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SUMMARY

This study proposes a procedure for identifying spectral response curves for earthquake-damaged areas in
developing countries without seismic records. An earthquake-damaged reinforced concrete building located
in Padang, Indonesia was selecl@ illustrate the identification of the maximum seismic response during the
20 est Sumatra earthquake. This paper summarizes the damage incurred by the building; the majority of
the age was observed lhe third story in the span direction. The damage was quantitatively evaluated
using the damage index R according to the Japanese guidelines for post-earthquake damage evaluation. The
damage index was alsplied to the proposed spectral response identification method. The seismic perfor-
mance of the building was evaluated by a nonlinear static analysis. The analytical results reproduced a drift

entration in the third story. The R-index decreased with an increase in the story drift, which provided an
estimation of the maximum response of the building during the earthquake. The estimation was verified via
an earthquake response analysis of the building using ground acceleration data, which were simulated based
on acceleration records of engineering bedrock that considered site amplification. The maximum response
estimated by the R-index was consistent with the maximum response obtained from the earthquake response
analysis. Therefore, the proposed method enables the construction of spectral response curves by integrating
the identification results ﬁe maximum responses in a number of earthquake-damaged buildings despite a
lack of seismic records. Copyright © 2016 The Authors. Earthquake Engineering & Structural Dynamics
published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Relative to developed countries, developing countries generally experience significant damage during
earthquakes. The majority of earthquake disasters in developed countries provide valuable lessons for
reducing future earthquake damage. The lessons learned from earthquakes in developing countries are
hindered by limited resources. A lack of seismometer networks prevents a sufficient understanding of
earthquake damage related to various factors, including ground motion characteristics, structural
response characteristics, local structural materials and systems, and local construction skills. For the
past several years, the authors have investigated earthquake-damaged buildings in Indonesia [I, 2].
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However, the earthquake damage to buildings could not be quantitatively related to the intensities of
ground motions or structural responses because of the lack of seismic records. Therefore, this study
proposes a method for identifying spectral response curves in earthquake-damaged areas without
seismic records, referred to as the spectral response identification method. This paper provides and
verifies a core procedure of the proposed method—namely, a procedure for identifying the
maximum seismic responses of earthquake-damaged reinforced concrete (RC) buildings based on
post-earthquake observation and nonlinear static analysis.

igure 1 compares the spectral response identification method proposed in this study to the
performance-based seismic design. The most recent performance-based seismic design utilizes building
capacity spectrs carthquake demand spectra, as described in ATC (Applied Technology Council) -
40 [3], FEMA (Federal Emer; y Management Agency) -273 [4], ASCE (American Society of Civil
Engineers) 41-06 [6], and the (Architectural Institute of Japan) guidelines [7]. These design codes
provide the maximum responses of buildings under design spectra, as shown in Figure I(a). In
contrast, the proposed method regressively identifies aclral response curve by integrating the
maximum responses estimated for a number of buildings, as shown in Figure 1(b). To demonstrate the
potential of the proposed method, the following investigations are conducted in this paper:

I. The damage to an earthquake-damaged RC building was quantitatively evaluated using a damage
index:
2. The building performance was evaluated by a nonlinear static analysis;
. The damage index for the building was quantitatively related to the maximum drift; and
. The estimated maximum drift was verified via a comparison with a realistic earthquake response
from a time-history analysis.

AW

The European Macroseismic Scale [8], which addresses masonry and RC buildings, is used to
evaluate earthquake damage to buildings. It defines a classification of damage grades by visual
inspection but provides no damage index. This scale is not sufficient for the spectral response
identification method proposed in this study, which requires a damage index (see 1) in the
aforementioned investigation steps). Park and Ang [9] proposed a well-known damage index to
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Figure 1. Concept of the spectral response identification method. (a) Schematic of performance-based seis-
mic design. (b) Schematic of the spectral response curve identification.
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quantitatively evaluate earthquake damage to RC buildings. However, the damage index cannot be
obtained without the maximum response of each building component; thus, it cannot be applied to
the proposed method, in which the maximum response is a resultant output (see 3). However, the
Japan Building Disaster Prevention Associa [10] provides another classification method
(guideline), which has been practically applied after major earthquakes in Japan, such as the 1995
Kobe earthquake [11] & he 2011 Great East Japan earthquake [12]. The latest edition presented
the damage index R for the quantitative evaluation of the residual seismic performance of
earthquake-damaged RC buildings based on visual inspection. Therefore, the R-index was adopted
for estimating the maximum responses of RC buildings in the proposed method, as described in this
paper. Thuocus on RC buildings is reasonable for establishing the proposed method because RC
buildings are widely used throughout the world, including developing countries.

