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CHAPTER 1

BASIC TOPOLOGY

Topology, sometimes referred to as “the mathematics of continuity”,
or “rubber sheet geometry”, or “the theory of abstract topological spaces”,
is all of these, but, above all, it is a language, used by mathematicians in
practically all branches of our science. In this chapter, we will learn the
basic words and expressions of this language as well as its “grammar”, i.e.
the most general notions, methods and basic results of topology. We will
also start building the “library” of examples, both “nice and natural” such as
manifolds or the Cantor set, other more complicated and even pathological.
Those examples often possess other structures in addition to topology and
this provides the key link between topology and other branches of geometry.
They will serve as illustrations and the testing ground for the notions and
methods developed in later chapters.

1.1. Topological spaces

The notion of topological space is defined by means of rather simple
and abstract axioms. It is very useful as an “umbrella” concept which al-
lows to use the geometric language and the geometric way of thinking in a
broad variety of vastly different situations. Because of the simplicity and
elasticity of this notion, very little can be said about topological spaces in
full generality. And so, as we go along, we will impose additional restric-
tions on topological spaces, which will enable us to obtain meaningful but
still quite general assertions, useful in many different situations in the most
varied parts of mathematics.

1.1.1. Basic definitions and first examples.

DEFINITION 1.1.1. A topological space is a pair (X, T ) where X is
a set and T is a family of subsets of X (called the topology of X) whose
elements are called open sets such that

(1) ∅, X ∈ T (the empty set and X itself are open),
(2) if {Oα}α∈A ⊂ T then

⋃
α∈A Oα ∈ T for any set A (the union of

any number of open sets is open),
(3) if {Oi}k

i=1 ⊂ T , then
⋂k

i=1 Oi ∈ T (the intersection of a finite
number of open sets is open).

5



6 1. BASIC TOPOLOGY

If x ∈ X , then an open set containing x is said to be an (open) neigh-
borhood of x.

We will usually omit T in the notation and will simply speak about a
“topological space X” assuming that the topology has been described.

The complements to the open sets O ∈ T are called closed sets .
EXAMPLE 1.1.2. Euclidean space Rn acquires the structure of a topo-

logical space if its open sets are defined as in the calculus or elementary real
analysis course (i.e a set A ⊂ Rn is open if for every point x ∈ A a certain
ball centered in x is contained in A).

EXAMPLE 1.1.3. If all subsets of the integers Z are declared open, then
Z is a topological space in the so–called discrete topology.

EXAMPLE 1.1.4. If in the set of real numbers R we declare open (be-
sides the empty set and R) all the half-lines {x ∈ R|x ≥ a}, a ∈ R, then we
do not obtain a topological space: the first and third axiom of topological
spaces hold, but the second one does not (e.g. for the collection of all half
lines with positive endpoints).

EXAMPLE 1.1.5. Example 1.1.2 can be extended to provide the broad
class of topological spaces which covers most of the natural situations.

Namely, a distance function or a metric is a function of two variables
on a setX (i,e, a function of the Cartesian productX ×X ofX with itself)
which is nonnegative, symmetric, strictly positive outside the diagonal, and
satisfies the triangle inequality (see Definition 3.1.1). Then one defines an
(open) ball or radius r > 0 around a point x ∈ X as the set of all points
at a distance less that r from X , and an open subset of X as a set which
together with any of its points contains some ball around that point. It
follows easily from the properties of the distance function that this defines
a topology which is usually called the metric topology. Naturally, different
metrics may define the same topology. We postpone detailed discussion of
these notions till Chapter 3 but will occasionally notice how natural metrics
appear in various examples considered in the present chapter.

The closure Ā of a set A ⊂ X is the smallest closed set containing A,
that is, Ā :=

⋂
{C A ⊂ C and C closed}. A set A ⊂ X is called dense

(or everywhere dense) if Ā = X . A set A ⊂ X is called nowhere dense if
X \ Ā is everywhere dense.

A point x is said to be an accumulation point (or sometimes limit point)
of A ⊂ X if every neighborhood of x contains infinitely many points of A.

A point x ∈ A is called an interior point of A if A contains an open
neighborhood of x. The set of interior points of A is called the interior of
A and is denoted by Int A. Thus a set is open if and only if all of its points
are interior points or, equivalently A = Int A.
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A point x is called a boundary point ofA if it is neither an interior point
of A nor an interior point ofX \A. The set of boundary points is called the
boundary of A and is denoted by ∂A. Obviously Ā = A ∪ ∂A. Thus a set
is closed if and only if it contains its boundary.

