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Development of statistical models for predicting muscle and mental activities during repetitive
precision tasks
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This study was conducted to develop muscle and mental activities on repetitive precision tasks. A laboratory experiment
was used to address the objectives. Surface electromyography was used to measure muscle activities from eight upper
limb muscles, while electroencephalography recorded mental activities from six channels. Fourteen university students
participated in the study. The results show that muscle and mental activities increase for all tasks, indicating the occurrence
of muscle and mental fatigue. A linear relationship between muscle activity, mental activity and time was found while
subjects were performing the task. Thus, models were developed using those variables. The models were found valid after
validation using other students’ and workers’ data. Findings from this study can contribute as a reference for future studies
investigating muscle and mental activity and can be applied in industry as guidelines to manage muscle and mental fatigue,
especially to manage job schedules and rotation.
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1. Introduction
Jobs that involve constant, repetitive operations, also
known as repetitive tasks,[1] performed with upper limbs
and extremities are very common in industry today. Jobs
are designed to be easier and repetitive so workers can
carry out light tasks faster, and maximize the quality and
the production outputs. Repetitive tasks involving repeti-
tive movements of the arm comprise the majority of some
tasks in the workplace, such as work in manufacturing and
assembly lines.[2] Many manufacturing industries involve
significant amounts of assembly work that is very hard
to automate, which is why many manual jobs are still
required.[3] The physical load is frequently low; however,
the psycho-physiological stress levels are moderately high.
Thus, assembly work is generally considered highly repet-
itive and standardized for extended periods of time, and
may also be the main cause of musculoskeletal disorders
(MSDs) in the upper extremities.[4,5]

A task is repetitive when similar exertions, actions or
movements are performed often during a specific period
of time. During repetitive tasks, the musculoskeletal sys-
tem can begin to fatigue if enough recovery time is not
provided. As the musculoskeletal system begins to fatigue,
it cannot tolerate as much stress which can produce men-
tal fatigue. Even though the amount of force applied may
not change during the tasks, MSDs may occur if the
musculoskeletal system is too fatigued to handle the stress.

*Corresponding author. Email: hilma@ft.unand.ac.id

The US Bureau of Labor Statistics in 2005 reported that
repetitive motion consisting of grasping, moving and plac-
ing objects accounted for 31% of non-fatal work-related
injuries in industrial workplaces in 2003.[6] A study by
Dawal et al. [7] conducted in the Malaysian manufacturing
and electronics industry found that the prevalence of mus-
cle fatigue symptoms is high among industrial workers.
The highest prevalence was for the neck and upper limb
areas. The higher prevalence of muscle fatigue symptoms
is related to job demand factors, particularly monotonous,
attention requirement, precision and repetitiveness.

Worker’s fatigue is one of the most prevalent issues in
the workplace. It interferes with one’s physical and mental
operation, resulting in strength reduction and weakness. In
addition, it can cause diseases, occupational accidents and
a reduction in an individual’s efficiency.[8] Ignoring the
signs of fatigue can be dangerous to workers. Therefore,
with increasing public awareness of the impact of fatigue
on employee health and public safety in general, shift-work
industries including mining, utility providers, medical ser-
vices, transportation, on-highway transport, rail, aviation,
etc., are looking to technology for solutions to this prob-
lem. Empirical studies [9,10] have shown that mental
stress and cognitive factors besides physical demands can
produce muscle strain. Different levels of mental work-
load cause muscles to fatigue gradually when performing
repetitive lifting tasks.[9,11] In addition, slow and fast
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conditions, or time pressure, may also lead to muscle
fatigue.[12]

