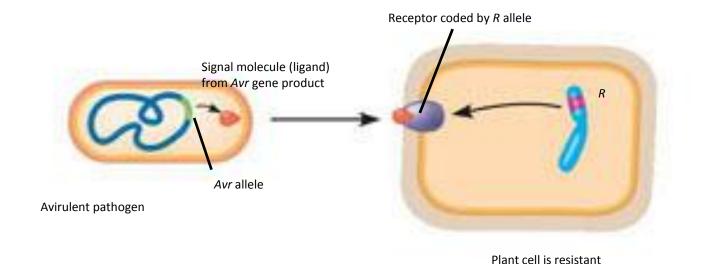
Outline

- Introduction
- Molecular Plant-Microbe Interaction
- R-gene Evolution
- Concluding Remarks

Molecular Plant-Microbe Interaction (MPMI)


Molecular Plant-Microbe Interaction (MPMI)

- Plants use different strategies and mechanisms to survive and reproduce successfully.
- Basal resistance is provided by pre-existing <u>physical</u> and <u>chemical barriers</u> in order to disable penetration of pathogen to the host-cell.
- Recognition of <u>microbial surfaces</u> by cell surface receptors that trigger immune response and offer broad-spectrum resistance pathogen associated molecular pattern (PAMP)-triggered immunity (PTI) (Jones & Dangl, 2006).

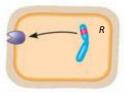

Basal Principle in Plant-Pathogen Interaction

Gene-for-gene recognition is a widespread form of plant disease resistance

A pathogen is avirulent

 If it has a specific Avr gene corresponding to a particular R allele in the host plant

(a) If an Avr allele in the pathogen corresponds to an R allele in the host plant, the host plant will have resistance, making the pathogen avirulent. R alleles probably code for receptors in the plasma membranes of host plant cells. Avr alleles produce compounds that can act as ligands, binding to receptors in host plant cells.



If the plant host lacks the R gene that counteracts the pathogen's Avr gene

Then the pathogen can invade and kill the plant

No Avr allele; virulent pathogen

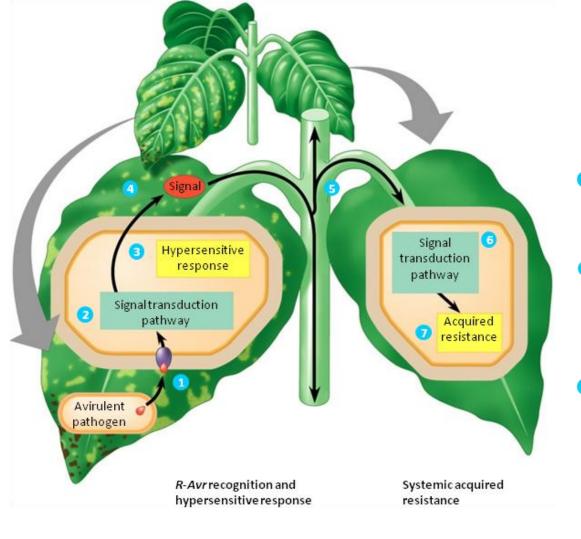
Plant cell becomes diseased

Virulent pathogen

No R allele; plant cell becomes diseased

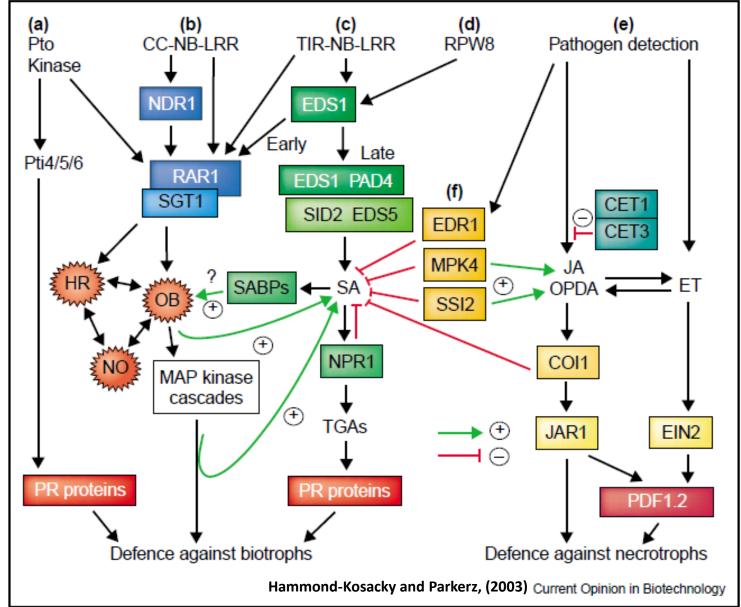
No R allele; plant cell becomes diseased

(b) If there is no gene-for-gene recognition because of one of the above three conditions, the pathogen will be virulent, causing disease to develop.



Complex Plant Responses to Pathogen Invasions

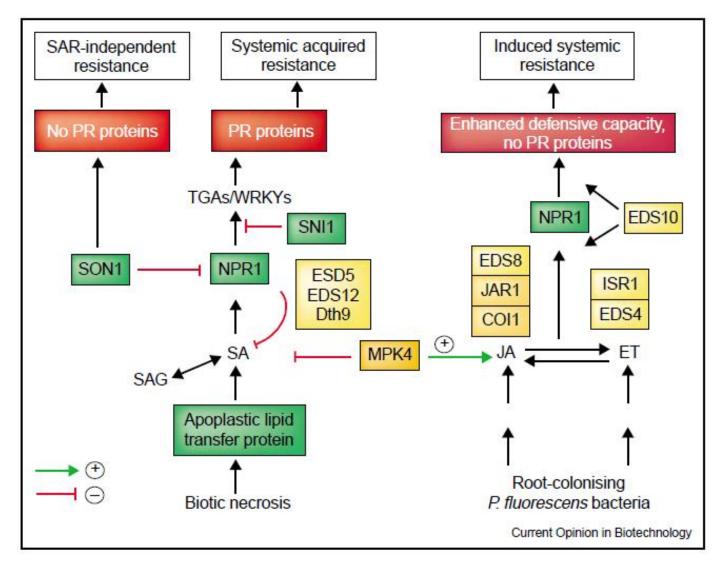
A hypersensitive response (HR): Seals off the infection and kills both pathogen and host cells in the region of the infection


- Gefore they die, infected cells release a chemical signal, probably salicylic acid.
- In a hypersensitive response (HR), plant cells produce antimicrobial molecules, seal off infected areas by modifying their walls, and then destroy themselves. This localized response produces lesions and protects other parts of an infected leaf.
- 2 This identification steptriggers a signal transduction pathway.
- Specific resistance is based on the binding of ligands from the pathogen to receptors in plant cells.

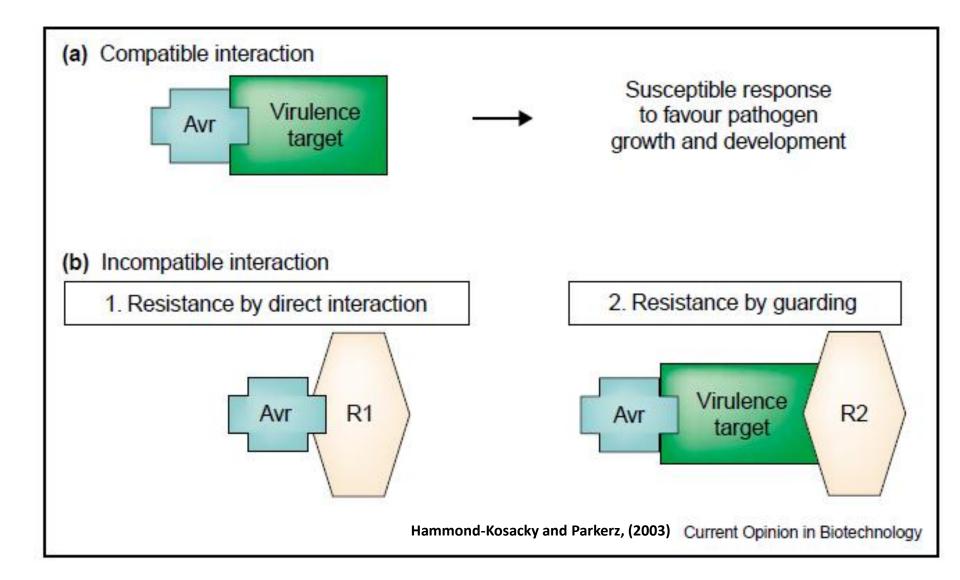
5 The signal is distributed to the rest of the plant.

- 6 In cells remote from the infection site, the chemical initiates a signal transduction pathway.
 - Systemic acquired resistance is activated: the production of molecules that help protect the cell against a diversity of pathogens for several days.

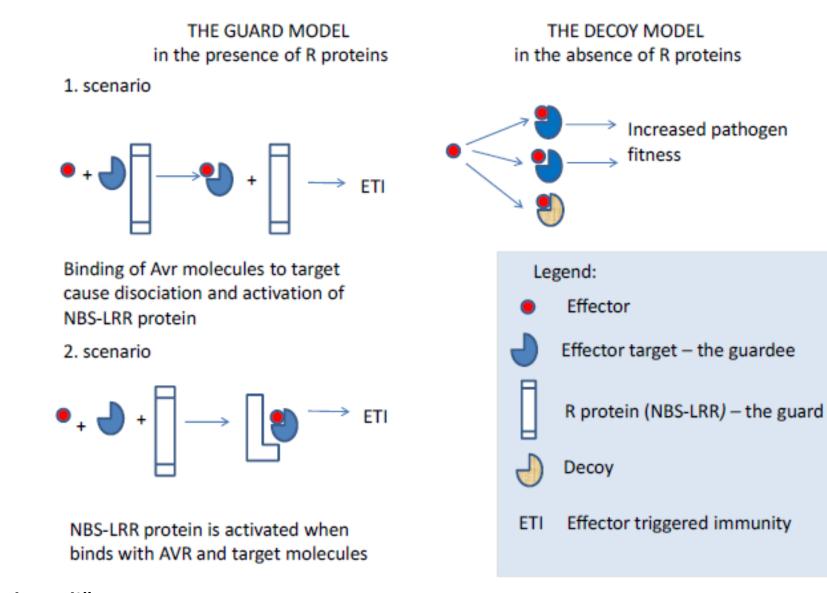
Local signalling networks controlling activation of local defence responses


Plant Responses to Pathogen Invasions

- Systemic acquired resistance (SAR)
 - Is a set of generalized defense responses in organs distant from the original site of infection
 - Is triggered by the signal molecule salicylic acid