EXERCISE 1.1.1. Prove that for any set A in a topological space we
have ∂A ⊂ ∂A and ∂(Int A) ⊂ ∂A. Give an example when all these three
sets are different.

A sequence {xi}i∈N ⊂ X is said to converge to x ∈ X if for every open
setO containing x there exists anN ∈ N such that {xi}i>N ⊂ O. Any such
point x is called a limit of the sequence.

EXAMPLE 1.1.6. In the case of Euclidean space Rn with the standard
topology, the above definitions (of neighborhood, closure, interior, conver-
gence, accumulation point) coincide with the ones familiar from the calcu-
lus or elementary real analysis course.

EXAMPLE 1.1.7. For the real line R with the discrete topology (all sets
are open), the above definitions have the following weird consequences:
any set has neither accumulation nor boundary points, its closure (as well
as its interior) is the set itself, the sequence {1/n} does not converge to 0.

Let (X, T ) be a topological space. A set D ⊂ X is called dense or
everywhere dense in X if D̄ = X . A set A ⊂ X is called nowhere dense if
X \ Ā is everywhere dense.

The space X is said to be separable if it has a finite or countable dense
subset. A point x ∈ X is called isolated if the one–point set {x} is open.

EXAMPLE 1.1.8. The real line R in the discrete topology is not separa-
ble (its only dense subset is R itself) and each of its points is isolated (i.e. is
not an accumulation point), but R is separable in the standard topology (the
rationals Q ⊂ R are dense).
1.1.2. Base of a topology. In practice, it may be awkward to list all

the open sets constituting a topology; fortunately, one can often define the
topology by describing a much smaller collection, which in a sense gener-
ates the entire topology.

DEFINITION 1.1.9. A base for the topology T is a subcollection β ⊂ T
such that for any O ∈ T there is a B ∈ β for which we have x ∈ B ⊂ O.

Most topological spaces considered in analysis and geometry (but not
in algebraic geometry) have a countable base. Such topological spaces are
often called second countable.

A base of neighborhoods of a point x is a collection B of open neigh-
borhoods of x such that any neighborhood of x contains an element of B.
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If any point of a topological space has a countable base of neighborhoods,
then the space (or the topology) is called first countable.

EXAMPLE 1.1.10. Euclidean space Rn with the standard topology (the
usual open and closed sets) has bases consisting of all open balls, open balls
of rational radius, open balls of rational center and radius. The latter is a
countable base.

EXAMPLE 1.1.11. The real line (or any uncountable set) in the discrete
topology (all sets are open) is an example of a first countable but not second
countable topological space.

PROPOSITION 1.1.12. Every topological space with a countable space
is separable.

PROOF. Pick a point in each element of a countable base. The resulting
set is at most countable. It is dense since otherwise the complement to its
closure would contain an element of the base. !
1.1.3. Comparison of topologies. A topology S is said to be stronger

(or finer) than T if T ⊂ S, and weaker (or coarser) if S ⊂ T .
There are two extreme topologies on any set: the weakest trivial topol-

ogy with only the whole space and the empty set being open, and the
strongest or finest discrete topology where all sets are open (and hence
closed).

EXAMPLE 1.1.13. On the two point set D, the topology obtained by
declaring open (besidesD and∅) the set consisting of one of the points (but
not the other) is strictly finer than the trivial topology and strictly weaker
than the discrete topology.

PROPOSITION 1.1.14. For any set X and any collection C of subsets of
X there exists a unique weakest topology for which all sets from C are open.

PROOF. Consider the collection T which consist of unions of finite in-
tersections of sets from C and also includes the whole space and the empty
set. By properties (2) and (3) of Definition 1.1.1 in any topology in which
sets from C are open the sets from T are also open. Collection T satisfies
property (1) of Definition 1.1.1 by definition, and it follows immediately
from the properties of unions and intersections that T satisfies (2) and (3)
of Definition 1.1.1. !

Any topology weaker than a separable topology is also separable, since
any dense set in a stronger topology is also dense in a weaker one.