A light assembly task is a clear example of low-
intensity work with elevated risks of neck and shoulder
disorders.[13] Although numerous studies have investi-
gated muscle fatigue in assembly tasks, little research has
been done to explore the muscle and mental activity dur-
ing a light assembly task at different precision levels.[11]
Previous research on the effects of precision of a repetitive
light task only measured muscle activity.[4,14–16] They
did not measure mental activity during task performance.
Wartenberg et al. [17] investigated the aspects of precision
and speed in an assembly task (i.e., tape application). Their
study, however, did not include any measures of muscle
activation. Therefore, there is a need to measure fatigue
taking into consideration both muscle and mental activity
while performing repetitive tasks. Moreover, there are no
models developed to predict both muscle and mental activ-
ities while performing repetitive precision tasks. Regard-
ing more complex tasks (dynamic and intermittent), there
have been relatively few studies; most investigate muscle
fatigue during static tasks. Thus, this study aims to develop
a model for predicting upper limb muscle and mental
activities for different levels of repetitive precision tasks.

2. Methodology
2.1. Subjects
Fourteen subjects including seven male and seven female
students from the university population were recruited to
participate in the experiment. The participants’ M (SD)
age, stature and weight were 23.15 (1.79) years, 160.01
(3.71) cm and 53.29 (4.40) kg, respectively. Potential
participants with any neurological or MSD history were
excluded from the study. Subjects were also excluded if
they had taken any medication or substance that could
influence motor and neurological performance.

2.2. Apparatus and material
The Noraxon Telemyo 2400T Gen2 Telemetric elec-
tromyography (EMG) system complete with disposable
Ag/AgCl/solid adhesive pre-gelled surface electrodes and
MyoResearch XP software version 1.07 from Noraxon
USA were used to record the electrical activity of muscles.
Mental activity was measured using an electroencephalog-
raphy (EEG) BIOPAC MP150 system with AcqKnowl-
edge 4.0 software and an electrode cap (CAP100C) from
BIOPAC, USA. In addition, vertical electrooculograms
(EOGs) were also recorded to identify blink artifacts from
the recorded EEG data.

2.3. Procedures
In this study, the task of examining precision factor effects
on muscle and mental fatigue is derived from a study by

Nakata et al.[15] This consisted of two precision levels,
low precision (LP) and high precision (HP). The subjects
were supplied with 14 cm × 11 cm wooden trays. For the
LP task, the tray had 35 holes of 6 mm diameter each.
The HP tray had 56 holes of 1.5 mm diameter each. The
subjects had to insert nails into the LP tray holes and
colored needles into the HP tray holes, using both hands
alternately. The cycle time for these tasks was measured
using methods–time measurement (MTM) based on Li and
Buckle’s study.[18]

Each task was performed for 2 h in random order on
two consecutive days from 9:00 until 13:00. To become
familiar with the experimental equipment and procedures,
a training session was performed before the experiment.
The subjects were seated in a chair with the back verti-
cal and the feet in full contact with the floor or a footrest.
The desk was adjusted to elbow height so that the upper
arm and forearm could form 90° angles when the hand was
positioned in the middle of the desk and the upper arm
was vertical. Maximal voluntary contractions (MVCs) of
each muscle were performed every day before the start of
each experiment.

2.4. Data collection
2.4.1. Maximal voluntary contraction
MVC is the maximum amount of force that a subject
will voluntarily produce and is measured at the start of
each experimental day. Each MVC is performed three
times, and each time is held for 5 s with a 30-s rest
between contractions for recovery time. The MVC refers
to the highest EMG amplitude from three MVC record-
ings. It is applied to normalize the recording of surface
EMG signals during task performance. MVC measure-
ment procedures were carried out according to Konrad’s
guidelines.[19]

2.4.2. Surface electromyography
EMG signals were recorded from eight muscles: brachiora-
dialis, biceps brachii, anterior deltoid and descending part
of the upper trapezius, on the right and left hands. These
muscles were selected because they are often involved
in repetitive movements of upper extremities.[20] They
are also the important muscles that elevate the arm and
upwardly rotate the scapula.[21] The trapezius muscle is
critical for clinical use because it reveals a high frequency
of pain symptoms because of repetitive occupational tasks.
Therefore, it is frequently chosen as a muscle alternative to
determine electrical activity during repetitive occupational
tasks.[22]

