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Abstract

In this paper we shall investigate conformal theory in Finsler geometry. The main
topic in this paper is the averaged connection of the Wagner connection which is
called Lyra connection. Therefore we also discuss deformed connection of Lyra
connection which is called Weyl connection. The main tool in this paper is the
Wagner connection which is a natural extension of Finsler-Weyl connection in Rie-
mannian.
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1. Preliminaries

Let M be an n-dimensional smooth connected manifold with a Riemannian metric h. A
linear connection ∇ is said to be conformal if the parallel transport with respect to ∇
preserves angles but not the metric h. Thus ∇ is conformal if and only if there exists a
one-form w(h) such that

∇h = 2w(h) ⊗ h. (1.1)

We denote c = {eσh|σ ∈ C∞(M)} is the conformal class of h. A Weyl structure on
(M, c) is a map w : c → �1(M) satisfying (1.1). The triplet (M, c, w) is called a Weyl
manifold.

Let π : T M −→ M be the tangent bundle over M . We denote by V := ker{dπ :
T T M → T M} the vertical sub-bundle over T M . Since V is also isomorphic to π∗T M ,
we can lift any vector field X in M to a vector field XV which tangent to the fiber TxM

at each point (x, y) ∈ TxM . We call XV the vertical lift of X.



4992 Jenizon, Haripamyu and I Made Arnawa

We used the coordinate system {π−1(U), (x1, yi)1≤i≤n} in T M induced from a co-
ordinate system {U, xi}1≤i≤n in M , where (yi)1≤i≤n are the fibre coordinates in each
TxM . The action of R

+ induces the so called Liouville vector field

E =
∑

yi ∂

∂yi
. (1.2)

Since any nonlinear connection H is also isomorphic to π∗T M , there exists a unique
vector field XH in T M such that dπ(XH) = X for any vector field X in M . Such a
vector field XH is called the horizontal lift of X with respect to H .

We shall begin to define a Finsler metric on a smooth manifold.

Definition 1.1. Let M be a smooth manifold of dim M = n, and π : T M → M its
tangent bundle. A function L : T M → R is called a Finsler metric if it satisfies

(F-1) L is continuous on the total space T M , and is smooth on the slit tangent bundle
T M\{0M}.

(F-2) L(x, y) ≥ 0 for every (x, y) ∈ T M , and the equality holds if and only if y = 0.

(F-3) L(x, λy) = λL(x, y) for every (x, y) ∈ T M and λ ∈ R
+.

(F-4) L2 is strongly convex along the fibers of T M .

The pair (M, L) is called a Finsler manifold.

By the assumption (F-4), the matrix (gij ) defined by

gij = 1

2

∂2L2

∂yi∂yj
(1.3)

is positive-definite. Then g defines an inner product in the tangent space Ty(TxM) at
y ∈ TxM . Therefore g = (gij ) causes a Riemannian metric gx = (gij ) in TxM for every
x ∈ M .

On the other hand, since the tangent space Ty(TxM) is naturally identified with the
fiber V(x,y) of V over (x, y), the matrix (gij ) defines a metric g in the vertical sub-bundle
V by

g

(
∂

∂yi
,

∂

∂yj

)
= gij . (1.4)

Then, from the homogeneity condition (F-3) on L, we have

L2 = g(E, E). (1.5)

Since the vertical sub-bundle V is relatively flat, we can define a covariant derivative
D on V such that it is flat in vertical direction. In this paper, the pair (H, D) of such a
covariant derivative D and a nonlinear connection H is called a Finsler connection of
M .
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2. Finsler-Weyl connections and Wagner connections

In this section, we shall extend the notion of Weyl structures to the category of Finsler
geometry. Suppose that the Berwald connection (H, DB) of Finsler manifold (M, L) is
conformal, namely, we suppose that (H, DB) satisfies

DB
XH g = 2α(X)g,

in any Finsler manifold (M, L), there exists a conformal Finsler connection (H, D).

Proposition 2.1. Let (M, L) be a Finsler manifold. For any α ∈ �1(M), there exists a
unique nonlinear connection H and a Finsler connection (H, D) satisfying the following
conditions for any vector fields X, Y in M :

(1) (H, D) is conformal, i.e.,
DXHg = 2α(X)g. (2.6)

(2) (H, D) is symmetric, i.e.,

DXHYV − DYHXV − [X, Y ]V = 0. (2.7)

(3) The deflection (H, D) vanishes, i.e.,

DXHE = 0. (2.8)

In the case of α = 0, the Finsler connection (H, D) in Proposition 2.1 is just the
Rund connection (H, DR) of (M, L). If α is closed, the assumption (2.6) is written as
DXH

(
e2σU g

) = 0 for some σU ∈ C∞(U). Hence (H, D) is the Rund connection of a
local Finsler metric eσU L.

We denote by C the conformal equivalence class of Finsler metric on M . We call the
triplet (M, C, α) a Finsler-Weyl manifold.

Definition 2.2. [8] The connection (H, D) is called the Finsler-Weyl connection of
(M, C, α).

Since gij are homogeneous of degree zero with respect to the variables y1, · · · , yn,
(2.6) implies

∂gij

∂xk
−

∑
N l

k

∂gij

∂yl
−

∑
gljK

l

ik −
∑

gilK
l

jk = 0, (2.9)

where we put N l

k = N l
k + αky

l and Ki

jk = Ki
jk + αkδ

i
j . These functions defines a

nonlinear connection H and a Finsler connection (H, D) which is semi-symmetric, i.e.,

D
XHYV − D

YHXV − [X, Y ]V = αL(X)YV − αL(Y )XV . (2.10)
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Further, (H, D) satisfies

D
XH g = 0 (2.11)

D
XH E = 0. (2.12)

Definition 2.3. ([7]) The Finsler connection (H, D) is called the Wagner connection of
(M, C, α).