EXERCISE 1.1.2. How many topologies are there on the 2–element set
and on the 3–element set?
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EXERCISE 1.1.3. On the integers Z, consider the profinite topology for
which open sets are defined as unions (not necessarily finite) of arithmetic
progressions (non-constant and infinite in both directions). Prove that this
defines a topology which is neither discrete nor trivial.

EXERCISE 1.1.4. Define Zariski topology in the set of real numbers
by declaring complements of finite sets to be open. Prove that this defines
a topology which is coarser than the standard one. Give an example of a
sequence such that all points are its limits.

EXERCISE 1.1.5. On the set R ∪ {∗}, define a topology by declaring
open all sets of the form {∗} ∪ G, where G ⊂ R is open in the standard
topology of R.

(a) Show that this is indeed a topology, coarser than the discrete topol-
ogy on this set.

(b) Give an example of a convergent sequence which has two limits.

1.2. Continuous maps and homeomorphisms

In this section, we study, in the language of topology, the fundamen-
tal notion of continuity and define the main equivalence relation between
topological spaces – homeomorphism. We can say (in the category the-
ory language) that now, since the objects (topological spaces) have been
defined, we are ready to define the corresponding morphisms (continuous
maps) and isomorphisms (topological equivalence or homeomorphism). Categorical language:

preface, appendix
reference?1.2.1. Continuous maps. The topological definition of continuity is

simpler and more natural than the ε, δ definition familiar from the elemen-
tary real analysis course.

DEFINITION 1.2.1. Let (X, T ) and (Y,S) be topological spaces. A
map f : X → Y is said to be continuous if O ∈ S implies f−1(O) ∈ T
(preimages of open sets are open):

f is an open map if it is continuous and O ∈ T implies f(O) ∈ S
(images of open sets are open);

f is continuous at the point x if for any neigborhood A of f(x) in Y the
preimage f−1(A) contains a neighborhood of x.

A function f from a topological space to R is said to be upper semicon-
tinuous if f−1(−∞, c) ∈ T for all c ∈ R:

lower semicontinuous if f−1(c,∞) ∈ T for c ∈ R.
EXERCISE 1.2.1. Prove that a map is continuous if and only if it is

continuous at every point.

Let Y be a topological space. For any collection F of maps from a
set X (without a topology) to Y there exists a unique weakest topology on



10 1. BASIC TOPOLOGY

R

]−1, 1[

FIGURE 1.2.1. The open interval is homeomorphic to the
real line

X which makes all maps from F continuous; this is exactly the weakest
topology with respect to which preimages of all open sets in Y under the
maps from F are open. If F consists of a single map f , this topology is
sometimes called the pullback topology on X under the map f .

EXERCISE 1.2.2. Let p be the orthogonal projection of the squareK on
one of its sides. Describe the pullback topology on K. Will an open (in the
usual sense) disk inside K be an open set in this topology?

1.2.2. Topological equivalence. Just as algebraists study groups up to
isomorphism or matrices up to a linear conjugacy, topologists study (topo-
logical) spaces up to homeomorphism.

DEFINITION 1.2.2. A map f : X → Y between topological spaces is a
homeomorphism if it is continuous and bijective with continuous inverse.

If there is a homeomorphism X → Y , then X and Y are said to be
homeomorphic or sometimes topologically equivalent.

A property of a topological space that is the same for any two homeo-
morphic spaces is said to be a topological invariant .

The relation of being homeomorphic is obviously an equivalence rela-
tion (in the technical sense: it is reflexive, symmetric, and transitive). Thus
topological spaces split into equivalence classes, sometimes called homeo-
morphy classes. In this connection, the topologist is sometimes described
as a person who cannot distinguish a coffee cup from a doughnut (since
these two objects are homeomorphic). In other words, two homeomorphic
topological spaces are identical or indistinguishable from the intrinsic point
of view in the same sense as isomorphic groups are indistinguishable from
the point of view of abstract group theory or two conjugate n× n matrices
are indistinguishable as linear transformations of an n-dimensional vector
space without a fixed basis.

there is a problem with
positioning this figure in the

page EXAMPLE 1.2.3. The figure shows how to construct homeomorphisms
between the open interval and the open half-circle and between the open
half-circle and the real line R, thus establishing that the open interval is
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homeomorphic to the real line.

EXERCISE 1.2.3. Prove that the sphere S2 with one point removed is
homeomorphic to the plane R2.