The performance-based design, as shown in Figure 1(a), is realized by appropriate performance
evaluations with sophisticated numerical analyses. These analyses commonly replace structural
components by line elements with axial, flexure, and shear springs that represent nonlinear behavior
[3]. Some micro-element modElks can consider axial-flexure interactions (e.g., [13]) and axial-flexure-
shear interactions (e.g., [14]) based on the material properties of concrete and steel. However, in the
case of analyses for RC moment-resisting frames that exhibit flexure-dominated behavior, the
Takeda model [15] for macro-element models remains useful for simulating the structural behavior
of RC members and was applied to the no ar static and earthquake response analyses performed
in this study. Although many experimental studies have been conducted to evaluate the performance
curves for RC members, limited studies evaluating unloading behavior have been reported (e.g.,
[16]). The unloading stiffness is a common interest in this study because it particularly affects the
hysteretic behavior; thus, it was investigated based on an experimental database [17, 18].

2. OVERVIEW OF THE INVESTIGATED TYPICAL REINFORCED CONCRETE BUILDING IN
INDONESIA

@ The 2009 West Sumatra, Indonesia earthquake
n

30 September 2009 at 5:16 pm local time, a magnitude 7.6 earthquake (USGS [19]) struck the
southern coast of West Suma@py Indonesia (0.72°S, 99.86°E, depth: 81 km) and caused moderate to
heavy damage to the city of Padang, which is the capital of the province of West Sumatra. Many
RC buildings were significantly damaged. However, seismic records for this earthquake were
limited, as discussed in Chapter 4.

The authors conducted an earthquake damage investigation in Padang. During the investigation, a
building of the Finance and Development Audit Agency (Badan Pengawasan Keuangan Dan
Pebangunan (BPKP))—a five-story RC public office building constructed in 2003—was selected as
a typical RC building in the surveyed area, and a damage class evaluation for each member was
conducted according to the Japanese guidelines [10]. The basic concept of this guideline is briefly
described in Section 2.3. In Indonesia, the present seismic design provisions for buildings were
revised in 2002, mainly referring to the building codes of the USA and New Zealand based on the
capacity design. The BPKP building was designed according to the present provisions.

2.2. Badan Pengawasan Keuangan Dan Pebangunan building

In this study, a BPKP building located in central Padang was select analytically estimate the
seismic response during the earthquake. Figure 2 shows the BPKP building before and after the
earthquake. Figure 3 shows the second-floor and third-floor plans with dam classes of RC
columns that were evaluated according to the following method. The span length in the longitudinal
) and transverse (EW) directions was 6m, as shown in Figure 3, and the story height was 3.5 m.
able I lists the structural details of the columns. The thickness of the slab was 120mm. A
nondestructive hammer test and rebar locating exercise were performed during the mstigation
because the structural drawings were not comprehensive. The results showed that the compressive
strength of the concrete was 25.2N/mm”. A deformed bar of SD40 (nominal yield strength:
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(a) (b)
Figure 2. Views of the BPKP building before and after the earthquake. (a) Before the earthquake. (b) After
the earthquake.
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Figure 3. Floor plans and damage classes of the columns; the black and gray colors represent the damage
classes (0 through V) in the longitudinal and transverse directions, respectively. (a) Second floor.
(b) Third floor.
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395N/mm?) and a round bar of SR24 (nominal yield strength: 235N/mm?®) were cnnoycd for
longitudinal reinforcements and shear reinforcements, respectively. Table II presents the mechanical
properties of the concrete and reinforcements employed in the following analyses. All walls shown
in Figure 3 were non-structural unreinforced masonry (URM) brick infill walls. The number of walls
in the longitudinal direction exceeded the number of walls in the transverse direction. The damage
overview of the BPKP building is summarized in succeeding sections.