Bipolar Ag/AgCl surface electrodes were placed at an
inter-electrode distance of 20 mm at the belly of the mus-
cles. A reference electrode was placed on the pisiform
bone. The electrode positions were located according to
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Hermens et al.[23] They were marked with a waterproof
pencil to place the electrodes at the exact same positions
for both conditions. Before the electrodes were applied,
the skin was cleaned with alcohol. The recording was
started after the inter-electrode resistance was less than 10
k�. Data were continuously recorded using the Noraxon
Telemyo 2400T Gen2 Telemetric EMGsystem.

2.4.3. Electroencephalography
EEG was used to record the brain activity simultaneously
with the EMG during the experiments. EEG was recorded
using an AgCl electrode cap, with electrodes placed at F3,
F4, Fz, Pz, O1 and O2 of the International 10–20 elec-
trodes placement system and with an electronic earlobe
reference.[24] Electrode placements on F3, F4 and Fz were
chosen because these locations represent the intentional
and motivational centers. On the other hand, Pz points rep-
resent the activity of perception and differentiation,[25] and
O1 and O2 are where the primary visual area is located.
Data were continuously recorded for 2 h with an MP150
system and analyzed with AcqKnowledge 4.0 software
from BIOPAC. Figure 1 shows the electrode placements
based on the international 10–20 electrodes placement
system.[24]

Electrode impedance was checked before the experi-
ment to ensure it was 5 k� or less. The bipolar recording
technique was used to record the signals. Eye movements
were recorded by means of an EOG. A right-eye EOG was
obtained with electrodes positioned above and below the
eye with a ground on the masseter. The EOG signal was
used to identify blink artifacts in the EEG data as well as
changes in blink types, such as the small and slow blinks
that characterize fatigue.

Figure 1. Placement of electroencephalography electrodes.

2.5. Data analysis
2.5.1. Electromyography signal processing
MyoResearch XP software was used to process EMG
data offline. The raw EMG data were sampled during the
test contraction with a sample frequency of 1500 Hz and
band-pass filtered (20–400 Hz).[26] The ECG spikes due
to EMG artifacts are filtered without affecting the true
EMG amplitude and power spectrum. Since the 1980s,
EMG has been the leading technique in assessing muscle
fatigue.[27] The most popular method of analyzing EMG
is monitoring changes in root mean square (rms) ampli-
tude and mean power frequency/median power frequency
(MPF/MdPF).[28] The rms amplitude of EMG provides
more information than other processing methods [29] and
is reported to allow for consistent, valid and accurate mea-
surement of noisy, problematic signals.[30] Therefore, in
this study, the rms values of the EMG data were analyzed.
The rms values correspond to the square root of the aver-
age power of the raw EMG signal for a given period of
time.[31] After calculation, the rms was normalized to the
highest MVC value derived from the previous MVC test,
and expressed as the maximal voluntary capacity percent-
age (%MVC). The normalized rms (%MVC) was averaged
for every 5 min, resulting in one value for every 5 min.
Consequently, 24 normalized rms values were obtained
during the tasks and used in the statistical analyses. The
mean values of normalized EMG rms represent muscle
activities in the study. A simultaneous increase of the rms
is generally considered an indication of muscle fatigue.

2.5.2. Electroencephalography signal processing
The signals were band-pass filtered between 1.0 and 100
Hz and recorded digitally (1000 Hz sample frequency).
The EEG was checked offline for EOG artifacts. The
data were transformed to a fast Fourier transform, using
a 100% Hanning window. Then, power values were gen-
erated in five separate frequency bands after averaging.
This study analyzed the EEG α band that is defined as the
frequency between 8 and 13 Hz. Then, the mean power
of the power spectrum within the epoch (mean power, in
volts squared/hertz) was calculated. The mean power of the
EEG α band was calculated for every 5 min, resulting in 24
mean α power readings during the tasks. These values were
then normalized by dividing the mean α power with the
initial value of each measurement. These normalized val-
ues were used in the statistical analyses. The mean values
of normalized EEG α power represent mental activities in
the study. A simultaneous increase of α power is generally
considered an indication of mental fatigue (drowsiness).