EXERCISE 1.2.4. Prove that any open ball is homeomorphic to R3.

EXERCISE 1.2.5. Describe a topology on the set R2 ∪ {∗} which will
make it homeomorphic to the sphere S2.

To show that certain spaces are homeomorphic one needs to exhibit a
homeomorphism; the exercises above give basic but important examples
of homeomorphic spaces; we will see many more examples already in the
course of this chapter. On the other hand, in order to show that topological
spaces are not homeomorphic one need to find an invariant which distin-
guishes them. Let us consider a very basic example which can be treated
with tools from elementary real analysis.

EXAMPLE 1.2.4. In order to show that closed interval is not homeo-
morphic to an open interval (and hence by Example 1.2.3 to the real line)
notice the following. Both closed and open interval as topological spaces
have the property that the only sets which are open and closed at the same
time are the space itself and the empty set. This follows from characteri-
zation of open subsets on the line as finite or countable unions of disjoint
open intervals and the corresponding characterization of open subsets of a
closed interval as unions of open intervals and semi-open intervals contain-
ing endpoints. Now if one takes any point away from an open interval
the resulting space with induced topology (see below) will have two proper
subsets which are open and closed simultaneously while in the closed (or
semi-open) interval removing an endpoint leaves the space which still has
no non-trivial subsets which are closed and open.

In Section 1.6 we will develop some of the ideas which appeared in this
simple argument systematically.

The same argument can be used to show that the real lineR is not home-
omorphic to Euclidean space Rn for n ≥ 2 (see Exercise 1.10.7). It is not
sufficient however for proving that R2 is not homeomorphic R3. Never-
theless, we feel that we intuitively understand the basic structure of the
space Rn and that topological spaces which locally look like Rn (they are
called (n-dimensional) topological manifolds) are natural objects of study
in topology. Various examples of topological manifolds will appear in the
course of this chapter and in Section 1.8 we will introduce precise defini-
tions and deduce some basic properties of topological manifolds.
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1.3. Basic constructions

1.3.1. Induced topology. If Y ⊂ X , then Y can be made into a topo-
logical space in a natural way by taking the induced topology

TY := {O ∩ Y O ∈ T }.

FIGURE 1.3.1. Induced topology

EXAMPLE 1.3.1. The topology induced from Rn+1 on the subset

{(x1, . . . , xn, xn+1) :
n+1∑

i=1

x2
i = 1}

produces the (standard, or unit) n–sphere Sn. For n = 1 it is called the
(unit) circle and is sometimes also denoted by T.

EXERCISE 1.3.1. Prove that the boundary of the square is homeomor-
phic to the circle.

EXERCISE 1.3.2. Prove that the sphere S2 with any two points removed
is homeomorphic to the infinite cylinderC := {(x, y, z) ∈ R3|x2+y2 = 1}.

EXERCISE 1.3.3. Let S := {(x, y, z) ∈ R3 | z = 0, x2 + y2 = 1}.
Show that R3 \ S can be mapped continuously onto the circle.

1.3.2. Product topology. If (Xα, Tα), α ∈ A are topological spaces
and A is any set, then the product topology on

∏
α∈A X is the topology

determined by the base
{∏

α

Oα Oα ∈ Tα, Oα += Xα for only finitely many α
}

.

EXAMPLE 1.3.2. The standard topology in Rn coincides with the prod-
uct topology on the product of n copies of the real line R.
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X

Y

FIGURE 1.3.2. Basis element of the product topology

EXAMPLE 1.3.3. The product of n copies of the circle is called the
n–torus and is usually denoted by Tn. The n– torus can be naturally identi-
fied with the following subset of R2n:

{(x1, . . . x2n) : x2
2i−1 + x2

2i = 1, i = 1, . . . , n.}
with the induced topology.

EXAMPLE 1.3.4. The product of countably many copies of the two–
point space, each with the discrete topology, is one of the representations of
the Cantor set (see Section 1.7 for a detailed discussion).

EXAMPLE 1.3.5. The product of countably many copies of the closed
unit interval is called the Hilbert cube. It is the first interesting example
of a Hausdorff space (Section 1.4) “too big” to lie inside (that is, to be
homeomorphic to a subset of) any Euclidean space Rn. Notice however,
that not only we lack means of proving the fact right now but the elementary
invariants described later in this chapter are not sufficient for this task either.