Damage of this building was mainly observed to vertical members such as columns and URM walls.
On the other hand, damage to beams and beam column joints was not found. This building seemed to
have good construction quality from the damage investigation. In the first story, damage to the main
frames was minor; however, there was an open space between the Y2 and Y4 axes. The damage to
the second story was more significant than the damage to the first story. Visible clear flexural cracks
on the concrete surfaces were observed in the columns along the X5-Y4 and X6-Y4 axes (damage
class II according to the Japanese guidelines [10], which are introduced in the succeeding sections),
and significant concrete crush with exposed reinforcing bars was observed in the column along the
X5-Y5 axis (damage class IV), as shown in Figure 3 The third story experienced the most
significant damage in the transverse (EW) direction. As shown in Figure 3(b), damage to the west
side of the building was substantial. Buckled and ruptured reinforcing bars were observed in the
columns along the Y4 and Y5 axes (damage class V), and reinforcing bars were exposed in the
columns along the Y2 and Y3 axes (damage class IV), as shown in Figures 3(b) and 4. In the fourth

Table 1. Column details (unit: mm).

IF & 2F 3F to 5F
Dimensions 550550 450450
Longitudinal reinforcement 16-#6 12-#6
Shear reinforcement @ 9@ 150 @ 9@150

glble II. Mechanical properties of the concrete and reinforcements.

Compressive strength ield stress of the longitudinal Yield stress of the shear
of the concrete reinforcement rcinforcmalt
252 N/mm* 444 N/mm*" 284 N/mm**

#The yield stresses 9f the longitudinal and shear reinforcements were estimated by considering an averaged over-
stress of 49N/mm~,

(b)

Figure 4. Significant damage to the third-story columns. (a) Damage class V (X5-Y4). (b) Damage class
IV (X5-Y2).
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and fifth stories, damage to the main frames was negligible: only flexural cracks were observed in some
columns. Thus, this building exhibited a story failure mechanism in the transverse direction of the third
story.

The authors carried out ambient vibration measure t using micro tremors for the BPKP building
during the investigation. The fundamental periods in the longitudinal (NS) and transverse (EW)
directions of the building were 0.69 s and 1.14 s, respectively.

23; idual seismic capacity ratio index R [10]

The Japal guidelines for a post-earthquake damage evaluation [10] provide a quantitative
evaluation method for the residual seismic performance of earthquake-damaged buildings, where the
performance is represented by the residual seismic capacity ratio index R given for each direction in
each story. The R-index for each direction in each story of the investigated building was obtained as
follows.

The R-index was calculated based on the damage to the columns, as noted earlier. First, damage
classifications for all columns were performed according to Table III, in which the slender column
damage is classified into six damage classes: 0 through V. The damage classes of I through IV
correfgad to flexural damage (refer to Figure 4(b)), while the damage class V approximately means
shear failure after flexural yielding (refer to Figure 4(a)).

In the guidelines, the R-index was defined by Equation (1) wiahe seismic capacity reduction factor
# listed in Table III. The R-index was evaluated considering the energy dissipation capacity ratio of an
earthquake-damaged column to the original capacity, as illustrated in Figure 5.

v
2 1y
j=0

v

20
=0

R=

x 100 (%) (1)

Table I1I. Damage class definition with the seismic capacity reduction factor 5 for slender reinforced
concrete columns [10].

Elmage class, j Description of damage n;

0 damage 1.0

I 1sible narrow cracks on the concrete surface (crack width is less than 0.2 mm) 0.95

11 Visible clear cracks on the concrete surface (crack width is 0.2-1.0 mm) 0.73

11 Local crush of cover concrete 0.5
Significant wide cracks (crack width is 1.0-2.0 mm)

v Significant crush of conerete with reinforcing bar exposure 0.1
Spalling of concrete cover (crack width exceeds 2.0 mm)

v gckling of the reinforcing bars 0

1gnificant damage to the core concrete

Visible vertical and/or lateral deformation of the column
Visible settlement and/or leaning of the building

Damage class 1 11 1 v v
|4 -|- ra -|- ra >

Dissipated seismic Residual seismic 7= E
capacity, Ey capacity, E, Eq+E,
Drift

Figure 5. Definition of the seismic capacity reduction factor 5.
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where j is the damage class of the columns defined in Table III; #; is the seismic capacity reduction
factor for the columns with damage class j according to Table IlI; and n; is the number of the columns
with damage class j.

As a result, the R-indices of the BPKP building were evaluated, as shown in Table IV. The
minimum value for the transverse direction in the third story was 54.1%, which was consistent with
the observed damage.

3. SEISMIC RESPONSE ESTIMATION OF THE BPKP BUILDING

This chapter presents a method for estimating the maximum responses of earthquake-damaged
buildings and applies it to the building investigated in the previous chapter. The experienced
maximum drift of the BPKP building in the transverse direction—where the most signaant
damage was observed in the third story, as indicated in Table IV—was analytically estimated based
on the residual seismic capacity ratio index R. Based on the estimated drift, the damage classes for
all columns in the third story were also estimated and verified in comparison with the observed
damage presented in Figure 3(b).