2.5.3. Statistical analysis
Statistical methods using SPSS version 19.0 were used
to analyze data derived from EMG and EEG software
analysis. The data were tested for normality distribution
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before being used for further analysis using the Shapiro–
Wilk test. Hence, the non-parametric statistic (Wilcoxon
signed-rank test) was used to investigate the differences
of muscle and mental activities between different task lev-
els because the data were not distributed normally, where
p < 0.05 was regarded as statistically significant.

Models were developed on different levels of repetitive
precision tasks using regression analysis, with the muscle
activity as the dependent variable and the mental activity
and time interval as the independent variables. The time
interval refers to the time used to perform the task. An
interval representing every 5 min performs the task. Thus,
there are 24 time intervals obtained during 2 h of tasks. The
models were developed with a 95% confidence level. The
models were then validated using data from other students
(three male and three female) and industrial workers (five
male and five female).

The standard error of estimate (SEE) measures the error
or accuracy of the prediction for the validation process. The
SEE is an indicator of the average error of prediction for the
regression equation. The better the fit of the regression line,
the less variability there will be around it and the smaller
the SEE.[32,33] A small SEE value is considered evidence
of validation.

3. Results and analysis
3.1. Muscle activity
Table 1 presents the mean of normalized EMG rms for LP
and HP tasks, as well as the significant difference values
between task levels. This illustrates that muscle activity
in the HP task was higher than in the LP task. However,
the differences were not statistically significant (p > 0.05),

meaning that different task levels did not affect muscle
activity during task performance.

Table 1 also demonstrates that the right upper trapez-
ius muscle has the highest muscle activity in both tasks
(12.667% and 15.786%, respectively). Muscle activity of
the left upper trapezius followed (10.653% and 14.284%),
while the right biceps brachii muscles have the lowest
muscle activity (5.255% and 6.036%).

3.2. Mental activity
The means of normalized EEG α power in all channels is
presented in Table 2, which reveals that mental activity in
the O1–O2 channels was higher than the other channels
for both task levels (1.482 and 1.962, respectively). This
is followed by mental activity of the Fz–Pz and F3–F4
channels, indicating that tasks affect the subjects’ visual
activity, since the O1–O2 channels are located near the
primary visual area in the brain.

Table 2 also presents the p value of the Wilcoxon
signed-rank analysis for determining differences in mental
activity between task levels. This shows that mental activ-
ity for the HP task was relatively higher than for the LP
task, except in the F3–F4 channels. A significant differ-
ence was only found in the O1–O2 channels (p = 0.011),
indicating that different task levels affect mental activity of
the O1–O2 channels differently, something related to visual
activity.

3.3. Development of the regression model
Regression analyses were carried out to identify the rela-
tionships between upper limb muscles and mental fatigue
over time. Analysis of muscle and mental activities showed

Table 1. Muscle activity (%MVC) for low-precision and high-precision tasks.

Muscle Mean rms of LP Mean rms of HP % difference Sig. (2-tailed)

R. brachioradialis 8.048 9.700 17.026 0.140
L. brachioradialis 6.788 8.155 16.766 0.594
R. biceps brachii 5.255 6.036 12.942 0.778
L. biceps brachii 7.072 9.065 21.987 0.196
R. anterior deltoid 6.964 6.468 7.681 0.778
L. anterior deltoid 5.883 12.327 52.281 0.198
R. upper trapezius 12.667 15.786 19.759 0.397
L. upper trapezius 10.653 14.284 25.422 0.245

Note: %MVC = maximal voluntary capacity percentage; LP = low precision; HP = high
precision; sig. = significance; R = right; L = left.

Table 2. Mental activity for low-precision and high-precision tasks.