1.3.3. Quotient topology. Consider a topological space (X, T ) and
suppose there is an equivalence relation ∼ defined on X . Let π be the nat-
ural projection of X on the set X̂ of equivalence classes. The identification
space or quotient space X/∼ := (X̂,S) is the topological space obtained
by calling a set O ⊂ X̂ open if π−1(O) is open, that is, taking on X̂ the
finest topology for which π is continuous. For the moment we restrict our-
selves to “good” examples, i.e. to the situations where quotient topology is
natural in some sense. However the reader should be aware that even very
natural equivalence relations often lead to factors with bad properties rang-
ing from the trivial topology to nontrivial ones but lacking basic separation
properties (see Section 1.4). We postpone description of such examples till
Section 1.9.2.
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EXAMPLE 1.3.6. Consider the closed unit interval and the equivalence
relation which identifies the endpoints. Other equivalence classes are single
points in the interior. The corresponding quotient space is another represen-
tation of the circle.

The product of n copies of this quotient space gives another definition
of the n–torus.

EXERCISE 1.3.4. Describe the representation of the n–torus from the
above example explicitly as the identification space of the unit n–cube In:

{(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . n.

EXAMPLE 1.3.7. Consider the following equivalence relation in punc-
tured Euclidean space Rn+1 \ {0}:

(x1, . . . , xn+1) ∼ (y1, . . . , yn+1) iff yi = λxi for all i = 1, . . . , n + 1

with the same real number λ. The corresponding identification space is
called the real projective n–space and is denoted by RP (n).

A similar procedure in which λ has to be positive gives another defini-
tion of the n–sphere Sn.

EXAMPLE 1.3.8. Consider the equivalence relation in Cn+1 \ {0}:
(x1, . . . , xn+1) ∼ (y1, . . . , yn+1) iff yi = λxi for all i = 1, . . . , n + 1

with the same complex number λ. The corresponding identification space
is called the complex projective n–space and is detoted by CP (n).

EXAMPLE 1.3.9. The map E : [0, 1] → S1, E(x) = exp 2πix es-
tablishes a homeomorphism between the interval with identified endpoints
(Example 1.3.6) and the unit circle defined in Example 1.3.1.

EXAMPLE 1.3.10. The identification of the equator of the 2-sphere to a
point yields two spheres with one common point.

FIGURE 1.3.3. The sphere with equator identified to a point
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EXAMPLE 1.3.11. Identifying the short sides of a long rectangle in the
natural way yields the lateral surface of the cylinder (which of course is
homeomorphic to the annulus), while the identification of the same two
sides in the “wrong way” (i.e., after a half twist of the strip) produces the
famous Möbius strip. We assume the reader is familiar with the failed ex-
periments of painting the two sides of the Möbius strip in different colors or
cutting it into two pieces along its midline. Another less familiar but amus-
ing endeavor is to predict what will happen to the physical object obtained
by cutting a paper Möbius strip along its midline if that object is, in its turn,
cut along its own midline.

FIGURE 1.3.4. The Möbius strip

EXERCISE 1.3.5. Describe a homeomorphism between the torus Tn

(Example 1.3.3) and the quotient space described in Example 1.3.6 and the
subsequent exercise.

EXERCISE 1.3.6. Describe a homeomorphism between the sphere Sn

(Example 1.3.1) and the second quotient space of Example 1.3.7.

EXERCISE 1.3.7. Prove that the real projective space RP (n) is homeo-
morphic to the quotient space of the sphere Sn with respect to the equiva-
lence relation which identifies pairs of opposite points: x and −x.

EXERCISE 1.3.8. Consider the equivalence relation on the closed unit
ball Dn in Rn:

{(x1, . . . , xn) :
n∑

i=1

x2
i ≤ 1}

which identifies all points of ∂Dn = Sn−1 and does nothing to interior
points. Prove that the quotient space is homeomorphic to Sn.

EXERCISE 1.3.9. Show that CP (1) is homeomorphic to S2.
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DEFINITION 1.3.12. The cone Cone(X) over a topological spaceX is
the quotient space obtained by identifying all points of the form (x, 1) in
the product (X × [0, 1] (supplied with the product topology).

The suspension Σ(X) of a topological space X is the quotient space
of the product X × [−1, 1] obtained by identifying all points of the form
x × 1 and identifying all points of the form x × −1. By convention, the
suspension of the empty set will be the two-point set S0.