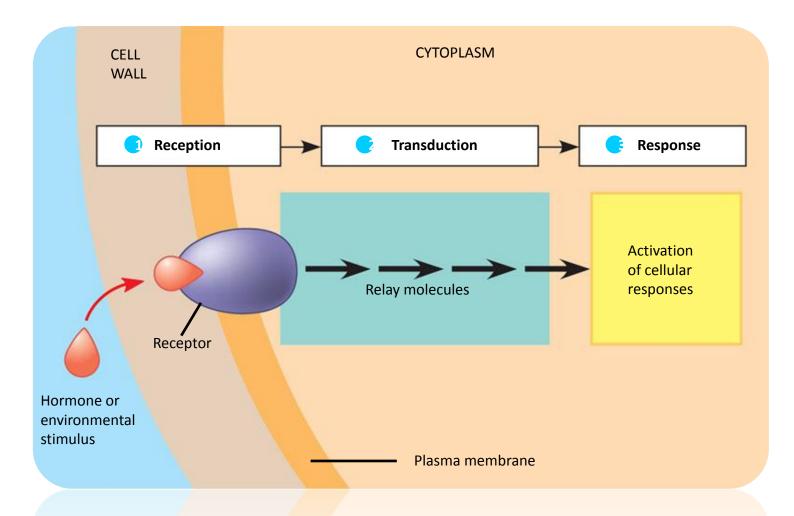


Systemic defence signalling networks

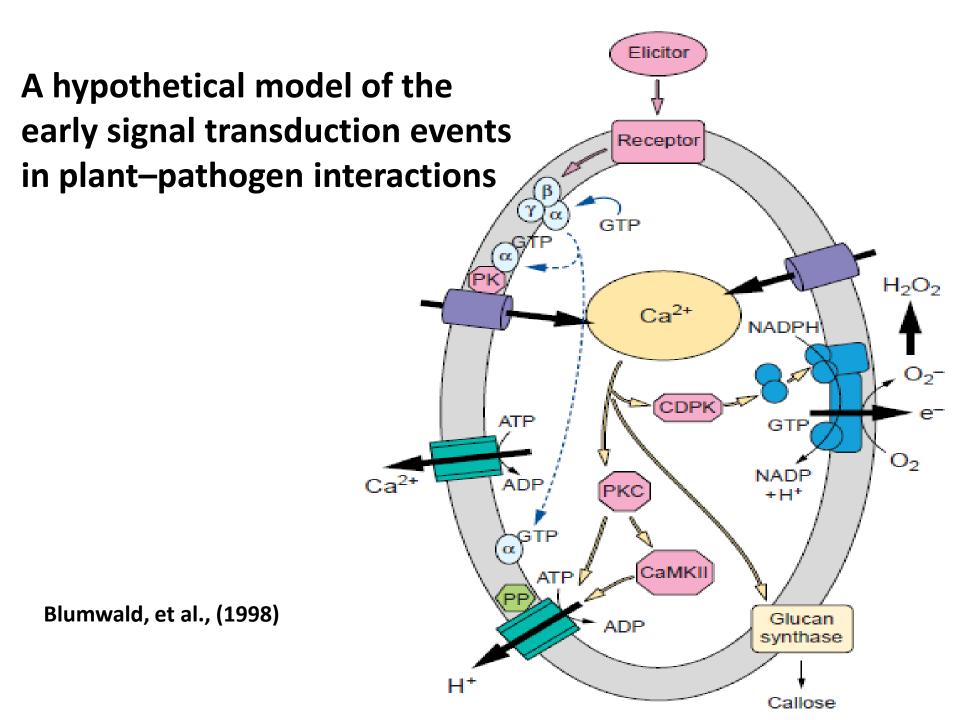


Hammond-Kosacky and Parkerz, (2003)

"Guarding" as one of plant respon to pathogen



Guard and Decoy Model


Kozjak and Meglič, 2012

• General Plant's response to environmental stimulus

Essential pathogen components detectable by plants

			nipi	naisionia solanaceatum	
		Subunit of T-pilus	VirB1, VirB2, VirB5, HcrC, HrpT	Agrobacterium spp.	?
		Subunit of type III secretion apparatus	(outer membrane proteins)	All pathogenic bacteria	?
	Quorum sensing	Secreted autoinducer	N-Acyl homoserine lactone	All Gram(-) pathogenic	?
		Secreted modified	3-Hydroxyl-palmitic	bacteria, Erwinia spp.,	
		oligopeptide	acid-methylester	Ralstonia spp.	
		Exopolysaccharides Lipopolysaccharides	Multiple related types Multiple related types	R. solanacearum	
	Non-host specific	Non-proteinaceous	Coronatine	P. syringae	
	toxins				
			Tabtoxin Phaseolotoxin	P. syringae pv. tabaci P. syringae pv.	Glutamine synthase OCTase
			Filaseolocoxin	Phaseolicola	001436
	Hrp and Hrc	Delivered by type	AvrBs2	P. syringae pv.	?
	proteins	III secretion		vesicatoria	
			HrpD, HrpO, HrpP	P. syringae	
			AvrRXv (YopJ family)		MAPK kinases
		Regulator of Hrc/H	PrhA (OM siderophore receptor)	R. solanacearum	Siderophores/cell wall factor
		gene expression		0.11 (
	Hormones	Auxin	Indole-3-acetic acid	Gall forming Pseudomonas sp.	IAA receptor
			Indole-3-acetic acid	Agrobacterium sp.	
	Fungi and Oomycet	es			
	Structural	Cell-wall chitin	Nascent synthesis at hyphal tip	All fungal species	Soluble chitinases
	components				extracellular
		Appressorium	Cell-wall melanin	Many species	?
		0	MPG1 hydrophobin	Magnaporthe grisea	?
		Cell wall glucans (β1–3, β1–4 type)	Nascent synthesis at hyphal tip	All Oomycete species	Soluble glucanases
	Degradation of plant polymers	Cell walls	pelA and pel D, pectate lyase	Fusarium solani f. sp. pisi	
			Acpg1 endopolygalacturonase	Alternaria citri	PGIPs
		Cuticle	Cut A cutinase	Fusarium solani f. sp. pisi	
	Overcoming plant defences	Tomatinase	Saponin degradation products	Septoria lycopersici	?
		Membrane transporter	ABC1, secretion of plant xenobiotics	M. grisea	?
		Oxalic acid	Oxalic acid or low pH	Sclerotinia sclerotiorum	Apoplastic oxalate oxidase
	Nutrition	Amino acid transporters	Influx of essential amino acids	Many fungal species	Amino acid sensor
	Secreted toxins	Proteinaceous, host-specific	ToxA for HC toxin	Cochliobolus carbonum	Membrane channels?
			Ptr toxin	Pyrenophora tritici-repentis	?
		Non-proteinaceous	AAL toxin	Alternaria alternata f.sp. lycopersici	TM helix-LAG1 motif
			DON	Gibberella zeae	Peptidyl transferase
	Secreted peptides		ECP2	Cladosporium fulvum	Cf-ECP2
			INF1	Phytophthora infestans	?
			Pep13	Phytophthora sojae	PM receptor
			cgDN3 Avr-Pita (zinc protease)	C. gloeosporiodes Magnaporthe grisea	Pi-ta protein
			(essential?)	magnaponne grisea	Pi-ta protein
			PLW2	Magnaporthe grisea	PM-receptor?
5			Elicitins (essential?)	Many Phytophthora species	PM receptor for endocytosis
	Hormones	Gibberellins	GA3	Gibberella fujikuroi	GA receptor

Example of signal type

Flagellin

HrpA

HrpY

Species

All pathogenic bacteria

Pseudomonas syringae

Ralstonia solanacearum

Potential plant

receptor/interactor

PM-bound FLS2

?

Essential pathogen components detectable by plants*.

Protein or molecule

Subunit of flagellum

Subunit of pilus

Organism and

Bacteria

Structural

components

component type

Hammond-Kosacky and Parkerz, 2003

Molecular aspects of Plant-Pathogen Interaction

• Two Central Molecules in Plant-Microbe Interaction in Sucessful Disease Initiation are

R-Protein and AVR-Protein

Role of "R-protein" in Plant-Pathogen Interaction

- "R protein" plays a central role in plant defence responses
- Programmed cell death (apoptosis) during hypersensitive reaction (HR).
- It plays either directly involved in the recognition of pathogen effectors or act as a guardian for the modification of plant proteins.

Evolution of "R-Gene"

R gene Features

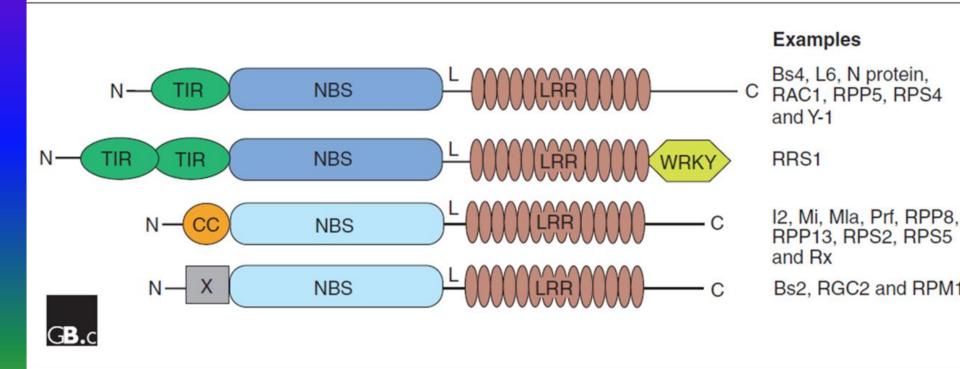
- *R* genes encode at least five diverse classes of proteins (R proteins).
- The largest class of R proteins contain a nucleotide binding site and leucine-rich repeat domains (NBS-LRR proteins).
- NBS-LRR proteins may recognize the presence of the pathogen directly or indirectly.