EEG channel [24] Mean α power of LP Mean α power of HP % difference Sig. (2-tailed)

F3–F4 1.304 1.265 3.122 0.925
Fz–Pz 1.269 1.271 0.106 0.925
O1–O2 1.482 1.962 24.491 0.011

Note: EEG = electroencephalography; LP = low precision; HP = high precision; LP = low
precision; sig. = significance.
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that the right upper trapezius muscle has the highest mus-
cle activity and muscle fatigue rate compared with other
muscles for both LP and HP tasks. The O1–O2 channels
have the highest mental activity among all channels for LP
and HP tasks.

Muscle and mental activities also have a highly sig-
nificant relationship with the time interval. Therefore, to
develop a regression model for muscle and mental activi-
ties, only the variables of muscle activity of the right upper
trapezius, mental activity of the O1–O2 channels and the
time interval were utilized in the linear regression anal-
ysis. The dependent variable was muscle activity of the
right upper trapezius, while the independent variables were
mental activity of the O1–O2 channels and the time inter-
val. A regression model was developed for both LP and HP
tasks, and the results are presented in Table 3.

The resulting equations are as follows:

Low-precision task: muscle activity = 9.352

+ 1.786 (mental activity) + 0.053 (time interval).
(1)

High-precision task: muscle activity = 7.907

+ 5.434 (mental activity) − 0.223 (time interval). (2)

Table 3 shows that the HP task model has a very high
coefficient of determination (R2

adj = 0.950), suggesting that
the model fits the data well. R2

adj is the proportion of vari-
ance in the dependent variable, which can be predicted
from the independent variable. It signifies that 95% of the
model fits the population. On the other hand, the LP task
coefficient of determination can be categorized as medium
(R2

adj = 0.644). However, the significant model value is
less than 0.05 (p < 0.001) and the SEE is relatively small
(SEE = 0.613). Therefore, the relationship is reliable and
can be used to make predictions.

3.4. Model validation
Model validation used data from six students and 10 indus-
trial workers. SEE was used to validate the data predicted
by the models. Table 4 presents the actual values (Y) and
the prediction values (Y′) of models as well as the models’
SEE after validation.

Table 4 shows the models’ actual values, prediction
values and SEE values after validation, and indicates that
the actual and prediction values are not that different. The
LP task model SEE values are smaller compared with
the HP task SEE values. The SEE values of the work-
ers’ data are higher than the SEE values of the students’
data. This might be due to background differences between
students and workers, such as age. Workers are relatively
older than students; therefore, workers’ rates of muscle
and mental fatigue might be higher than those of students.
However, the SEE values for all models are relatively
small, signifying that the models are valid.

4. Discussion
4.1. Muscle activity
The highest indication of muscle activity was detected
in the right upper trapezius muscle area. The reason for
this issue might be that the subjects are all right handed.
This could be the left upper trapezius if they are left
handed. The load on the upper trapezius during the task
was consistent with prior data on, for example, sewing
machine operators,[34] carpenters [35] and electronics
assembly workers.[7,11] These results were also consistent
with other studies showing that the shoulder elevators are
mainly sensitive to fatigue when performing tasks with the
upper limb at or above shoulder level.[36,37]

Some studies postulated on the role of the trapezius
muscle in posture. This muscle is located at the base of
the neck, down towards the shoulder and arm, and passes

Table 3. Model summary of regression analysis for low-precision and high-precision tasks.

Regression coefficients

Dependent variable Task Intercept Mental activity Time interval R2
adj SEE

Muscle activity LP 9.352 1.786 0.053 0.644 0.613
HP 7.907 5.434 − 0.223 0.950 0.335

p < 0.001.
Note: LP = low precision; HP = high precision; R2

adj = coefficient of determination;
SEE = standard error of estimate.

Table 4. Model validation.