The join X ∗ Y of two topological spaces X and Y , roughly speaking,
is obtained by joining all pairs of points (x, y), x ∈ X , y ∈ Y , by line
segments and supplying the result with the natural topology; more precisele,
X ∗ Y is the quotient space of the product X × [−1, 1] × Y under the
following identifications:

(x,−1, y) ∼ (x,−1, y′) for any x ∈ X and all y, y′ ∈ Y ,
(x, 1, y) ∼ (x′, 1, y) for any y ∈ Y and all x, x′ ∈ X .

EXAMPLE 1.3.13. (a) Cone(∗) = D1 and Cone(Dn−1) = Dn for n > 1.
(b) The suspension Σ(Sn) of the n-sphere is the (n + 1)-sphere Sn+1.
(c) The join of two closed intervals is the 3-simplex (see the figure).

FIGURE 1.3.5. The 3-simplex as the join of two segments

EXERCISE 1.3.10. Show that the cone over the sphere Sn is (homeo-
morphic to) the disk Dn+1.

EXERCISE 1.3.11. Show that the join of two spheres Sk and Sl is (home-
omorphic to) the sphere Sk+l+1.

EXERCISE 1.3.12. Is the join operation on topological spaces associa-
tive?

1.4. Separation properties

Separation properties provide one of the approaches to measuring how
fine is a given topology.
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x y

T1 Hausdorff T4

FIGURE 1.4.1. Separation properties

1.4.1. T1, Hausdorff, and normal spaces. Here we list, in decreas-
ing order of generality, the most common separation axioms of topological
spaces.

DEFINITION 1.4.1. A topological space (X, T ) is said to be a
(T1) space if any point is a closed set. Equivalently, for any pair of

points x1, x2 ∈ X there exists a neighborhood of x1 not containing x2;
(T2) or Hausdorff space if any two distinct points possess nonintersect-

ing neighborhoods;
(T4) or normal space if it is Hausdorff and any two closed disjoint

subsets possess nonintersecting neighborhoods. 1

It follows immediately from the definition of induced topology that any On the picture the interior
does not looks closed but

the exterior does
of the above separation properties is inherited by the induced topology on
any subset.

EXERCISE 1.4.1. Prove that in a (T2) space any sequence has no more
than one limit. Show that without the (T2) condition this is no longer true.

EXERCISE 1.4.2. Prove that the product of two (T1) (respectively Haus-
dorff) spaces is a (T1) (resp. Hausdorff) space.

REMARK 1.4.2. We will see later (Section 1.9) that even very naturally
defined equivalence relations in nice spaces may produce quotient spaces
with widely varying separation properties.

The word “normal” may be understood in its everyday sense like “com-
monplace” as in “a normal person”. Indeed, normal topological possess
many properties which one would expect form commonplaces notions of
continuity. Here is an examples of such property dealing with extension of
maps:

THEOREM 1.4.3. [Tietze] If X is a normal topological space, Y ⊂ X
is closed, and f : Y → [−1, 1] is continuous, then there is a continuous

1Hausdorff (or (T1)) assumption is needed to ensure that there are enough closed sets;
specifically that points are closed sets. Otherwise trivial topology would satisfy this prop-
erty.
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extension of f to X , i.e., a continuous map F : X → [−1, 1] such that
F |Y = f .

The proof is based on the following fundamental result, traditionally
called Urysohn Lemma, which asserts existence of many continuous maps
from a normal space to the real line and thus provided a basis for introducing
measurements in normal topological spaces (see Theorem 3.5.1) and hence
by Corollary 3.5.3 also in compact Hausdorff spaces.

THEOREM 1.4.4. [Urysohn Lemma] IfX is a normal topological space
and A, B are closed subsets of X , then there exists a continuous map u :
X → [0, 1] such that u(A) = {0} and u(B) = {1}.

PROOF. Let V be en open subset ofX and U any subset ofX such that
U ⊂ V . Then there exists an open set W for which U ⊂ W ⊂ W ⊂ V .
Indeed, for W we can take any open set containing U and not intersecting
an open neighborhood of X \ V (such aW exists because X is normal).