Classes of *R* genes

Class	Gene	Plant	Pathogen	Infection type/ organ attacked	Predicted Features of R protein	Reference
1.	Hm1	Maize	Helminthosporium maydis (race 1)	Fungal necrotroph / leaf	Detoxifying enzyme HC-toxin reductase	[35]
2.	Pto	Tomato	Pseudomonas syringae p.v. tomato (avrPto)	Extracellular bacteria / leaf	Intracellular serine/ threonine protein kinase	[59]
3a	RPS2	Arabidopsis	Pseudomonas syringae p.v. tomato (avrRpt2)	Extracellular bacteria / leaf	L. Zip /NBS/LRR	[5] [65]
	RPM1	Arabidopsis	Pseudomonas syringae p.v. maculicola (avrRpm1/ avrB)	Extracellular bacteria / leaf	with amino terminal leucine zipper domain, and nucleotide binding site (NBS) and leucine	[23]
	/2 [B]	Tomato	Fusarium oxysporium f.sp. lycopersicon	Necrotrophic fungus/root and vascular tissue	rich repeat (LRR) domains	[A]
3b	N	Tobacco	Mosaic virus	Intracellular virus / leaf and phloem	Toll / NBS / LRR	[105]
	L6 M	Flax	Melampsora lini (AL6, AM)	Biotrophic fungal rust with haustoria / leaf	Intracellular protein with amino terminal domain homology with Drosophila Toll protein,	[53] [C]
	RPP5	Arabidopsis	Peronospora parasitica	Biotrophic downy mildew fungus with haustoria / leaf	and NBS and LRR domains	[D]
4	C1-9, C1-2, C1-4 C1-5	Tomato	Cladosporium fulvum (Avr9, Avr2, Avr4 Avr5)	Biotrophic extracellular fungus without haustoria / leaf	Extracellular LRR protein with single membrane spanning region and short cytoplasmic carboxyl terminus	[38] [14] [41] [E]
5.	Xa-21	Rice	Xanthomonas oryzae pv. oryzae (all races)	Extracellular bacteria / leaf	Extracellular LRR protein with single membrane spanning region and cytoplasmic kinase domain	[86]

Hammond-Kosack and Jones, 1996

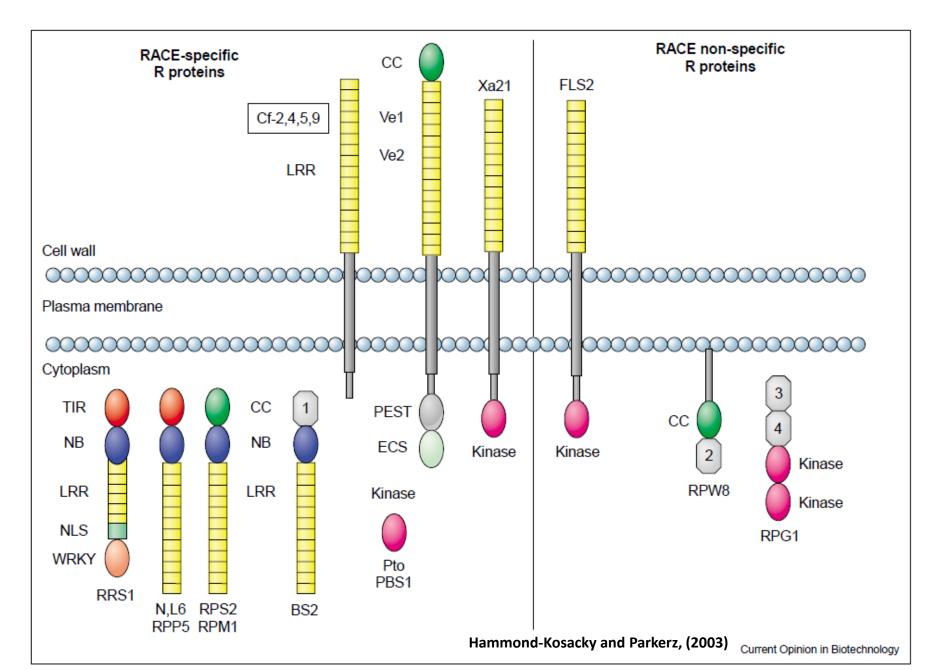
[A] G. Simons and R. Fluhr, pers. comm.; [B] a very tightly linked marker to the wheat *Cre3* gene that confers resistance to the root invading cereal cyst nematode *Heterodera avenae* is highly homologous to this *R* gene class, E. Lagudah and S. Anderson, pers. comm.; [C] P. Anderson, G. Lawrence and J. Ellis, pers. comm.; [D] J. Parker, M. Coleman, V. Szabo, M. Daniels and J. Jones, unpublished; [E] M. Dixon, K. Hatzixanthis and J. Jones, unpublished.


me m		es or cioneu	plant disease resistance gei	165.				
Class	Gene	Plant	Pathogen	Infection type/organ attacked	Predicted features of R protein	Race- specific	Year isolated	References
1	Hm1	Maize	Helminthosporium maydis (race 1)	Fungal necrotroph/leaf	Detoxifying enzyme HC toxin reductase	Yes	1992	†
2	Asc-1	Tomato	Alternaria alternata f.sp. lycopersici (AAL toxin)	Fungal necrotroph/leaf	TM helix-LAG1 motif	No	2000	[66]
3A	Pto	Tomato	Pseudomonas syringae p.v. tomato (avrPto)	Extracellular bacteria/leaf	Intracellular serine/ threonine protein kinase	Yes	1993	t
3B	PSB1	Arabidopsis	Pseudomonas syringae p.v. phaseolicola (avrPphB)	Extracellular bacteria/leaf		Yes	2001	[27]
4A	RPS2	Arabidopsis	Pseudomonas syringae p.v. maculicola (avrRpt2)	Extracellular bacteria/leaf	CC-NB-LRR Intracellular protein	Yes	1994	t
	Mla1/ Mla6	Barley	Blumeria graminis f.sp. hordei (resp. race 1, race 6)	Biotrophic intracellular fungus with haustoria/leaf		Yes	2001	[58]
	R1	Potato	Phytophthora infestans (race 1)	Biotrophic intracellular <i>Oomycete</i> with haustoria/leaf and tuber		Yes	2001 2002	[67] [68]
	RPP8	Arabidopsis	Peronospora parasitica	Biotrophic intracellular Oomycete with haustoria/leaf		Yes	1998	t
4B	N	Tobacco	Mosaic virus	Intracellular virus/leaf and phloem	TIR-NB-LRR	Yes	1994	t
	RPP4	Arabidopsis	Peronospora parasitica	Biotrophic intracellular <i>Oomycete</i> with haustoria/leaf	Intracellular protein	Yes	2002	[69]
4C	Bs2	Pepper	Xanthomonas campestris pv. vesicatoria (avrBs2)	Extracellular bacteria/leaf		Yes	1999	t
	Dm3	Lettuce	Bremia lactuca	Biotrophic intracellular <i>Oomycete</i> with haustoria/leaf	Intracellular protein	Yes	2002	[70]
4D	RRS-1	Arabidopsis	Ralstonia solanacearum (race 1)	Extracellular bacteria/leaf	TIR-NB-LRR- NLS-WRKY	Yes	2002	[5]
4E	Pi-ta	Rice	Magnaporthe grisea (avrPita)	Hemibiotrophic intracellular fungus without haustoria/leaf	NB-LRD	Yes	2000	t
5A	Cf-9	Tomato	Cladosporium fulvum(Avr9)	Biotrophic extracellular fungus without haustoria/leaf	eLRR-TM-sCT	Yes	1994	t
					Extracellular protein with single membrane-spanning region and short cytoplasmic C terminus			
5B	Ve1 Ve2	Tomato	Verticillium albo-atrum	Extracellular vascular wilt fungus without haustoria/root and stem	CC-eLRR-TM-ECS eLRR-TM-PEST-ECS	Yes	2001	[6]
6	Xa-21	Rice	Xanthomonas oryzae p.v. oryzae (all races)	Extracellular bacteria/leaf	eLRR-TM-kinase	Yes	1995	†
	FLS2	Arabidopsis		Extracellular bacteria/leaf		No	2000	†
7	RPW8.1 RPW8.2	Arabidopsis	Multiple powdery mildew species	Biotrophic intracellular fungus with haustoria/leaf	Small, probable membrane protein with CC domain	No	2001	[18]
8	Rpg1	Barley	Puccinia graminis f.sp. tritici	Biotrophic intracellular fungus with haustoria/stem	Receptor kinase-like protein with 2 tandem kinase domains	No	2002	[19]

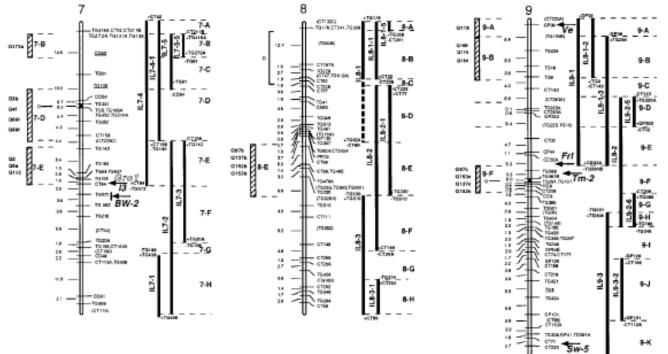
The major classes of cloned plant disease resistance genes*.

Classes of *R* **genes**

Hammond-Kosacky and Parkerz, (2003)


Sequence Homology among R-Proteins

R proteins race-specific mostly located in both cell wall and cytoplasm.



Numbers of Arabidopsis Genes That Encode Domains Similar to Plant R Proteins

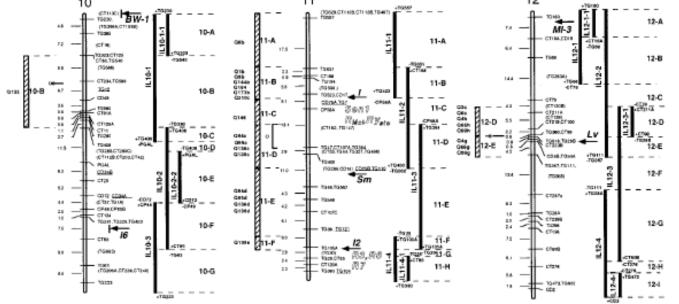

	Predicted Protein Domains ^a	Letter Code	Previous No.b	Full Manualc
	CC-NBS-LRR	CNL	48	51
	NBS _{cc} -LRR	NL	2	4
	TIR-NBS-LRR	TNL	82	83
	NBS _{TIR} -LRR	NL	2	2
	TIR-NBS-LRR-X	TNLX	5	5
	TIR-NBS-TIR-NBS-LRR	TNTNL	2	2
	TIR-TIR-NBS-LRR	TTNL	0	2
	Total with LRRs		141	149
	TIR-NBS	TN	14	21
~ 200 R-gene	TIR-X	ТХ	23	30
0	X-TIR-NBS-X	XTNX	0	2
	CC-NBS	CN	4	4
	CC-NBS-X	CNX	1	1
	CC (related to CNL)	С	0	1
	NBS _{CC}	Ν	1	1
	Total without LRRs		43	58

Table updated from Meyers et al. (2002).

BW-2 10.010 7-F CIM (10.662) 82 (CTM) TETOR 7-G Túp:A 1.8 CT 1046-27101A .75/86 .75436, 4.5 2.8 22 C 1288 18 22 6#128 CT198 STREAM 8-G 07210 TG-M **Comparison of R** 5 11.5 (10.160 10421 7-H CT2N2 FEOHD 14 194 88 1163 - 6044 $\sim -$ 1043 THEM 8-H -70499 U GTING 67101 ... gene position 678 22 1.5 between tomato and potato 12 11 10 ETHER BW-10628.GTH NB.GTH 168.T0481 (100MACTI BN

-01320

Intron/Exon Configurations and Protein Motifs of NBS-LRR–Encoding Genes in Arabidopsis.