Students Workers

Model Task Actual values (Y) Prediction values (Y′) SEE Actual values (Y) Prediction values (Y′) SEE

Muscle activity LP 12.926 12.295 1.331 12.703 13.707 2.040
HP 12.302 12.995 1.483 23.573 18.728 5.446

Note: LP = low precision; HP = high precision; SEE = standard error of estimate.
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under the shoulder blade. When this muscle shortens and
tightens, it generates neck pain, usually caused by ‘tension,
stress, lack of exercise, poor ergonomics, or keeping a sit-
ting posture for long time’.[38, p.136] In the case of this
study, high muscle activity in the upper trapezius was also
contributed by lengthy sitting postures and repetitive tasks.

Muscle activity relatively increased in the higher level
task than in the lower one. These results were in line with
those of a previous study by Escorpizo and Moore.[16]
They found that light manual precision work increases
shoulder muscle activity as revealed by EMG. This is
thought to reflect a decrease in conduction muscle fiber
velocity, which is related to the onset of fatigue.[39] How-
ever, significant differences in muscle activity between
precision levels were not found in all muscles.

Some possible reasons for the lack of significant differ-
ences include the following. First, the effect of speed on the
task is a possible explanation. A study by Szeto and Lin
[14] illustrated that speed and precision demands are fre-
quently correlated and affect the EMG. The study showed
that a high-speed precision demand combination produced
the main effect on EMG results. Furthermore, precision
had small or no influence on EMG at low speed. In this
study, the speed for LP and HP tasks is similar and deter-
mined by MTM. Therefore, precision had little influence
on EMG. Secondly, similar to the reasons stated for pace
tasks, methodological limitations might explain the lack of
effects in this study. The object weights used in both tasks
were almost the same and very light; they were, therefore,
too small to be reflected by EMG.

The EMG results obtained were studied and evaluated,
and the evidence suggests that muscle activity in the preci-
sion tasks were influenced not only by precision levels, but
also by task speed. In spite of the varying consequences of
repetitive tasks on muscle activity, it is significant to reflect
on the physiological explanation following the repetitive
task. Hägg [40] stated that there are motor units in the
muscles that are directly affected even by gentle contrac-
tions. In addition, for each relatively large contraction,
such motor units are stimulated ahead of the larger ones.
These motor units can relax only after the larger muscles
have wholly relaxed. More specifically, these motor units
remained active during the contraction movement and fol-
lowing the relaxation of large muscles.[40] Unfortunately,
relaxation was not complete and the motor units were con-
tinuously active in the repetitive tasks, thus contributing to
pain and muscle fatigue. Waersted [41] supported Hägg’s
theory by stating that the constant activation of these small
muscle motor units may contribute to deterioration, injury
and then pain.

4.2. Mental activity
Similar to the results for muscle activity, the results demon-
strate increasing EEG α power with the increase of time

(duration of task). The increases occurred in all channels
for all tasks. Increasing EEG α power indicates that the
subjects were experiencing drowsiness. These results were
in agreement with several EEG studies related to driving,
where EEG α and θ power increased as the driver’s level of
alertness decreased.[42,43] Activity of α reflects a relaxed
wakefulness state, and decreases with concentration, stim-
ulation or visual fixation. Previous studies provided evi-
dence that α activity increased during fatigue.[44,45]

Other EEG measurement results show that mental
activity was highest in the O1–O2 channels for all tasks
(pace, precision and load). The explanation for this might
be that O1 and O2 in EEG channels are near the pri-
mary visual area.[25] The eyes were forced to work
harder when performing the tasks for 2 h with no break.
Subsequently, the subjects become drowsy, an indication
of mental fatigue. The mental activity in this area was
higher compared with the others. When comparing dif-
ferent task levels, significant difference between different
mental activities was only found in the O1–O2 channels.
This strengthens the results that especially precision tasks
affect mental activity related to the visual area. This could
be because more attention and alertness were needed for
the precision tasks.