3.1. Nonlinear static analysis

311, Analytical assumptions. The structural damage of the BPKP building was mainly observed to
the columns, as described in Section 2.2. Therefore, the nonlinear modeling of the columns is a key
issue for the following analyses. The assumptions for nonlinear analyses are listed as follows.
Figure 6 illustrates |nm:aing for the structural components of the building.

1. The RC members were replaced by line elements with rigid zones at both ends; the length of each
member was assumed to be D/4 (D is the depth of each member), as shown in Figure 6.

Table IV. R-indices for the Badan Pengawasan Keuangan Dan Pebangunan building.

Story Longitudinal (NS) direction( %) Transverse (EW) direction(%)
1 98.8 94.5
2 85.9 894
3 85.0 54.1
4 100.0 96.7
5 98.6 99.3
D./4
b MY Rigid

[ Zone
[

Nonlinear
flexural
spring

e

Figure 6. Modeling of the structural components.
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. The RC beams considered the elastic deformations because of minimal damage. However, the

beam above/below the URM wall was assumed to be rigid considering the restriction of the beam
deformation by the URM wall.

. The RC columns considered nonlinear flexural characteristics and elastic axial and shear deforma-

tions. The Takeda model [15] was employed to represent nonlinear flexural behavior. The nonlinear
performance curves were evaluated according to the stiffness degradation factor ¢, in Subsection
3.1.2. The unloading stiffness was determined considering the degradation factor & of 0.4, which
represents the unloading stiffness for the Takeda model, as described in Subsection 3.1.3.

. Although the URM infill walls were considered with respect to building weight, their

strengths were disregarded because of the limited number of walls in the transverse direction
for the analysis, as shown in Figure 3.

. The foundations and slabs were regarded as rigid.
6.

Dead loads and live loads—which were distributed to each node considering the tributary floor
area—were estimated according to Indonesian guidelines [20].

. The lateral force distribution for the static analysis was assumed to be an elastic first mode shape,

as shown in Figure 7. The incremental pushover loads were applied toward the western direction
in Figure 3 because the columns along the Y35 axis experienced the most severe damage in the
transverse direction, which appeared to be caused by significant and varying compression due
to predominant seismic loads in the western direction.

3.1.2. Evaluation of rla column performance curves. In the following analyses, each column
performance curve was replaced by a trilinear function with cracking and yielding points, as shown
in Figure 8, based on Equations (2-6) for a practical design in Japan [} The cracking moment M,
and rotation #. were evaluated by Equations (2) and (3), respectively: ae the yielding moment M,
and rotation ¢, were evaluated by Equations (4) and (5), respectively, based on common bendmg
theories. However, in the case of the columns, va/mg axial forces were considered for N in
Equation (4). The value of @, given by Equation (6) provides a secant stiffness at the yielding point,
as shown in Figure 8. The post-yield stiffness was assumed to be 0.1% of the elastic stiffness. These
moments and rotations can be converted to corresponding shear forces and drifts by Equations (7-10).

= ND
M. =056\/f,2+~¢ @

Elastic first | : :
mode shape

e 1 1 1 1
00 02 04 06 08 1.0
Proportion

Figure 7. Lateral force distribution.
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Flexural moment, M

r 3
Mv ________________ g R

' | 0.001S

A

7/ i

4 H

7 ]

s H

4 :

mtf ;

: a, S |
9:' .!S'=6£” ho 9) Rotation a.ngle, [

Figure 8. Performance curve of the column.
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T

2
where f(.' is th .mpressive strength of concrete; Z is the section modulus; ?s the axial force; b, D,
d, and hy, are the width, depth, effective depth, anglear height, respectively; £'is Young's modulus; /
is the cross-sectional moment of inertia; a, and p, are the area of tensile reinforcements and the@®nsile
reinforcement ratio, respectively: f, is the yield stress of the longitudinal naforcement; n is the ratio of
the Young’s modulus of the reinforcement to the Young's modulus of the concrete; a is the shear span;
and 7, is the axial force ratio (=N/bD..).

3.1.3. Degradation factor for the unloading stiffness based on an experimental database. The
degradation factor a for the unloading stiffness shown in Figure 9 was determined based on an
experimental database [17]. In this study, the experimental results of three columns [17, 18] were
selected because the structural characteristics were similar to the structural characteristics in the
investigated building (see Table V for a comparison). The experimental results from the references
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Figure 9. Post-yield secant unloading stiffness K, for the Takeda model [15] and the stiffness degradation
factor o from the test results of three specimens.