Meyers, et al., 2003

Subgroup	Gene structure & encoded motifs	# in Col-0	Example
CNL-A	+1 0 +2 0 ⁺¹	6	At5g66900
CNL-A CNL-B, CNL-C			At4a26090 (RPS2)
CNL-B, CNL-C		24,7	At3g46530 (RPP13 ortholo At1g61190
CNL-D		16	At5g43470 (RPP8/HRT)
3			
Subgroup	Gene structure & encoded motifs	# in Col-0	Example
TNL-A	- <u>-2</u>	4	At5g45260
	each of the following TNL-A types is found in the Col-0 genome:	(7 total)	
TNTNL			At4g36140
TNTNL			At4g19500
TNLTX			At4g19520
TNLTX		7	At2g17050
TNLX			At5g17890
TNL-WRKY		1	At5g45050 (RRS1-R)
WRKY-TNL- MAPKKK		<u>m²⊖°⊖°⊖°⊖°</u>	At4g12020
TNL-B		12	At5g45250 (RPS4)
TNL-C		2	At1g27170
TNL-D		9	At1g72840
TNL-E		0 *1 0 8	At4g16950 (RPP5 ortholo
TNL-F		11	At5g46520
TNL-G		17	At3g44630 (RPP1 related
TNL-H		24	At1g56510
C			
Subgroup	Gene structure & encoded motifs	# in Col-0	Example
NL-A		2	At5g45510
TN 🗖		19	At1g72950
XTNX		2	At4g23440
		25	At5g44910
	╧┲┎╧┎┓ ┷╈╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋	5	At2g03300
тх-в			At5g66630
TX-B		1	-
CN-A CN-B		2	At3g15700
CN-A CN-B CN-C			At3g15700 At4g19060
CN-A CN-B CN-C		2	At3g15700
CN-A CN-B CN-C		2 3 1	At3g15700 At4g19060
CN-A CN-B CN-C	Image: state	2 3 1 C-terminal domain	At3g15700 At4g19060
CN-A CN-B CN-C	= P-loop = = CC domain = Rinase-2 = R NIRS R	2 3 1 C-terminal domain LRR domain	At3g15700 At4g19060
CN-A CN-C	= TIR domain = P-loop = = CC domain = Kinase-2 = = NL linker = RNBS-B = =	2 3 1 C-terminal domain	At3g15700 At4g19060

Evolution of "R-Gene"

Evolution of "R-Gene"

- Natural selection drives the pathogen to avoid resistance either by evolving the existent effector gene or by acquiring additional effectors.
- The new effector put the selection pressure on host plant to evolve new *R* gene alleles. The co-evolution of plant defence and pathogen attacks are the result of constant selection pressure that occur across spatial and temporal scales (Ravensdale et al., 2011).
- In PTI immunity system there is an evidence of molecular evolutionary conservation in structure and functions across kingdoms borders (Medzhitov & Janeway, 1997; Imler & Hoffmann; 2001),

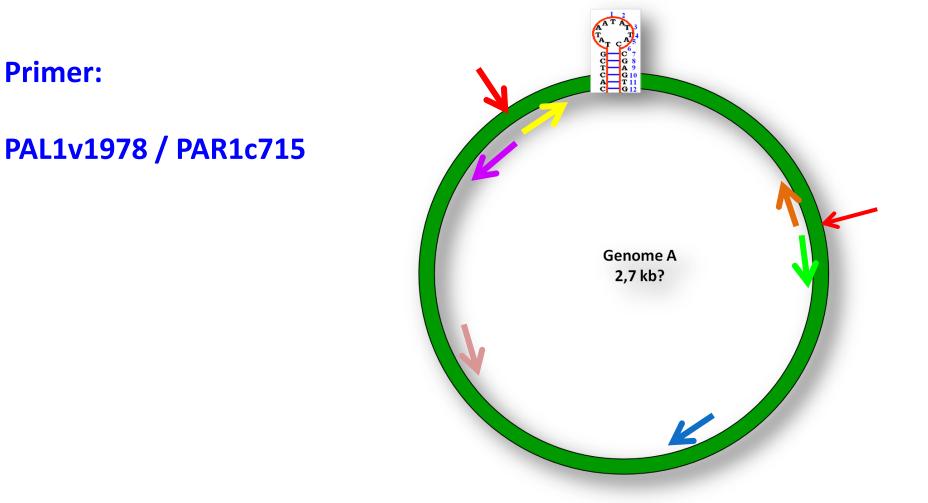
Leaf abnormalities caused by PepYLCV

Agressivity Testing

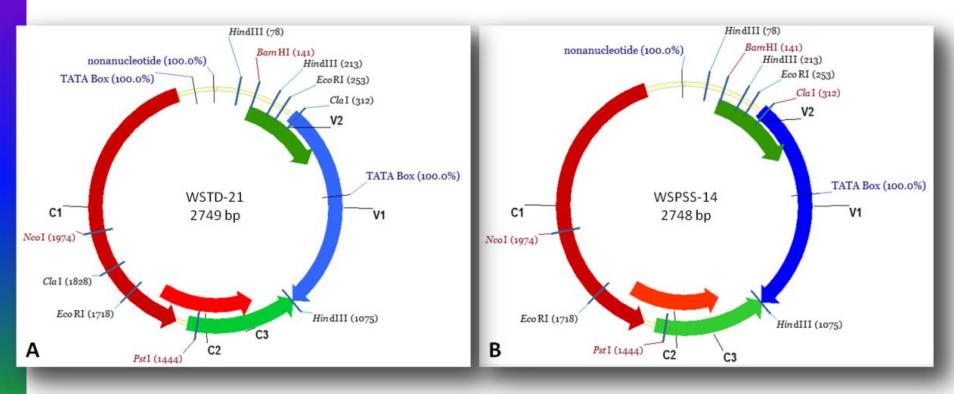
8 days after inoculation

TD -21-Isolate

(non aggressive)


PSS-14-Isolate

(agressive)


Primer walking for whole genome sequencing.

Genome A of TD-21 and PSS-14 isolate

TD-21 ; 2749 bs

PSS-14; 2748 bs

Genome A size of TD-21 and PSS-14 isolates

TD21 : 2749 nts PSS14: 2748 nts

Gene/ORF	TD21	PSS14
V1 (sense)	135-488	135-488
V2 (sense)	295-1071	295-1071
C1 (non sense)	1520-2608	1520-2608
C2 (non sense)	1213-1630	1213-1630
C3 (non sense)	1068-1478	1068-1478

1 InDel event in Common region (CR)

Movement protein (MP) gene/V1 is conserved

	PSS14-V1	ATGTGGGATCCGCTTGIGCATCCGTTTCCAGAAACCCTACATGCATTTCGATGCATGTTG 60
16 noints:	TD21-V1	ATGTGGGATCCGCTT <mark>AITCATCCT</mark> ITTCCTGAAAACCCTACACGGGTTTCGATGCATGTTG 60
16 points; 96% similarity	PSS14-V1 TD21-V1	GCGATCAAGTATCTGCAAAGCTTAGAGGCTACGTATTCTCCTGATACGGTTGGAGGTGAA 120 GCTATCAAGTATCTGCAAAGCTTAGAGGCTACGTATTCTCCTGATACGGTTGGAGGTGAA 120
	PSS14-V1 TD21-V1	TTCGTGAAGGATTTGATCTGTTTGCTGCGGGGGGTGTAAAAACTATGCCGAAGCGTTCCATCGA 180 TTCGTGAGGGATTTAATTTGTCTGTTGCGGGTGTAAAAATTATGCCGAAGCGTTCCATCGA 180 ******* ****** ** *** ** *** *** ******
	PSS14-V1 TD21-V1	TACAGTGTCGTCGTTGCCAATGTCTATAACACGCCGGAGACTAAACTACGCGAGTCAGTA 240 TACAGTGTCGTCGTTGCCAATGTCTATAACACGCCGGAGACTAAACTACGCGAGTCAGTA 240
	PSS14-V1 TD21-V1	CAGTCTCCCTGCTGCCCCCACTGCCCCAGGCATGTCTTACAAACGAAGAGCGTGGGT 300 CAGTCTCCCTGCTGCTGCCCCCACTGCCCCAGGCATGTCGTACAAACGAAGAGCATGGGT 300
	PSS14-V1 TD21-V1	AAATCGGCCTATGAATCGGAAACCCAGATTCTACAGGGGTCGAAGGACCAGTGA 354 AAATCGGCCTATGAATCGGAAACCCAGATTCTACAGGGGTCGAAGGAGCAGTGA 354 ************************************
5 points differents 96% similarity	PSS14-V1 TD21-V1	MWDPIVHPFPETLHGFRCMLAIKYLQSLEATYSPDTVGGEFVKDLICLLRCKNYAEAFHR 60 MWDPIIHPFPETLHGFRCMLAIKYLQSLEATYSPDTVGGEFVRDLICLLRCKNYAEAFHR 60 *****:*******************************
sovo sinnanty	PSS14-V1 TD21-V1	YSVVVANVYNTPETKLRESVQSPCCCPHCPRHVLQTKSVGKSAYESETQILQGSKDQ 117 YSVVVANVYNTPETKLRESVQSPCCCPHCPRHVVQTKSMGKSAYESETQILQGSKEQ 117
		Lab of Biotechnology and Plant Breeding, Faculty of Agriculture Andalas University-Padang West Sumatera

Coat protein (CP) /V2 gene is conserved

PSS14-V1 TD21-V1	MPKRSIDTVSSLPMSITRRRLNYASQYSLPAAAPTAPGMSYKRRAWVNRPMNRKPRFYRG MPKRSIDTVSSLPMSITRRRLNYASQYSLPAAAPTAPGMSYKRRAWVNRPMNRKPRFYRG ************************************	
PSS14-V1 TD21-V1	RRTSDVPRGCEGPCKVQSFEQRHDVTHTGKVLCVSDVTRGGGITHRVGKRFCVKSVYIIG RRSSDVPRGCEGPCKVQSFEQRHDITHTGKALCVSDVTRGNGITHRVGKRFCVKSVYIIG **:*********************************	
PSS14-V1 TD21-V1	KVWMDENIKSKNHTNNVMFWLVRDRRPVTTPYGFGELFNMYDNEPSTATIKNDLRDRVQV KVWMDENIKSKNHTNNVMFWLVRDRRPVTTPYGFGELFNMYDNEPSTATIKNDLRDRVQV	
PSS14-V1 TD21-V1	LHRFSATVTGGQYASKEQAIVKRFFRVNNYVVYNHQEAAKYENHTENALLLYMACTHASN LHRFSATVTGGQYASKEQAIVKRFFRVNNYVVYNHQEAAKYENHTENALLLYMACTHASN ************************************	
PSS14-V1 TD21-V1	PVYATLKIRIYFYDNVTN 258 PVYATLKIRIYFYDNVTN 258	