Analysis results show significantly high correlations
between time interval, muscle activity and mental activity,
indicating that muscle and mental activity increases with an
increase of time. This reflects subjects experiencing phys-
ical and mental fatigue after performing the tasks. The
strong relationship between muscle and mental activity can
be explained by direct correlation between the electrical
activity of the motor cortex and muscle fatigue. The change
in the power of EEG signals is an indicator of a metabolic
process in the motor cortex which sustains the MVC after
muscle fatigue. Casey et al. [46] have another theory on the
relationship between muscle and mental fatigue. Muscle
contraction stimulus starts in the brain; therefore, muscle
fatigue may also be triggered if the central nervous system
cannot stimulate the neuromuscular junction. The brain’s
inability to stimulate the neuromuscular junction is known
as central fatigue and may be caused by a lack of con-
centration or alertness, or loss of motivation.[46] Other
studies found that the power of EEG signals also changed
as muscle fatigue changed.[47]

The results which found the strong relationship
between muscle activity and mental activity were
consistent with some previous study results. A study by
Waersted [41] evidenced that mental activity contributed to
muscle fatigue especially in the neck and shoulder regions.
Upper trapezius muscle activity also increased while per-
forming the task with continuous visual attention and high
levels of mental processing.[48] Besides arm posture and
hand activities, some studies showed that a simultaneous
mental effort also increases muscle activity ahead of the
desired task alone.[9,41,49]
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Research by Hughes et al. [9] found that increasing
mental workload while typing can result in increased mus-
cle activity. During isometric work, blood flow increased in
the neck–shoulder muscles upon exposure to mental stress,
as did muscle tension. This would appear to be of clinical
significance in work conditions which involve repetitive
static load to the neck–shoulder muscles and exposure to
mental stress.[50] The increase in spinal load was directly
attributable to increased muscle activity.

This study has shown that not only physical demands
but also cognitive factors and mental stress may induce
muscle fatigue. This means that ongoing psychological
stress may keep low-threshold motor units active more
or less continuously. This supports some previous study
findings.[10,50,51] Nevertheless, these study results show
that mental load could change muscle activity when com-
bined with physical tasks which support the previous study
results.[50,52] Thus, it can be concluded from this study
that muscle and mental activities both contribute to muscle
and mental fatigue.

The proposed model uses linear regression analysis
since a linear fit yielded the best result for the relation-
ship between muscle activity, mental activity and time
interval. Two equations for low-level and high-level tasks
were developed for each repetitive task. EMG rms of the
right upper trapezius was selected as a variable of interest.
Then, a good linear fit was found for the O1–O2 α power
and time interval. A high-quality relationship was found
between muscle activity, mental activity and time interval.
The R2

adj values were mainly above 0.8 except for the LP
task (R2

adj = 0.644), meaning that the established models
were able to explain more than 80% of data variability.

These study results support the study by Coorevits et al.
[53] in that the use of simple linear regression techniques
still seems the most appropriate when studying muscle
fatigue. Furthermore, according to Roman-Liu et al.,[1]
regression analysis is the most reliable way of express-
ing changes of the parameter in time. Solnik et al. [54]
also developed a statistical model using linear regression
to describe the EMG signal frequency changes during
submaximal isometric contraction.

The regression models show that the slopes for men-
tal activity variables were higher for high-level tasks than
low-level tasks for all tasks (e.g., β1 = 0.273 for low
load, β1 = 3.195 for high load). This evidences that men-
tal activity in a higher level task tends to contribute
higher muscle activity and muscle fatigue. The models
also show that muscle activities have high correlation
with mental activities for both levels. This is because
of the involvement of mental demands (e.g., attention,
monotonous, time pressure/stress) in the precision tasks.
These results were consistent with results from previous
studies.[55] Therefore, an effort to manage muscle and
mental activity through job/rest schedule, job rotation or
job variation is important to reduce fatigue on workers.