Table V. Comparison of the column characteristics.

Tensile
Shear reinforcement-to-

Width-to-depth span-to-depth cross-sectional Axial load
ratio (h/D) ratio (a/D) area ratio (%) ratio (o)

BPKP building 1.0 3.9 0.57 0.12

Refs. [17]. [18] #51 1.0 3.0 0.61 0.12

#52 1.0 3.0 0.61 0.11

#53 1.0 3.0 0.61 0.11

BPKP, Badan Pengawasan Keuangan Dan Pebangunan.

are presented in Figure 10, and Figure 9 shows the values of factor a, which were re ively obtained

from the post-yield secant unloading stiffness K, between A and B in the figure [15]. The mean value u
and standard deviation o were 0.41 and 0.04, respectively; therefore, a stiffness degradation factor a of
0.4 was employed in the following analyses.

Drift (mm)
=200 <10 0 10 20 -20 -10 0 10 20

#53

by Equations (2) through (10)|

Drift (mm)
(=]

0 400 800 1200 0 300 600 900 0 200 400 600  B00O
Step

Figure 10. Load-drift relationships and drift time-histories of three specimens [17, 18].
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3.1.4. Results of the nonlinear static analysis. Figure 8, based on Equations (2-10), is a key model
for the column performance curve in this study. This modeling was verified in Figure 10, which
compares the performance curves evaluated according to Fig@ya8 with the test results from the
database. As a result, the analytical column perfc nce curves were consistent with the test results.

Figure 11 shows the relationships bet the story shear force and inter-story drift angle obtaﬁl
from the nonlinear static analysis with the inter-story drift angle profiles along the building height. The
inter-story drift angle in the third story was significantly larger than those on the remaining stories; this
trend corresponded to the observed damage, as stated in the previous chapter.

3.2. Maximum response estimation method based on the R-index

3.2.1. Proposed procedure. The maximum response experienced by the BPKP building during the
carthquake was estimated based on the R-index according to the following procedure:

1. The nonlinear static analysis of the BPKP building was performed under each incremental load
step j, as noted in the previous section. @

2. The index R; at each step j was calculated for the transverse direction in the third story based on
the damage classes of the third-story columns at the jth step, which were evaluated as described
in the succeding paragraphs.

3. The experienced maximum responses of the third story and total building were estimated by find-
ing the load step j to be R;=Ry (the target value of 54.1% in Table IV).

The damage classes that correspond to the load-drift relationships of the third-story columns were
evaluated for this procedure 2. However, to simplify the procedure, the third-story columns were
classified into three types with similar performance curves: exterior columns under varying tension
along the Y1 axis, interior columns along the Y2-Y4 axes, and exterior columns under varying
compression along the Y35 axis, considering the differences in the load-drift relationships under low,
medium, and high axial loads, respectively, as illustrated in Figure 12 and Table VI. In Figure 12,
the lateral strength at flexural cracking Qps and yielding Qg were evaluate@by Equations (7) and
(8), which provided the trilinear skeleton curve, as illustrated in Figure 8. On the othefghand, the
ultimate shear strength V,, [22] was evaluated by Equation (11), which can consider a decrease in
the shear strength with an increase in the column plastic drift angle R, (R,~R, shown in the
following). Comparing Qu, and V,. an ultimate drift angle R, was obtained at the intersection
between Oy, and V,,, as illustrated in Figure 13. The ultimate ductility ratio u,, was evaluated as the
ratio of R, to R,, where R, was assumed to be a constant value of 0.67% [23], as shown in
Table VI. However, the precise calculations from Equation (10) were approximately 0.67%. The
damage class versus drift angle relationships for the three types of columns—which were
determined based on the 5 index presented in Table III and Figure 5—are illustrated in Figure 12.
Consequently, all the third-story columns were evaluated to show flexure-dominant behavior up to

L - - -

Story shear force (xl[‘.l3 kN)

1 0.5...L.0....E5....2.0..;.25 3.!1
Inter-story drift angle (%)

0 L L L N

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Inter-story drift angle (%)
Figure 11. Story shear force — inter-story drift angle relationships and inter-story drift angle profiles along
the building height.
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Figure 12. Damage class versus drift angle relationship models for the columns in the third story. (a) Y1
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Table VI. Lateral strengths, drift angles, and ductility ratios of the columns in the third story.