4 points; Similarity: 98,5%

Rep (C1) Gene Showed High Level of Polymorphims

Dissimilarity = 23%
Similarity= 77%

PSS14-V1 TD21-V1	MERSYSEQVKAKNIELTYEKOPIEKEEALEILKNIQCESDKLEIRVAOEKHSDGSLHLHV 60 MEPEREKLOSKNYELTYEHOSLIKEEALEQLKSINTEVNKLEVKICRELHEDGSEHLHV 60 ** . *::::** *****:*::****** **:*: *:*******
PSS14-V1 TD21-V1	LIQEKGKAQFENNEHFDITHENTSTOFHPNFQGAKSSSDVKSYIEKDGDVVDWGVFQIDG 120 LIQEEGKYVCINNEFFDIVSETESAHFHPNIQGAKSSSDVKAYMDKDGDTTEWGEFQIDG 120 ****:** ***. *. *. *::****:************
PSS14-V1 TD21-V1	RSARGGQQTANIAAAEAINAGSKQAAMAIIREKIPKEYIFQFHNINANIIRIFAPHLEVF 180 RSARGGPHAVNIVYAQAINQGSKSDALRIIKELAPKDYVIQYHNISVNFDKIFAKFVDTF 180 ****** ::.**. *:***.***. *: :*:* **:*:****.**
PSS14-V1 TD21-V1	VCHFSSSSFDQVPEELQAWAAENVRDAAARPWRPNSIVIEGESRTGKTMWARSLGLHNYL 240 VSPYPSSSFDQVPEELROWAAENVMDAAARPWRPISIVIEGESRTGKTMWARSLGPHNYL 240 *.*:.*************
PSS14-V1 TD21-V1	CGHLDLSPKVYNNDAWYNVIDDVDPHYLKHFKEFMGAQRNWQSNTKYGKPIQIKGGIPTI 300 CGHLDLSPKVYNNDAWYNVIDDVDPHYLKHFKEFMGAQRNWQSNTKYGKPIQIKGGIPTI 300
PSS14-V1 TD21-V1	FLCNPGPTSSYKEYLDEDKNNALKSWALKNATFVTINGPLYSSSTEDTAPNCEEENNPPE 360 FLCNPGPTSSYKEYLDEDKNNALKSWAVKNATFVTINGPLYSSSTEDTAPNCEEENNPQE 360 ************************************
PSS14-V1 TD21-V1	TY 362 TY 362

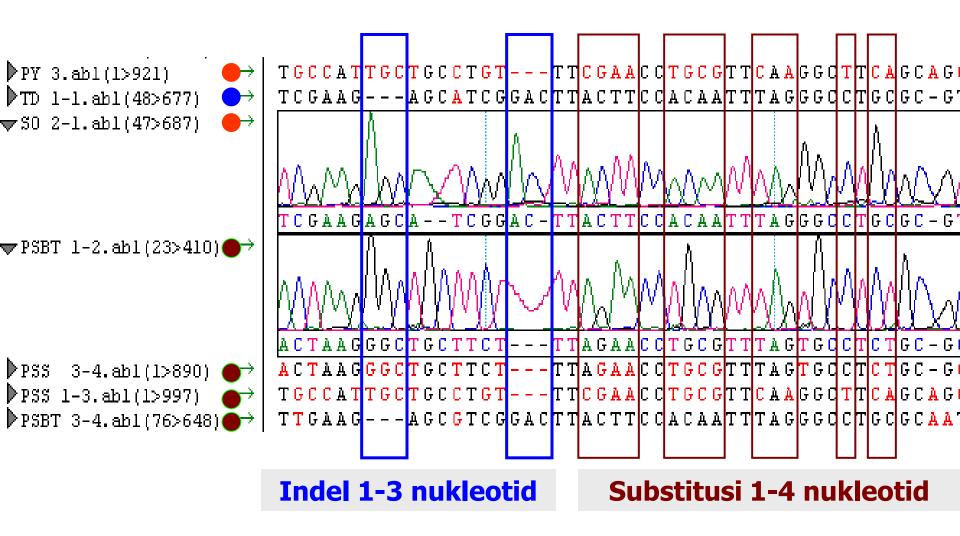
Big question: does C1 gene play important role in the agressivity of PepYLCV?

Coat Protein Sequence Variation of 47 GV Isolates

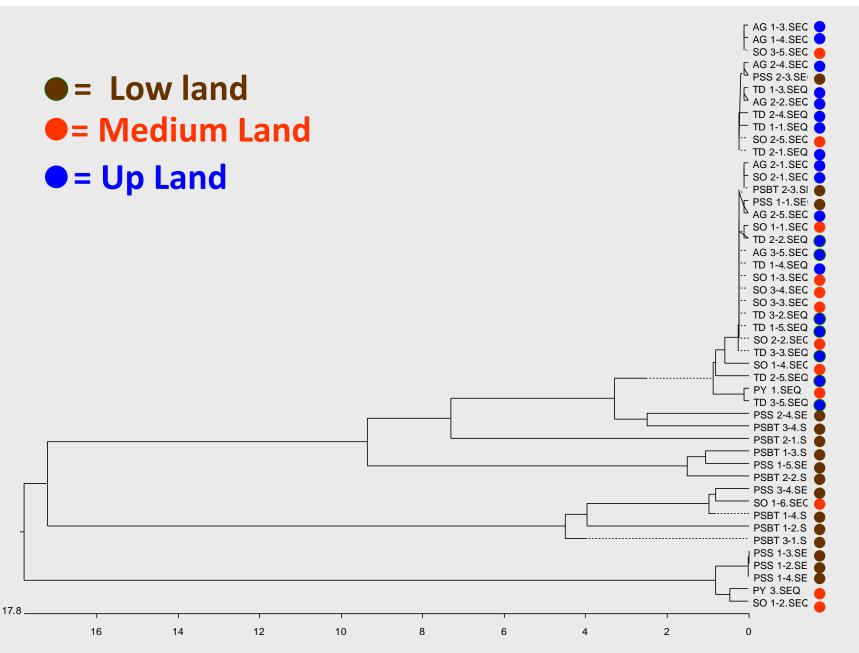
Position: 1

Position: 1											669 bp
	120	130 l	140 	150 ll.	160 ll	170 ll	180	190 	200 	210	220
Translate	GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	ARCAAGCTC	TTTAATCA-A	TCGAAG	AGC <mark>₩</mark> TCGgac	TTACTTCCACA	ATTTAGGGC	CCTGCGC-
▶SO 2-1.ab1(47>687) 🛑	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACAT	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG <mark>AGC</mark>	ATCGGAC-	TTACTTCCACA	ATTTAGGGG	CCTGCGC-
▶TD 1-1.ab1(48>677) -	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGCATCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC-
▶SO 3-5.ab1(37>653) 🔴	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGCATCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶AG 3-5.ab1(61>576) 🔵	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGCATCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶TD 2-1.abl(1>639) 🔵	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG <mark>AGC</mark>	ATCGGAC-	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶TD 2-4.ab1(32>638) 🔵	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG <mark>AGC</mark>	ATCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶TD 1-4.ab1(54>592) 🔵—	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGCATCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶TD 3-5.ab1(33>642) 🔵	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAAC <mark>G</mark> TA	AGTCTTT <mark>T</mark> GG-	AGCAAGCTC	TTTAATCA-A	TTGAAG	AGC <mark>A</mark> TCGGAC	TTACTTCCACA	ATTTAGGGC	CCTCCGC-
▶SO 1-3.abl(48>538) 🛑	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGC <mark>A</mark> TCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶PY 1.SEQ(47>623) 🛛 🛑 –	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAAC <mark>G</mark> TA	AGTCTTT <mark>T</mark> GG-	AGCAAGCTC	TTTAATCA-A	TTGAAG	AGCATCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶SO 2-5.ab1(28>660) 🔴	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG <mark>AGC</mark>	ATCGGAC-	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶AG 2-1.SEQ(42>697) 🔵	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG <mark>AGC</mark>	ATCGGAC-	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶AG 2-4.ab1(61>678) 🔵	\rightarrow GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGC <mark>A</mark> TCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶AG 1-4.ab1(44>709) 🔵	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGC <mark>A</mark> TCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶PSS 2-4.ab1(48>590) ●	→ GAAATTAACAGTTAA	ATTGTGGTACTG	TAGAAC <mark>G</mark> TA	AGTCTTT <mark>T</mark> GG-	AGCAAGCTC	TTTAATCA-A	TTGAAG	AGCATTTGAC	TTACTTCCAC <mark>T</mark>	ATTTAGGGC	CTGCGCA
▶AG 1-3.ab1(62>548) 🔵	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGC <mark>A</mark> TCGGAC	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶SO 1-6.abl(1>894) 🛛 🛑	→ <mark>Тааатта<mark>ба</mark>атттаа</mark>	ATT <mark>A</mark> TG <mark>AAAT</mark> TG	<mark>AAA</mark> AATAT <i>i</i>	A <mark>A</mark> TCTTT <mark>T</mark> GG-	GAGTTTTTC	CCTTATTA-T	ACTAAGGGC	TGCTTTT	TTA <mark>GAA</mark> CC <mark>TG</mark> C	GTTTAGTGC	CCTCTGC-
▶PSS 1-4.ab1(1>920) ●	→ TAAGTTAGCATTTAA	ATT <mark>A</mark> TG <mark>AA</mark> ATTG	<mark>AAA</mark> AATATA	A <mark>T</mark> TC <mark>CTTG</mark> GG-	AAGTTTTTC	CCTTATTA-T	TGCCATTGC	TGCCTGT	TTCGAACCTGC	GTTCAAGGC	CTTCAGCA
PSBT 1-4.ab1(1>897) —	→ <mark>Тааатта<mark>ба</mark>атттаа</mark>	ATT <mark>A</mark> TG <mark>AAAT</mark> TG	AAAAATATA	A <mark>A</mark> TCTTT <mark>T</mark> GG-	GAGTTTTTC	CCTTATTA-T	ACTAAGGGC	TGCTTCT	TTA <mark>GAA</mark> CC <mark>TG</mark> C	GTTTAGTGC	CCTCTGC-
▶PY 3.ab1(1>921) —	→ TAAGTTAGCATTTAA	ATT <mark>A</mark> TG <mark>AA</mark> ATTG	AAAAATATA	ATTCCTT <mark>G</mark> GG-	AAGTTTTTC	CCTTATTA-T	TGCCATTGC	TGCCTGT	TTCGAACCTGC	GTTCAAGGC	TTCAGCA
▶PSS 1-2.ab1(1>928) —		ATT <mark>A</mark> TG <mark>AAAT</mark> TG	<mark>AAA</mark> AATAT <i>I</i>	A <mark>T</mark> TC <mark>CTTG</mark> GG-	AAGTTTTTC	CCTTATTA-T	TGCCATTGC	TGCCTGT	TTCGAACCTGC	GTTCAAGGC	CTTCAGCA
▶ PSBT 1-2.ab1(23>410	→ <mark>Тааатта<mark>ба</mark>атттаа</mark>	ATT <mark>A</mark> TG <mark>AAAT</mark> TG	<mark>AAA</mark> AATATA	A <mark>A</mark> TCTTT <mark>T</mark> GG-	GAGTTTTTC	CCTTATTA-T	ACTAAGGGC	TGCTTCT	TTA <mark>GAA</mark> CC <mark>TG</mark> C	GTTTAGTGC	CCTCTGC-
▶ PSBT 2-2.ab1(203>56	→ GAAATTAGCACTTAA	ATTATGAAATTG	TAAA <mark>ACAA</mark> A	A <mark>A</mark> TCTTT <mark>A</mark> GG-	AGCTAGCTC	TTTAATCA-A	TTGAAG	AGCCTCCGAC	TTACT <mark>G</mark> CC <mark>G</mark> CT	GTTAAGTGC	CCTT-GGG
▶PSS 3-4.abl(1>890) ●	\rightarrow TAAATTAGAATTTAA	ATT <mark>A</mark> TG <mark>AAAT</mark> TG	<mark>AAA</mark> AATAT <i>i</i>	A <mark>A</mark> TCTTT <mark>T</mark> GG-	GAGTTTTTC	CCTTATTA-T	ACTAAGGGC	TGCTTCT	TTA <mark>GAA</mark> CC <mark>TG</mark> C	GTTTAGTGC	CCTCTGC-
▶PSS 1-3.ab1(1>997) 🔵	→ TAAGTTAGCATTTAA	ATT <mark>A</mark> TG <mark>AAAT</mark> TG	AAAAATAT <i>i</i>	A <mark>T</mark> TC <mark>CTTG</mark> GG-	AAGTTTTTC	CCTTATTA-T	TGCCATTGC	TGCCTGT	TTCGAACCTGC	GTTCAAGGC	TTCAGCA
▶PSS 1-5.ab1(54>492) ●	→ GAAATTA <mark>G</mark> CACTTAA	ATT <mark>A</mark> TG <mark>AAAT</mark> TG	TA <mark>A</mark> AACA <mark>A</mark> J	A <mark>A</mark> TCTTT <mark>A</mark> GG-	AGCTAGCTC	TTTAATCA-A	.T <mark>T</mark> GAAG <mark>AGA</mark>	C-CTCCGAC-	TTACT <mark>G</mark> CC <mark>G</mark> CT	GTTAAGTGC	CTTGGC-
▶ PSBT 1-3.ab1(51>542	→ AAAATTAGCATTTAA	ATT <mark>A</mark> TG <mark>AAAT</mark> TG	TA <mark>A</mark> AACA <mark>A</mark> J	A <mark>A</mark> TCTTT <mark>A</mark> GG <mark>C</mark>	AGCTAGCTC	CTTAAT <mark>T</mark> ACA	TTCAAG <mark>AGA</mark>	C-CTCCGAC-	TTACT <mark>G</mark> CC <mark>G</mark> CA	GTTAAGTGC	CTTGGC-
▶ PSBT 2-1.ab1(51>516	\rightarrow TAAATTAAAAT TTAA	ATTATGAAATTG	AAAAATATA	AATCTTT <mark>T</mark> GG <mark>G</mark>	AGCAAGCTC	TTTAATCA-A	TTCAAG <mark>AG</mark> C	ATTCTTC-	TTACTTCCACA	ATTTAGGGC	CTGCGC
▶PSBT 3-1.ab1(1>929) ●-	\rightarrow TAAATTAGAAT TTAA	ATTATGAAATTG	AAAAATATA	AATCTTT <mark>T</mark> GG-	GAGTTTTTC	CCTTATTA-T	ACTAAGGGC	TGCTTCT	TTAGAACCTGC	GTTTAGTGC	CCTCTGC-
▶PSBT 2-3.ab1(85>621											
▶SO 1-4.ab1(91>240) 🛑											
▶PSBT 3-4.ab1(76>648											
▶PSS 2-3.ab1(1>624) ●											I
▶SO 1-2.ab1(1>907) 🛛 🛑 🗕											
▶TD 2-5.ab1(63>563) 🔵—	\rightarrow GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TTGAAG	AGCATCGGAC	TTACTTCCACA	GTTTAGGGC	CTGCGC
▶TD 3-2.ab1(87>538) 🔵—											I
▶SO 3-3.ab1(119>634) 🛑											
▶SO 3-4.ab1(33>573) 🛑											
▶TD 3-3.ab1(93>634) 🔵—											
▶SO 2-2.ab1(61>495) 🔴											I
▶TD 1-5.ab1(99>593) 🔵	→ GAAATTAACACTTAA	ATTGTGGTACTG	TAGAACATA	AGTCTTTCGG-	AGCAAGCTC	TTTAATCA-A	TCGAAG	AGCATCGGAC	TTACTTCCACA	ATTTAGGGC	CCTGCGC-