Therefore the Finsler-Weyl connection (H, D) of (M, C, α) determines the Wagner
connection (H, D), and vise-versa.

3. Averaged Riemannian metrics and connections

Let Ix be the indicatrix at x ∈ M , namely, Ix is a compact hypersurface in the tangent
space TxM defined by Ix = {y ∈ TxM|L(x, y) = 1}. We defines a volume form of each
indicatrix Ix ,

dµI = ι(E)dµ =
∑

(−1)j−1yj
√

det g dy1 ∧ · · · ∧ ďy
j ∧ · · · ∧ dyn,

and the volume vL(x) of Ix is defined by

vL(x) :=
∫

Ix

dµI

Definition 3.1. ([11]) Let (M, L) be a Finsler manifold. The averaged Riemannian
metric of L is a Riemannian metric h in M defined by

h(X, Y ) = 1

vL(x)

∫
Ix

g(XV , YV )dµI (3.13)

for any vector fields X, Y in M .

Let L̃ = eσL be a conformal deformation of a Finsler metric L. The indicatrix Ĩx

at x ∈ M with respect to L̃ is given by Ĩx = e−σ Ix , and the volume form dµĨ on Ĩx is
given by

dµĨ =
∑

(−1)i−1
√

det g̃ widw1 ∧ · · · ∧ ˇdw
i ∧ · · · ∧ dwn

at w = (w1, · · · , wn) ∈ Ĩx, where g̃ = e2σ g is the metric in V defined by L̃. For the
diffeomorphism ψ : Ix 
 (x, y) �−→ ψ(x, y) = (x, e−σ y) ∈ Ĩx , we obtain

ψ∗(dµĨ ) = dµI ,

which implies

vL̃(x) =
∫

Ĩx

dµĨ =
∫

Ix

ψ∗(dµĨ ) =
∫

Ix

dµI = vL(x).
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Thus, in the sequel, we use the notation v(x) instead of vL(x) for the volume of the
indicatrix Ix of any L ∈ C. The averaged Riemannian metric h̃ of L̃ is given by

h̃ = e2σh (3.14)

of the averaged Riemannian metric h of L.

Theorem 3.2. Let C be a conformal class of Finsler metrics on M , and let g be the metric
in V determined by any L ∈ C. Then, by averaging each metric g by (3.13), the class C
determines a conformal class c of Riemannian metrics on M .

Let (H, D) be the Wagner connection of a Finsler-Weyl manifold (M, C, α). Then

Definition 3.3. ([12]) The averaged connection of (H, D) is a linear connection ∇ on
T M defined by

h(∇XY, Z) = 1

v(x)

∫
Ix

g(D
XHYV , ZV )dµI (3.15)

for any vector fields X, Y and Z in M , where h is the averaged Riemannian metric of L.

The properties (2.11) and (2.12) of (H, D) lead to

L
XHL = 0. (3.16)

Hence the parallel displacement with respect to Wagner’s non-linear connection H pre-
serves every indicatrix, i.e.,

Iϕt (x) = ϕH
t (Ix),

where ϕt and ϕH
t denote the flows generated by X and its horizontal lift XH respectively.

Therefore we have

X

(∫
Ix

f dµI

)
=

∫
Ix

{
XH(f )dµI + f L

XHdµI

}
(3.17)

for any f ∈ C∞(M).

Now we suppose that Wagner’s non-linear connection H preserves the density dµ :
L

XHdµ = 0. (3.18)
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This assumption and L
XHE = 0 lead to L

XHdµI = 0, and thus (3.17) implies that the
volume function v(x) is constant. If we normalize C so that v(x) = 1, then (2.11) and
(3.18) lead to

(∇Xh)(Y, Z) = Xh(Y, Z) − h(∇XY, Z) − h(Y, ∇XZ) = 0

which shows that ∇ is compatible with h. Further, from (2.10),

h(∇XY − ∇Y X − [X, Y ], Z) =
∫

Ix

g(αL(X)YV − αL(Y )XV − [X, Y ]V , ZV )dµI

= h(αL(X)Y − αL(Y )X, Z),

leads to
∇XY − ∇Y X − [X, Y ] = αL(X)Y − αL(Y )X. (3.19)

Hence ∇ is semi-symmetric, that is, ∇ is the so-called Lyra connection of (M, c)

Further the connection ∇ defined by

∇XY = ∇XY − αL(X)Y (3.20)

is symmetric, and ∇ satisfies
∇Xh = 2αL(X)h. (3.21)

Consequently the Finsler-Weyl structure α of (M, C) is a Weyl structure of (M, c),

and ∇ is the Weyl connection of (M, c, α).

Theorem 3.4. Let (M, C, α) be a Finsler-Weyl manifold, and let (M, c, α) be the Weyl
manifold determined by (M, C, α). Suppose that the Wagner’s non-linear connection
H of (M, C, α) preserves the density dµ. Then the averaged connection ∇ of Wagner
connection (H, D) is the Lyra connection of (M, c, α), and the deformed connection ∇
defined by (3.20) is the Weyl connection of (M, c, α).
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