Strength at Ultimate shear Yield drift Ultimate drift Ultimate
flexural yielding strength angle angle ductility ratio
Owny (KN) [23] Vi (kN) [22] Ry (%) [23] R, (%) [22] Hy (RJRy)
Y1 134 242 0.67 34 5.0
Y2to Y4 184 242% 0.67 23 a5
Xa 203 242* 0.67 1.4 2.0

~ Damage class
rinjmi i v

Oy L

E] | n-5=
- n E;+E,
Drift angle & corresponding to each damage

class was evaluated based on the 7 index
le.g., e = 0.5 for the damage class 11, as shown

: in Table 1)

R

b
Lt

Figure 13. Evaluations of the ultimate drift angle R, and damage class.

the damage class IV and shear failure beyond the damage class V. This failure mechanism was
consistent with the observed mechanism, as mentioned in Section 2.3.

C 5puefuy) bD
Vu= ‘u'pu'@'fn',\"b(' gt (V'f:- . Lf“) 5 ‘tant) (11)

A

where y is the coefficient concerning? angle of concrete truss action (2-20R,,); R, is an inelas
rotation of hinge region (rad); p,,. is the shear reinforcement ratio in the hinge region (a,,/(b. $)): a,, 18
the cross-sectional area of the shear reinforcernns; b, is the effective width of the column; s is the
spacing between the shear reinforceme Wy 18 the yield stress of the shear reinforcement; j, is the
effective depth of the column; v is the efEfitiveness factor for the concrete compressive strength in
the hinge region ((1-20R,)vo); vo is the effectiveness factor for the concrete compressive strength
outside the hinge region (0.7-}’;..1’ ; 4 is the effective area for the truss action (1-5/2j,-bJ4j,): by is
the largest distance between ties; and @ is the angle of the concrete arch strut.
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3.2.2. Estimated rm‘nmm responses. Figure 14(a) shows the third-story performance curve in
Figure 11 with the relationship between the R-index and inter-story drift angle in the third story. The
third-story drift angle at the targeted R-index (54.1% in Table IV) was estimated to be 1.05%, and
the corresponding story shear coefficient was approximately 0.295. The R-index decreased with an
increase in the story drift, as shown in the figure. This tendency was caused by superimposing the
relationships between the # index and story drift of all columns, which are illustrated in Figure 14(b)
for the interior columns in the Y2-Y4 axes.

Figure 15 compares the damage classes of the third-story columns at the maximum inter-story drift
angle of 1.05%, which was estimated by the proposed procedure with the observed damage classes in
parentheses. The estimated damage classes were identical to the obgjvations for more than 50% of the
third-story columns. Although limited columns—such as X4—Y5—showed relatively large differences
between the estimation and observation, the majority of the columns were similar with only one
class gap.

Furthermore, the fundamental period of 1.12s obtained based on the unloading stiffness from the
estimated maximum response was consistent with that of [.14s by the ambient vibration
measurement reported in Section 2.2.

4. SEISMIC RESPONSE ANALYSIS FOR VERIFICATION OF THE PROPOSED PROCEDURE

This chapter describes a time-history response analysis of the building using ground acceleration
data, which were simulated based on acceleration records at engineering bedrock considering site
amplification. The maximum responses estimated by the osed procedure were compared with
the maximum responses from the time-history analysis to verify the validity of the proposed
procedure.

4.1. Estimation of the ground motion at the BPKP building site

Two seismographs were installed in the surrounding area of the BPKP building site prior to the 2009
West Sumatra earthquake. One seismograph was installed at Andalas University (UNAND), and the
second seismograph was installed at a depth of 200m at the Sinkarak Hydro Electric Power Plant
(HEPP). Because Mangkoesoebroto reported that the seismograph at UNAND detected the
occurrence of slippage because of an inadequate anchor to the foundation [24], the acceleration
records from 200m underground at the HEPP were employed in this study. The locations of the
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S .| 0.208 | 1 4 m ., Im,; I 'V
=03 10 r T T T L)
Fl l . I = == —
S s : i3 ; |Column in Y2 to Y4 axes
y 02 ) = e
23 p = i ' i "
_g . 2 08F M ) )
= 0. : = ' ) "
3 - £ i ! i |
# 00 : 3 06 r : :
B ! ' '
—~ 80 -3 |
: 2 ..b ; : ;
= 60 g Gl 1 : : :
z = ! ' 1 ]
= o | L} i '
= 40 o ! 1 Wi z
T g 02 , Yield drift angle -
=20 Z ! '+ R=0.67T%
1.05% 4 | o _I
% [ILE! i i 'l i i
0 0.5 1.0 1.5 20 2.5 3.0 0.0 0.5 1.0 1.5 20 25
Inter-story drift angle in the third story (%s) Drift angle (%)
(a) (b)