= Low land

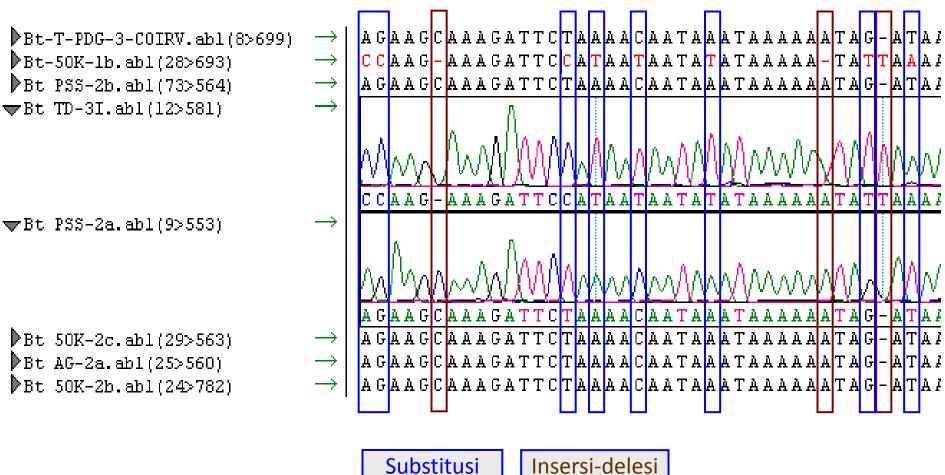

= Medium Land

= Up Land

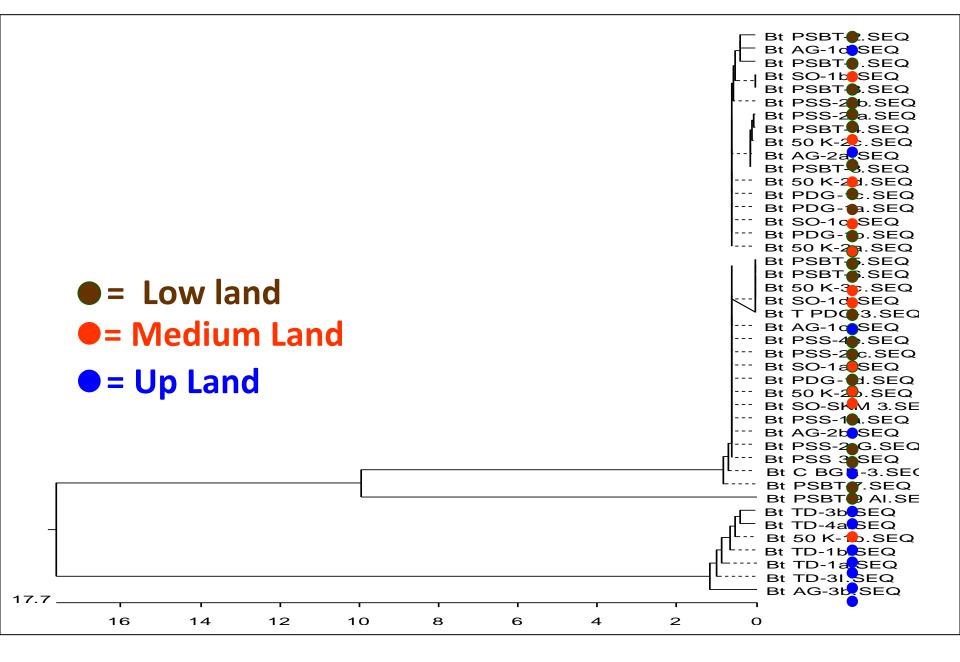

•

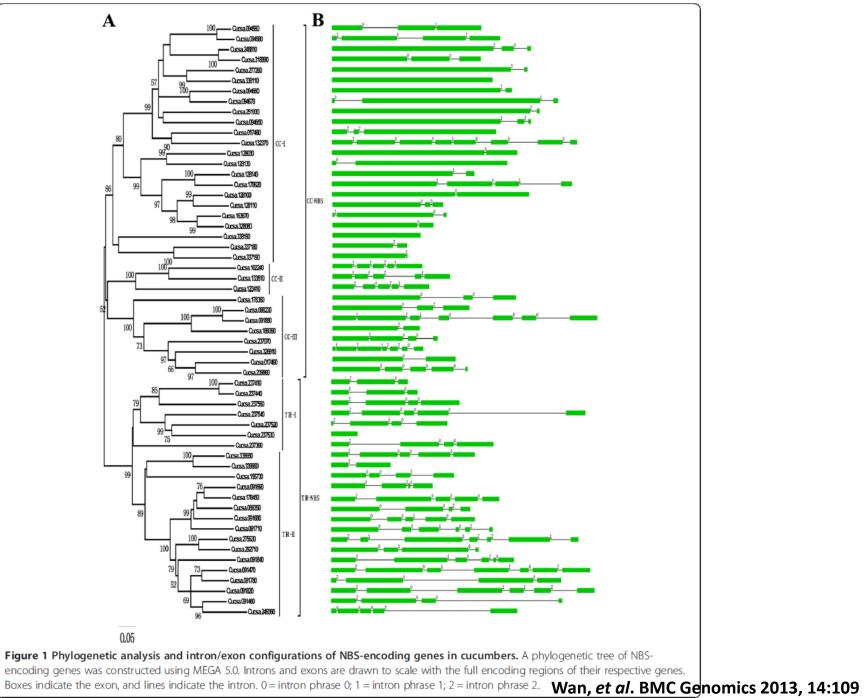
669 hn

Type of sequence Variation of *Coat* Protein Gene in GV


Pylogeny of 47 GV Isolates

Sequence Variation of CO-I of B. Tabacci


		210	000	000	240	050	260	270	280
		210	220	230 1	 	250	260 	270	280 ll.
Translate		CCAAAAATATAATA	АТААААСТБА	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt-T-PDG-3-COIRV.ab1(8>699)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
Bt-T-PSS-3-COIRV.ab1(13>682)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt PSS-2G.ab1(7>679)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt AG-2b.ab1(3>643)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC	CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt PSS-la.abl(4>646)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC	CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt TD-1a.ab1(63>533)	\rightarrow	CTAAAAACATTAAA	A <mark>CAAAACTG</mark> G	GA <mark>AAGAAGAAG</mark>	GTTAAA ATTT	AAACTAACTC(CTA <mark>CTACC</mark> AAT	FGGAAATCA	AAACACAAGA(
▶Bt TD-3I.abl(12>581)	\rightarrow	CTAAAAACATTAAA	A <mark>CAAAACTG</mark> G	GA <mark>A</mark> AG <mark>A</mark> AGA <mark>A</mark> G	GTTAAAATTT	AAACTAACTC(CTA <mark>CTACC</mark> AAT	FGGAAATCA	AAACACAAGA(
Bt-S0-SKM 3-COIRV.ab1(23>646)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt PSS-2b.ab1(73>564)	\rightarrow	CCAAAAATATAATA	АТААААСТБА	GATACCAAATT	ATGGTTATTT	AATGTTAGAC	CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt 50K-2d.ab1(18>682)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt PSS-2a.ab1(9>553)	\rightarrow	CCAAAAATATAATA	АТААААСТБА	GATACCAAATT	ATGGTTATTT	AATGTTAGAC	CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt 50K-2c.ab1(29>563)	\rightarrow	CCAAAAATATAATA	АТААААСТБА	GATACCAAATT	ATGGTTATTT	AATGTTAGAC	CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt AG-2a.ab1(25>560)	\rightarrow	CCAAAAATATAATA							
▶Bt 50K-2b.ab1(24>782)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt-C BGR 3-COIRV.ab1(25>620)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATAC <mark>T</mark> AAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt TD-1b.ab1(30>512)	\rightarrow	CTAAAAACATTAAA							
▶Bt-PDG-1c.ab1(20>665)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC	CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt-PDG-1d.ab1(1>605)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt-PDG-la.abl(13>775)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC(CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶Bt-50K-1b.ab1(28>693)	\rightarrow	C TAAAAACATTAA A	A <mark>C</mark> AAAACTG <mark>G</mark>	GAAAGAAGAAG	GTTAAAATTT	AAACTAACTC(СТА <mark>СТАСС</mark> ААТ	FGGAAATCA	AAACACAAGA(