Applying this to the sets U := A and V := X \ B, we obtain an
“intermediate” open set A1 such that

(1.4.1) A ⊂ A1 ⊂ X \B,

where A1 ⊂ X \B. Then we can introduce the next intermediate open sets
A′

1 and A2 so as to have

(1.4.2) A ⊂ A′
1 ⊂ A1 ⊂ A2 ⊂ X \B,

where each set is contained, together with its closure, in the next one.
For the sequence (1.4.1), we define a function u1 : X → [0, 1] by setting

u1(x) =






0 for x ∈ A ,

1/2 for x ∈ A1 \ A,

1 for X \ A1.

For the sequence (1.4.2), we define a function u2 : X → [0, 1] by setting

u2(x) =






0 for x ∈ A ,

1/4′ for x ∈ A′
1 \ A ,

1/2 for x ∈ A1 \ A′
1,

3/4 for x ∈ A2 \ A1,

1 for x ∈ X \ A2.
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Then we construct a third sequence by inserting intermediate open sets
in the sequence (1.4.2) and define a similar function u3 for this sequence,
and so on. maybe insert a picture

Obviously, u2(x) ≥ u1(x) for all x ∈ X . Similarly, for any n > 1
we have un+1(x) ≥ un(x) for all x ∈ X , and therefore the limit function
u(x) := limn→infty un(x) exists. It only remains to prove that u is continu-
ous.

Suppose that at the nth step we have constructed the nested sequence of
sets corresponding to the function un

A ⊂ A1 ⊂ . . . Ar ⊂ X \B,

where Ai ⊂ Ai+1. Let A0 := int A be the interior of A, let A−1 := ∅, and
Ar+1 := X . Consider the open sets Ai+1 \ Ai−1, i = 0, 1, . . . , r. Clearly,

X =
r⋃

i=0

(Āi \ Ai−1) ⊂
r⋃

i=0

(Ai+1 \ Ai−1),

so that the open sets Ai+1 \ Ai−1 cover the entire space X .
On each set Ai+1 \ Ai−1 the function takes two values that differ by

1/2n. Obviously,

|u(x)− un(x)| ≤
∞∑

k=n+1

1/2k = 1/2n.

For each point x ∈ X let us choose an open neighborhood of the form
Ai+1 \ Ai−1. The image of the open set Ai+1 \ Ai−1 is contained in the
interval (u(x)− ε, u(x) + ε), where ε < 1/2n. Taking ε →∞, we see that
u is continuous. !

Now let us deduce Theorem 1.4.3 from the Urysohn lemma.
To this end, we put

rk :=
1

2

(2

3

)k

, k = 1, 2, . . . .

Let us construct a sequence of functions f1, f2, . . . on X and a sequence of
functions g1, g2, . . . on Y by induction. First, we put f1 := f . Suppose that
the functions f1, . . . , fk have been constructed. Consider the two closed
disjoint sets

Ak := {x ∈ X | fk(x) ≤ −rk} and Bk := {x ∈ X | fk(x) ≥ rk}.

Applying the Urysohn lemma to these sets, we obtain a continuous map
gk : Y → [−rk, rk] for which gk(Ak) = {−rk} and gk(Bk) = {rk}. On the
set Ak, the functions fk and gk take values in the interval ] − 3rk,−rk[; on
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the set Ak, they take values in the interval ]rk, 3rk[; at all other points of the
set X , these functions take values in the interval ]− rk, rk[.

Now let us put fk+1 := fk − gk|X . The function fk+1 is obviously
continuous on X and |fk+1(x)| ≤ 2rk = 3rk+1 for all x ∈ X .

Consider the sequence of functions g1, g2, . . . on Y . By construction,
|gk(y)| ≤ rk for all y ∈ Y . The series

∞∑

k=1

rk =
1

2

∞∑

k=1

(2

3

)k

converges, and so the series Σ∞
k=1 gk(x) converges uniformly on Y to some

continuous function

F (x) :=
∞∑

k=1

gk(x).

Further, we have

(g1+· · ·+gk) = (f1−f2)+(f2−f3)+· · ·+(fk−fk+1) = f1−fk+1 = f−fk+1.

But limk→∞ fk+1(y) = 0 for any y ∈ Y , hence F (x) = f(x) for any
x ∈ X , so that F is a continuous extension of f .

It remains to show that |F (x)| ≤ 1. We have

|F (x)| ≤
∞∑

k=1

|gk(x)| ≤
∞∑

k=1

rk =
∞∑

k=1

(2

3

)k

=
∞∑

k=1

(2

3

)k

=
1

3

(
1− 2

3

)−1

= 1. !

