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@BBSTRACT

Bird flu infection processes within a poultry farm was studied numerically. A mathematical
model proposed in a previous study was reformulated with consideration of an age structure.
The mathematical model for a susceptible population and an infected population is described.
Numerical results show that essential factors for security against bird flu are vaccination and
removal of infected bird.
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1. INTRODUCTION

The loss of domestic birds due to bird flu has been a serious threat to poultry farmers ever
since the disease prevailed worldwide in 2003. The source of the disease is an influenza ‘ius
H5NI1, and it is carried by wild birds. Forms of infection with H5N1 is classified into low
pathogenic form and highly pathogenic form. The infection with the highly pathogenic form
spreads rapidly over a poultry farm and subject domestic birds to serious symptoms that
eventually lead to death. Even if infection of one bird with H5N1 is detected, all the birds in
the farm are subjected to culling. Thus losses due to bird flu caused substantial damage to the
poultry industry.

A bird flu infection process within a poultry farm involves the source of disease
(influenza virus), thg@host (poultry), and the medium (environment). Once bird flu attacks a
poultry farm. some birds die at the early stage of infection. and some others live longer.
Regardless of being alive or dead, infected birds remain being sources of infection, unless
they are completely removed. Thoff factors were incorporated in formulation of
mathematical model for populations of susceptible birds and infected birds [2]. The
mathematical model was reformulated for addition of virus concentration to unknowns [3. 4,
3, 6]. Those studies show that proper vaccination and removal of infected birds are essential
for security of a poultry farm against an outbreak of bird flu.

-

This study revisited bird flu infection processes within a poultry farm. In particular, age
structure of domestic birds was taken into consideration. In an egg production process, entire
population of domestic birds is maintained at the manageable capacity by supply of
six-month old birds for vacancies created by removal of thirty-month old birds. In the
EBllowing sections, a mathematical model is described, numerical techniques are illustrated,
and numerical results are presented.




2. Modeling bird flu infection process with age structure of population
When bird flu intrudes into a poultry farm, domestic birds are divided into the class of

healthy birds susceptiﬂe to infection and the class of infected birds. The S7 model was
proposed in studies of the population of susceptible individuals and the population of infected
individuals [7]. The SI model is inappropriate for susceptible and infected populations of
poultry farms, where the entire population is regulated. In a production process of a poultry
farm, the entire population of domestic birds is kept aldle capacity of the farm with supply of
new birds for vacancies. Let X(r) and Y(r) denote the population of susceﬁble birds and
the population of infected birds, respectively, at time /. and Let ¢ be the capacity of the
farm. Then the rate of supply of new birds isnv[c—(X (t)+ Y(f))] where a is the rate of
supply. The infected birds do not recover from the disease. Some birds die at the carly stage
of infection aﬁ others stay alive longer. Regardless of being alive or dead, infected birds are
virus carriers unless they are removed from the population. The removal rate of infected birds
is proportional to their population, and it is expressed by —mY’ (r) where m is the removal

rate. The following system (1), (2) was proposed [1].
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In this study, age structurc was considered in formulation of susceptible birds and
infected birds. In an egg production processes, entire population of domestic birds is
maintained at the capacity of the farm by supply of six-month old birds for vacancies created
by removal of thirty-month old birds. Suppose that domestic birds in a poultry farm is
distributed over an age interval [q,s]. Here ¢ [mth] is the age of fresh birds that are
supplied for vacancies, and s [mth] is the age of birds that are removed from the egg
production process. Denote by X(a./) and Y(a.r) the numbers of susceptible birds and
infected birds of age @ [mth] at time ¢ [mth]. respectively. The rate of infection of
susceptible birds of age « at time 7 is proportional to the product of X (a,r) and the total

number of infected birds I Y(a.t)da . and the removal rate of infected birds of age is at
El
time ¢ is proportional to ¥(a.t)
The following system of equations are proposed.
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System of equations (3), (4) is associated with the initial conditions,

X(a,O)ZX(,(a), Y(a,O):Y[,(a). &)
Vacancies are replaced with supply of susceptible birds of age ¢ . So the system of equations
(3). (4) is associated with the boundary condition,

X(q.0)=c - [ [X(a.t)+ Y (a.t)lda. (©6)
q
3. Stationary state population of susceptible birds and infected birds

Stationary points of system (1), (2) are constant solutions. For fixed but arbitrary positive
values of @, ¢. @, and m, there are two stationary points,

. (X.7)=(c.0). (7
m a(cco—m)