▶Bt-TD-3b.ab1(2>603)	\rightarrow	CTAAAAACATTAAA	A <mark>C</mark> AAAACTG <mark>G</mark>	GAAAGAAGAAG	GTTAAAATTT	AAACTAACTC(СТА <mark>СТАСС</mark> ААТ	FGGAAATCA	AAACACAAGA(
▶Bt-S0-1a.ab1(41>774)	\rightarrow	CCAAAAATATAATA							
▶Bt-S0-1c.ab1(11>771)	\rightarrow	CCAAAAATATAATA							
▶Bt-PSS-2c.ab1(4>638)	\rightarrow	CCAAAAATATAATA							
▶Bt-50K-3c.ab1(1>819)	\rightarrow	CCAAAAATATAATA							
▶Bt-PDG-1b.ab1(3>670)	\rightarrow	CCAAAAATATAATA							
▶Bt-S0-1b.ab1(50>639)	\rightarrow	CCAAAAATATAATA	ATAAAACTGA	GATACCAAATT	ATGGTTATTT	AATGTTAGAC	CTAAGATTAAT	FGGAAATCA	GTAAATAAAA
▶BT TD-4a.ab1(131>504)	\rightarrow	CTAAAAACATTAAA							
▶Bt-PSS-2E.ab1(11>768)	\rightarrow	CCAAAAATATAATA							
Bt-S0-1d.ab1(89>602)	\rightarrow	CCAAAAATATAATA							
▶Bt PSBT 8.ab1(26>532)	\rightarrow	CCAAAAATATAATA							
▶Bt-AG- 3b.abl(189>512)	\rightarrow	CTAAAAACATTAAA							
▶Bt PSBT 5.ab1(112>580)	\rightarrow	CCAAAAATATAATA							
▶Bt PSBT 3.ab1(67>583)	\rightarrow	CCAAAAATATAATA							
▶Bt 50K- 2a.ab1(73>706)	\rightarrow	CCAAAAATATAATA							
▶Bt PSBT 6.ab1(38>580)	\rightarrow	CCAAAAATATAATA							
▶Bt PSBT 2.ab1(121>613)	\rightarrow	CCAAAAATATAATA							
▶Bt AG - 1c.ab1(81>738)	\rightarrow	CCAAAAATATAATA							
▶Bt PSBT 9-A1.ab1(71>580)	\rightarrow	CCAA <mark>G</mark> AA <mark>C</mark> ATAAT(
▶Bt PSBT 7.ab1(106>580)	\rightarrow	CCAAAAATATAATA							
DE DEDT A ANIVILENCED	\rightarrow	<u> </u>	<u>ATAAAACTGA</u>	GATACCAAATT	MTGGTT MTTT	<u>'A ATGTTAGACI</u>	<u></u>	raadd d ame d	GTA A ATA A A A I


Type of sequence Variation of COI Gene in B. tabacci

Substitusi

Pylogeny of B. tabacci from 7 districts

Distribution of Three Multigene Families That Encode NBS-LRR, Cytochrome P450, and LRR Kinase Proteins in the Arabidopsis Col-0 Genome Relative to Segmental Duplications

	Gene Family				
Class	NBS-LRR	Cytochrome P450	LRR Kinase		
No. of pairs of segmental duplications	81	81	81		
No. of pairs with gene(s) in either or both segments	34	47	52		
No. of pairs with gene(s) in only one segment	25	19	24		
No. of pairs with gene(s) in both segments	9	28	28		
No. of pairs with simple duplication of a genea	4	15	21		
Total genes in family	149	245	206		
No. (%) of genes residing in segmental duplications	124 (83%)	199 (81%)	163 (79%)		
No. (%) of genes in simple segmental duplications ^a	14 (9%)	81 (33%)	66 (32%)		

^a See text. Each pair of genes had to have at least 40% identity, and their element on the diagonal plot is located along the duplication diagonal (see supplemental data online).

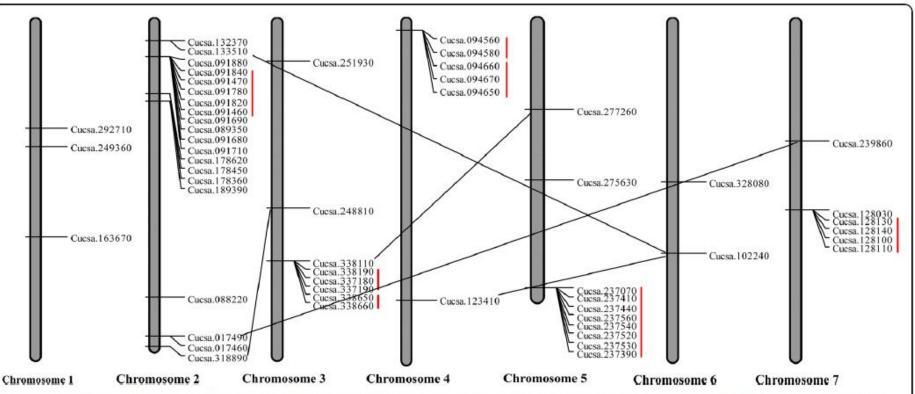
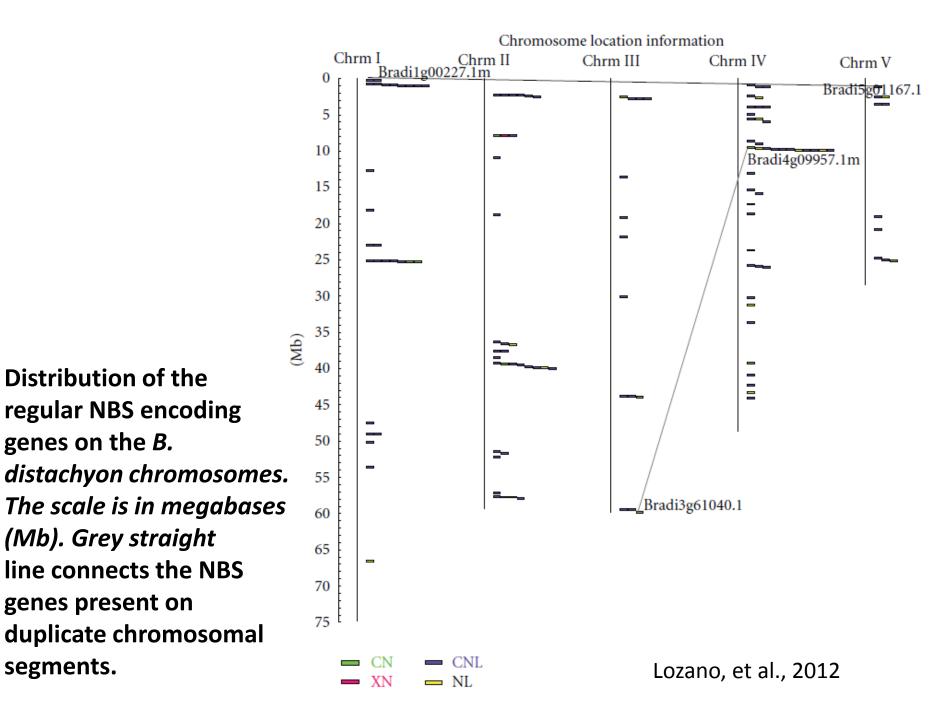
Duplication in the NBS-encoding R genes among three plants

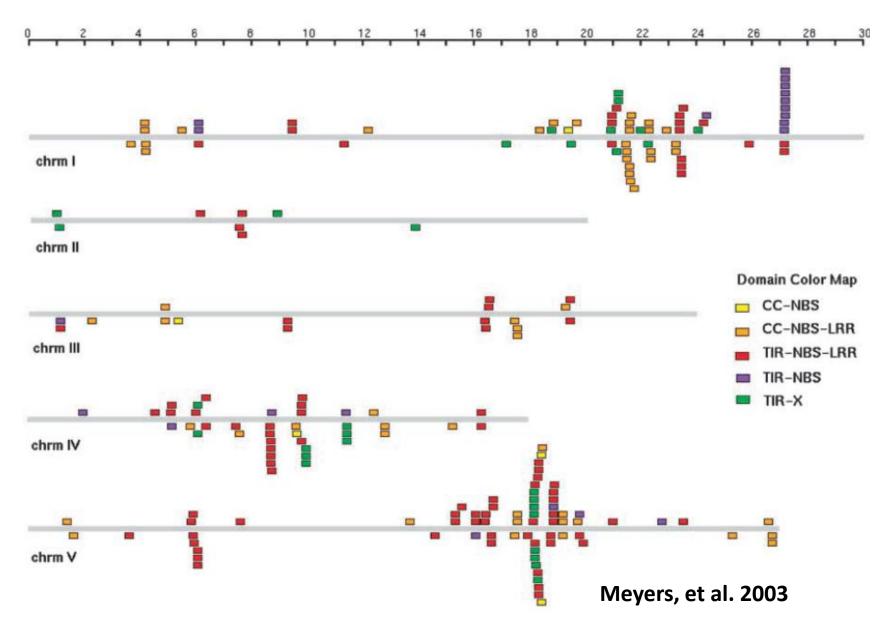
TABLE 3: Comparison of duplications in the NBS-encoding R genes from the three plant genomes.