17
Figure 14. Maximum onse estimated by the proposed procedure. (a)@&fformance curve for the third
story and the R-index versus the inter-story drift angle relationship. (b) # versus the inter-story drift angle
relationship for the columns in the Y2-Y4 axes.
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Figure 16. Locations of the Sinkarak Hydro Electric Power Plant (HEPP), Badan Pengawasan Keuangan
Dan Pebangunan (BPKP) building, and epicenter.

HEPP, the BPKP building, and the epicenter are shown in Figure 16. The distances from the HEPP and
BPKP building to the epicenter are approximately 50 km; however, the HEPP is located 35 km north of
the building site.

The ground motion in the EW direction (the transverse direction of the building) at the building site
during the earthquake was simulated based on the EW components of the seismic records at the HEPP
(referred to as the HEPP bedrock rec ) to perform a time-history response analysis of the building.
Figure 17 illustrates this simulation. Ground motion at the bedrock of the building site was assumed
to be the incident wave (E) extracted from HEPP bedrock records. The acceleration data (2E) for the
ground surface of the BPKP building (referred to as the BPKP GL simulation) were obtained by a
seismic response analysis of the ground [25]. The surface soil of the BPKP building site was
modeled ed on references [26. 27]; however, the surface soil above a depth of 30m was
replaced based on the boring data from the BPKP building site. The shear wave velocity was
calculated by Equation (12) and is shown in Table VII [28]. Table VIII and Figure 18 summarize
the soil profiles.
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BPKP building
(2E)

Figure 17. Concept of the ground motion simulation.

Table VII. Factors relating the soil type in Equation (12).

Soil type Clay Fine sand Coarse sand
Fa 1.000 1.086 1.135

Table VIII. Ground model of the building site.

Weight per Shear wave
Depth (m) N value Soil type unit volume (KN/m™) velocity, V, (m/s)
0-2 14 ne sand 17 135
2-4 39 Fine sand 17 184
4-6 43 sand 17 203
6-8 49 e sand 17 220
8-10 4 Clay 17 138
10-12 6 Clay 17 153
12-14 9 Clay 17 169
14-16 12 Clay 17 183
16-18 13 Clay 17 190
18-20 23 Clay 17 213
20-22 1] Clay 17 202
22-24 50 Coarse sand 17 287
24-26 54 Coarse sand 17 295
26-28 53 Coarse sand 17 299
28-30 58 Coarse sand 17 308
30-80 Unknown Unknown 18 270
80-200 Unknown Unknown 19 500
V, = 68.79N™ 7 HM1 o « Fy (12)

ﬂem V, is the shear wave velocity of each layer (m/s); N is themalue of each layer; H is the depth
of the bottom of each layer (m); F is a factor for the geochronological classification of each layer (1.0);
and F is a factor for the soil type of each layer (Table VII).

Figure 19 illustrates the nonlinear dynamic soil properties for the time-history response analysis of
the ground [29]. Figure 20 compares the acceleration time-histories between the HEPP bedrock records
and BPKP GL simulation in the EW direction (the transverse direction of the building). The maximum
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Figure 19. Nonlinear dynamic soil properties.

(a) Shear modulus ratios. (b) Damping ratios.
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Figure 20. Acceleration time-histories of the Sinkarak Hydro Electric Power Plant (HEPP) bedrock records
and BPKP GL simulation.

accelerations at the HEPP and BPKP were 0.94 and 1.85m/s”, respectively: thus, the amplification
ratio was approximately twofold. The acceleration response spectra with 3% damping at both sites
are compared in Figure 21. The predominant period at both sites was approximately 0.7 s; however,
the spectrum of BPKP GL simulation exhibited large amplifications at 1.2 and 1.5s.
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[: 10.1002/eqe

3
Copyright © 2016 The Authors. Earthquake Engineering & Structural Earthquake Engng Struct, Dyn, 2
Dynamics published by John Wiley & Sons Ltd.