(x.,y)= > olasm | (8)
, 54=5)

The stationary point (10) corresponds to the state of no infection, in which no bird is infected.
The stationary point (11) corresponds to an endemic state in which a part of population is
always infected. The stationary (8) is practical provided its y component is non-negative, that
is,

cao—m=> 0, (9

while it is unpffictical for cc—m < 0. The stationary points (8) and (9) coincide for
cew — m = 0. When the stationary point (8) is asymptotically stable, the state returns to it
after disturbance due to intrusion of bird flu. The stationary point (9) is unstable under the
condition (10), and that it is asymptotically stable for ¢ — 72 < 0. The stationary point
(9) is asymptotically stable under the condition (10). It is unstable for cco—m2 <0 |[2].

The initial boundary value problem (3) — (6) has a constant solution. Suppose that
X(a,t)=¢&, Y(at)=n (g<a<s,1>0) isa constant solution of the system (3) - (6),
where & and 7 are nonnegative constants.

Equations (3) and (4) lcad to

—als —q)&n =0, (10)
[a)(s—q)g—m]?yzo. (11)

System of equations (10), (11) implies 77 =0, and the boundary condition (6) leads to
E=c—(s—-q). (12)

The solution of equation (12)is & =c¢/(1+s—¢q). and

(X,Y)=( < 0] (13)

l+s—q°

is a constant solution of the initial boundary value problem (3) — (6).
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ﬁ'gure 1: Numerical solution for ¢g=6.0 s=30.0, ¢=1.0, @=1.0, and m=1.5. The
figure shows the numerical solution of the initial boundary value problem (3) — (6) for
t=0.0 [mth)].

n=1,500000, c=1.000000, onega=1.000000

Uninfected; 6,600 [nth] —y— '
8,19 - ﬂ : Infected? 6.0808 [ath]l —o— =

8,85 - .4 & 4 . =
0,03 I 4 .
8,02 - : p
0,61 — P 3 W

B B B AR B S S
L 12 18 24 EL]

Figuﬁ 2; Numerical solution for ¢=6.0 s=30.0, ¢=1.0, ®=10, and m=1.5.
The figure shows the numerical solution of the initial boundary value problem (3) — (6) for
t=6.0 [mth].
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Figllﬁ 3: Numerical solution for ¢=6.0 §=30.0, ¢=1.0, ®=10, and m=1.5.
The figure shows the numerical solution of the initial boundary value problem (3) — (6) for
t=300.0 [mth].

4. Numerical solution of equations for susceptible population and infected population

The initial boundary value problem (3) — (6) was analyzed numerically for ¢ =6.0
s=30.0, ¢=1.0,and ®=1.0. Figures 1 — 3 show profiles of a numerical solution for
m=1.5. Those figures indicate that the solution approaches the constant solution (13).
Figures 4 — 6 show profiles of a numerical solution for #2 = 0.5. Those figure indicate that
the solution quickly approaches a non-constant time-independent solution.
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Egure 4: Numerical solution for ¢ =6.0 s=30.0, ¢=1.0, @=1.0,and m=0.5. The
figure shows the numerical solution of the initial boundary value problem (3) — (6) for
t=0.0 [mth].
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Figua 5: Numerical solution for g=6.0 5s=300, ¢=1.0. ®=10_ and m=0.5.
The figure shows the numerical solution of the initial boundary value problem (3) — (6) for
t=6.0 [mth].
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Figuﬁ 6: Numerical solution for ¢=6.0 5s=30.0, ¢=1.0, ®=1.0, and m=0.5.
The figure shows the numerical solution of the initial boundary value problem (3) — (6) for
1=300.0 [mth].

5. DISCUSSION

The previous studies based on a mathematical model (1), (2) showed that the stationary
solution corresponding to the infection free state was asymptotically stable while the other
stationary points was unpractical. In this study, age structure was incorporated in formulation,
Nnumerical solutions of the initial-boundary value problem (3) - (4) also showed that the
constant solution corresponding to the infection free state was asymptotically stable for a
large value of the removal rate m . Numerical results indicated that the infection free state
was unstable when another non-constant time independent solution was asymptotically
stable.

Those results suggests the condition caw—m <0 to be a possible criterion for
stability of the infection free state. This shows that removal of infected birds is essential for
security of a poultry farm against a bird flu outbreak. The vaccination reduces the value of
@ . This show that proper vaccination is also an important factor for security against a bird
flu outbreak.
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