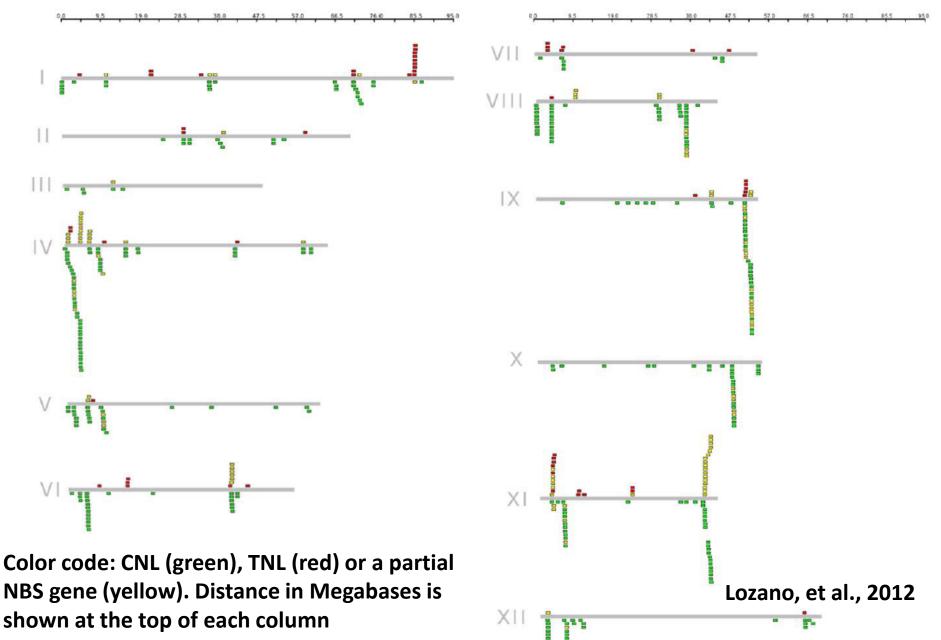
Organization	B.distachyon	<i>Arabidopsis</i> ^b	Rice ^a
Single-genes	77	93	216
Multigenes	49	81	248
Number of family members	20	25	93
Maximal family members	7	7	10
Average members per family	2.45	3.24	2.67
Multigenes/single-gene families	0.64	0.87	1.14
Percentage of multigene families	38.9%	46.6%	53.4
Note: ^a Data from Zhou et al. [11].			

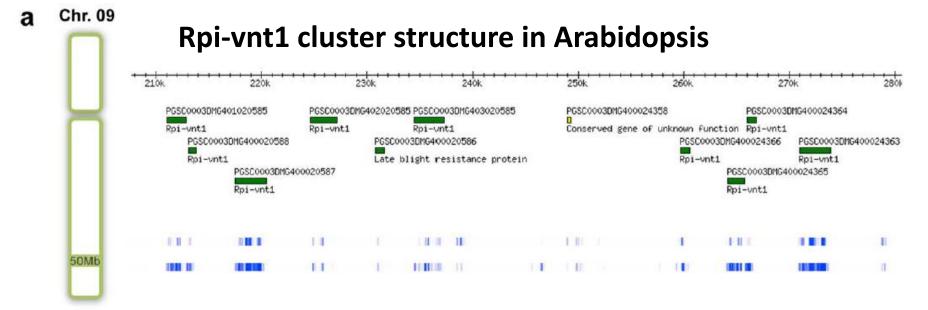
Note: "Data from Zhou et al. [11]. ^bData from Meyers et al. [10].

Clustering of R-gene

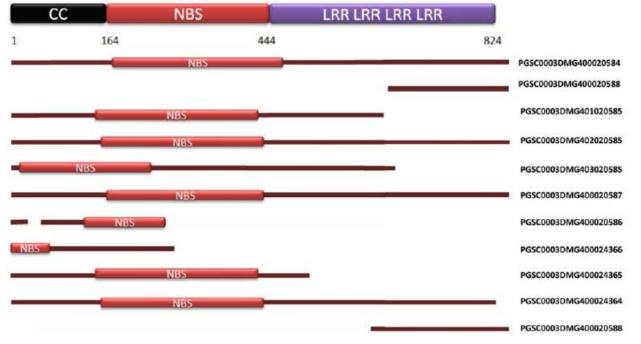




Figure 2 Position of NBS-encoding genes on the cucumber chromosomes. Chromosome numbers are indicated at the bottom end of the chromosome. Those located on sequence scaffolds are not shown. The straight lines connecting the NBS-encoding genes present on duplicated chromosomal segments, whereas the tandem duplicated gene clusters are indicated by red lines.

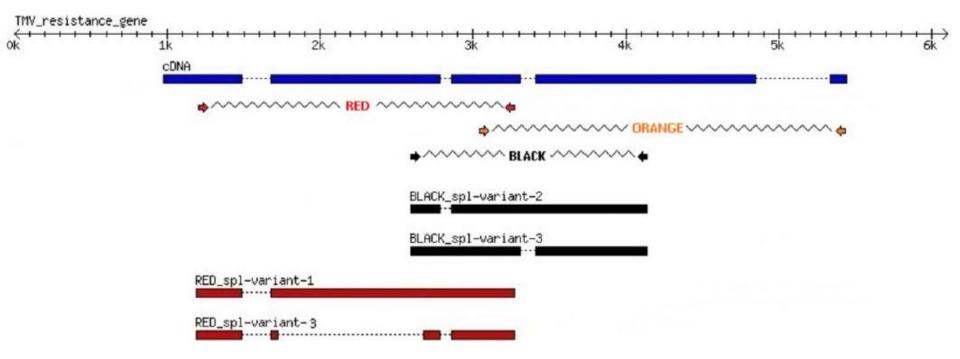


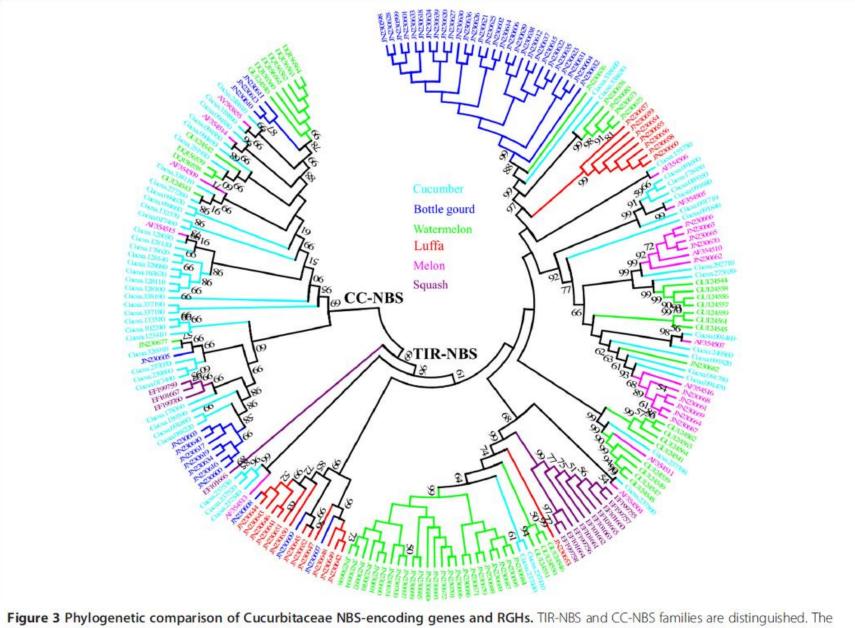


Physical Locations of Arabidopsis Sequences that Encode NBS Proteins Similar to Plant *R Genes*.

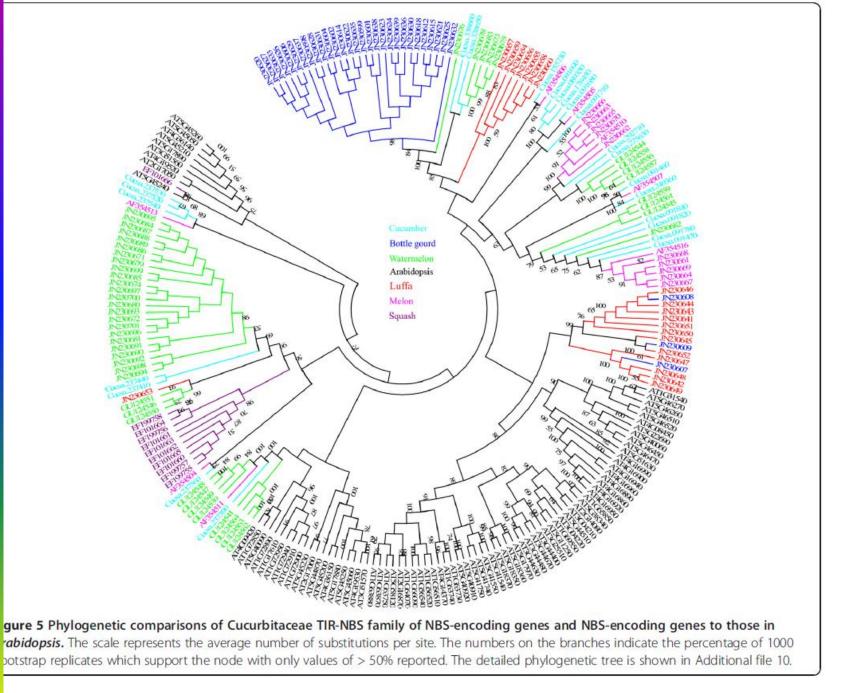


Distribution of *Solanum tuberosum* group phureja sequences that are predicted to encode NBS resistance proteins





Meyers, et al. 2003


Alternative splicing of a TIR-NBS-LRR resistance gene

Meyers, et al. 2003

Figure 3 Phylogenetic comparison of Cucurbitaceae NBS-encoding genes and RGHs. TIR-NBS and CC-NBS families are distinguished. The scale represents the average number of substitutions per site. The numbers on the branches indicate the percentage of 1000 bootstrap replicates that support the node with only values > 50% reported. The detailed phylogenetic tree is shown in Additional file 8.

Concluding Remarks

- Number and Diversity of R proteins represent a major part of the spectrum of recognition molecules available in an individual plant genotype to detect diverse pathogens.
- Although other types of proteins may play important roles in pathogen recognition, the majority of the R genes cloned to date encode CNL and TNL proteins.
- Higly conserved of NBS-LRR region characteristic among R-gene in diversity of plants enable R-gene isolation from many type of plants via PCR-based cloning

Concluding Remarks

- Fresh insights into the activities of R and Avr proteins, defence signalling networks and microbial pathogenicity factors should provide a range of materials to design new and effective disease control strategies.
- A key challenge now is to harness their collective potential.
- It is also important to elucidate the molecular processes underlying pathogen adaptation to new plant germplasms or chemical applications.
- Monitoring the losses to pathogen fitness associated with their resistance breaking ability will undoubtedly contribute to achieving durable disease resistance Agriculture sector.

Acknowledgement

- Renfiyeni,
- Yusniwati, J
- Jumsu Trisno,
- Ade Noverta,
- Zikril Illahi,
- Helni Lalan,
- Dilla Febria,

- Esther Kristin Natalia,
- Elly Syafriani,
- Siti Nur Aisyah
- Amran Gani
- Deria Andriani

Acknowledgement

- Parts of the researches were funded by Directorate General of Higher Education via Scheme National Strategic Grant, Competitive Grants and Fundamental Grant: 2007-2011.
 - and
- Agricultural Research and Development Agency, 2008-2010.