5
SEISMIC RESPONSE ESTIMATION METHOD FOR EARTHQUAKE-DAMAGED RC BUILDINGS 1015

-]

"

Spectral response acceleration (m/s”)
£

|——— HEPP bedrock records
| |—— BPKP GL simulation |

-

(¥

=]

0.0 0.5 1.0 1.5 20 25 3.0
Period (sec.)

Figure 21. Acceleration response spectra of the Sinkarak Hydro Electric Power Plant (HEPP) bedrock re-
cords and BPKP GL simulation.
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Figure 22. Relationship between the story shear force and inter-story drift angle of each story. (a) First story.
(b) Second story. (¢) Third story. (d) Fourth story. (e) Fifth story.

4.2 %&hisfor_}' response lysis of the BPKP building under the BPKP GL simulation

The time-history response analysis of the BPKP building was performed in the transverse (EW)
direction of the BPKP GL simulation obtained per the previous section. The analytical model of the
building was identical to the aalytical model in the nonlinear static analysis, which was previously
discussed; however, tangent stiffness proportional damping with a damping coefficient of 3% was
assumed. The damping value was an approximate average of observed damping coefficients (2.3%
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to 3.6%) obtained by random decrement (RD) technique [30] using the ambient vibration measurement
data describe@ Section 2.2.

Figure 22 shows the relationship between the s shear force and inter-story drift angle of each
story, and Figure 23 compares the profile of the um inter-story drift angles from the time-
history analysis with the profile from the proposed procedure. The profiles e maximum inter-
story drift angles from the proposed procedure are consistent with profiles from the time-history
analysis. Therefore, the maximum response estimation method that was proposed in the previous
chapter provided a reliable estimation of the seismic intensity of the earthquake-damaged area
without seismic records.

4.3. Prospective procedure for the spectral response identification

pectral response point for the BPKP building was estimated by the spectral response identification
method proposed in this study, as shown in Figure 24. However, the response point was regarded as the
elastic response because the estimated maximum response occurred approximately at the yield point, as
shown in Figures 14 and 22. Thus, an elastic response spectrum can be regressively identified by
integrating the maximum responses estimated for a number of buildings based on the proposed
procedure, as shown in Figure 24. To complete the proposed method, additional studies are
needed to verify that conventional methods and/or equations (e.g., 3) for converting inelastic
responses to elastic responses can be carefully applied to targeted buildings considering local

5 - v ;
—@— Time-history response analysis|
\—®— Proposed procedure

4
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2k I

1 - i i
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Inter story drift angle (%)
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Figure 23. Comparison between the maximum nter-story drift profiles from the proposed method and the
time-history analysis.
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Figure 24. Schematic of the proposed spectral response identification procedure.
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characteristics, such as structural materials, systems, and construction skills. E this paper, the
proposed procedure was applied to the building to form the weak story collapse (column-sway)
mechanism. In future studies, the procedure will be applied to well-designed buildings to form a
beam-yielding total collapse mechanism and/or buildings with irregular configuration according to
the same logic applied in this paper.

5. CONCLUSIONS

This study proposed a spectral response identification method to estimate the seismic intensity of an
earthquake-damaged area without seismic records. This paper presented and verified the core
procedure of the proposed method to estimate the maximum responses of earthquake-damag .6
buildings based on post-earthquake damage observation and nonlinear static analysis. The major
findings are summarized as follows:

I. The post-earthquake damage evaluation of the BPKP building, which was ﬁnaged by the 2009
West Sumatra earthquake in Indonesia, provided the lowest residualggBismic capacity (R-index)
for the transverse direction in the third story, which was consistent with the actual damage ob-
served in the buildi

2. nonlinear static analysis of the building in the transverse direction adequately simulated the
inter-story drift concentration in the third s The R-index, which was analytically evaluated
for the building, decreased with an increase in the inter-story drift in the third story, which indi-
cated the feasibility of estimating the maximum responses of the building based on this index.

3. The procedure for estimating the maximum responses of earthquake-damaged buildings based on
the R-index was proposed and applied to the BPKP building. Consequently, the maximum inter-
story drift for the third story was estimated to be 1.05%. In addition, the damage classes of the
third-story columns at the drift corresponded with the observed damage.

4. The ground motion at the building site was simulated base@ the acceleration records of engi-
neering bedrock considering site amplification that were applied to the time-history response
analysis of the building. Thus, the maximum m—slory drift profile from the time-history anal-
ysis was nearly identical to the profile that was estimated by the procedure proposed in this paper.
Therefore, the proposed method will contribute to the estimation of seismic intensity of
earthquake-damaged areas without seismic records.
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