The developed models were validated using data from
other students and workers. Results show that the mod-
els’ SEE values for both tasks were relatively small, thus
validating the models. The smallest value of the standard
errors is zero, when all of the points fall along the equation
line. There is no upper limit, so it can be hard to judge by
itself. Compared with the other models, the model with the
smallest SEE is the best fit for the sample. However, the
SEE values were higher when models were validated using
workers’ data, potentially due to some subject related fac-
tors such as age and job tenure. Workers who participated
in this study are relatively older and have higher job tenure
than students. Therefore, the SEE values were higher when
models were validated by workers’ data rather than stu-
dents’ data. This result supports prior studies that have
identified a positive association between age, job tenure
and disorder.[56,57]

The acceptable fatigue risk is hotly debated in model-
based fatigue risk management in commercial aviation and
other transportation modes.[58] A quantitative approach to
addressing this issue, referred to by the Federal Aviation
Administration with regard to its final rule for commercial
aviation ‘Flight Crew Member Duty and Rest Require-
ments’, is to compare predictions from a mathematical
fatigue model against a fatigue threshold.

Internationally, no firm recommendations exist about
what is or what is not an acceptable level of physical or
mental fatigue in the workplace. This is because of the
complexity of the subject, the difficulty of translating labo-
ratory measures to the everyday workplace and the specific
interaction between each individual’s work and the rest of
their life. Shift-work is viewed by experts and by those
who do it as a powerful provoker of fatigue and as a con-
stant source of stress for workers. Human resource policies
should acknowledge the various problems in this field that
can arise at work. Most of all, managers should have a
basic idea of how to recognize and deal with the early
signs that one of the people in their care is beginning to
be exposed to health and safety problems related to fatigue
from whatever source.

However, this study follows the study by Byström
et al.[59] The acceptable level of fatigue is defined when
muscle activity derived from the developed statistical mod-
els has exceeded 25%. Furthermore, the acceptable level of
fatigue can also be derived by comparing the predictions
from the models against a fatigue threshold study.[58] The
fatigue threshold can be investigated through data from
subjective measurements (questionnaire). Muscle fatigue
can then be determined. Thus, scheduling options for use
in industry can be generated.

Nevertheless, the development and validation of an
upper limb muscle and mental fatigue model is essential
if one is to predict reliably upper limb muscle activity or
mental activity with a given time during repetitive tasks.
The models incorporated combined upper limb muscle
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activity, mental activity and time variables which have
not been done previously, while most methods developed
models of muscle and mental fatigue independently.

5. Conclusion
This study investigated upper limb muscle and mental
activities using surface EMG and EEG while perform-
ing repetitive precision tasks. It was found that repetitive
tasks conducted in this study involve both upper limb
muscle and mental activities and result in upper limb mus-
cle and mental fatigue at the end of the tasks. Different
levels of task contribute to different muscle and mental
activities.

There is a strong linear relationship between muscle
and mental activities in the majority of EMG muscles and
EEG channels, indicating that if muscles were fatigued,
mental fatigue also occurred. Moreover, the analysis results
show significantly high correlations between the time inter-
val, muscle activity and mental activity, indicating that
muscle and mental activities increase with an increase of
time. This indicates that subjects experienced both physical
and mental fatigue after performing the tasks.

Regression models, utilizing muscle activity, mental
activity and time variables, have been developed to predict
upper limb muscle and mental activity while performing
repetitive tasks. The models were valid and may be poten-
tially used as design guidelines to manage upper limb
muscle and mental fatigue for repetitive tasks in industry.

Other results from the study also show that the right
upper trapezius muscle was found to be the critical muscle
for muscle fatigue in all tasks. Muscle activity in this mus-
cle was higher than in others. The rationale for this issue
might be that the subjects are all right handed. The results
might be different if the subjects were left handed. Thus,
the prediction models may apply only to right-handed
workers.

In addition, the occipital area of the brain which is near
the visual region was found to be the critical zone of mental
fatigue in all tasks. Therefore, the prediction models use
the EMG rms of the right upper trapezius as a dependent
variable, while mental activity of the O1–O2 channels and
the time interval were independent variables.
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