COROLLARY 1.4.5. Let X ⊂ Y be a closed subset of a normal space
Y and let f : X → R be continuous. Then f has a continuous extension
F : Y → R.

PROOF. The statement follows from the Tietze theorem and the Urysohn
lemma by appropriately using the rescaling homeomorphism

g : R → (−π/2, π/2) given by g(x) := arctan(x). !

Most natural topological spaces which appear in analysis and geome-
try (but not in some branches of algebra) are normal. The most important
instance of non-normal topology is discussed in the next subsection.
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1.4.2. Zariski topology. The topology that we will now introduce and
seems pathological in several aspects (it is non-Hausdorff and does not pos-
sess a countable base), but very useful in applications, in particular in alge-
braic geometry. We begin with the simplest case which was already men-
tioned in Example 1.1.4

DEFINITION 1.4.6. The Zariski topology on the real line R is defined
as the family Z of all complements to finite sets.

PROPOSITION 1.4.7. The Zariski topology given above endows R with
the structure of a topological space (R,Z), which possesses the following
properties:

(1) it is a (T1) space;
(2) it is separable;
(3) it is not a Hausdorff space;
(4) it does not have a countable base.
PROOF. All four assertions are fairly straightforward:
(1) the Zariski topology on the real line is (T1), because the complement

to any point is open;
(2) it is separable, since it is weaker than the standard topology in R;
(3) it is not Hausdorff, because any two nonempty open sets have nonempty

intersection;
(4) it does not have a countable base, because the intersection of all

the sets in any countable collection of open sets is nonemply and thus the
complement to any point in that intersection does not contain any element
from that collection. !

The definition of Zariski topology onR (Definition 1.4.6) can be straight-
forwardly generalized to Rn for any n ≥ 2, and the assertions of the propo-
sition above remain true. However, this definition is not the natural one,
because it generalizes the “wrong form” of the notion of Zariski topology.
The “correct form” of that notion originally appeared in algebraic geometry
(which studies zero sets of polynomials) and simply says that closed sets
in the Zariski topology on R are sets of zeros of polynomials p(x) ∈ R[x].
This motivates the following definitions.

DEFINITION 1.4.8. The Zariski topology is defined
• in Euclidean space Rn by stipulating that the sets of zeros of all
polynomials are closed;

• on the unit sphere Sn ⊂ Rn+1 by taking for closed sets the sets of
zeros of homogeneous polynomials in n + 1 variables;

• on the real and complex projective spaces RP (n) and CP (n) (Ex-
ample 1.3.7, Example 1.3.8) via zero sets of homogeneous poly-
nomials in n + 1 real and complex variables respectively.
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EXERCISE 1.4.3. Verify that the above definitions supply each of the
sets Rn, Sn, RP (n), and CP (n) with the structure of a topological space
satisfying the assertions of Proposition 1.4.7.

1.5. Compactness

The fundamental notion of compactness, familiar from the elementary
real analysis course for subsets of the real line R or of Euclidean space Rn,
is defined below in the most general topological situation.

1.5.1. Types of compactness. A family of open sets {Oα} ⊂ T , α ∈ A
is called an open cover of a topological spaceX ifX =

⋃
α∈A Oα, and is a

finite open cover if A is finite.

DEFINITION 1.5.1. The space (X, T ) is called
• compact if every open cover of X has a finite subcover;
• sequentially compact if every sequence has a convergent subsequence;
• σ–compact if it is the union of a countable family of compact sets.
• locally compact if every point has an open neighborhood whose clo-

sure is compact in the induced topology.

It is known from elementary real analysis that for subsets of a Rn com-
pactness and sequential compactness are equivalent. This fact naturally gen-
eralizes to metric spaces (see Proposition 3.6.4 ).

PROPOSITION 1.5.2. Any closed subset of a compact set is compact.

PROOF. If K is compact, C ⊂ K is closed, and Γ is an open cover for
C, then Γ0 := Γ ∪ {K " C} is an open cover for K, hence Γ0 contains a
finite subcover Γ′ ∪ {K " C} forK; therefore Γ′ is a finite subcover (of Γ)
for C. !

PROPOSITION 1.5.3. Any compact subset of a Hausdorff space is closed.

PROOF. Let X be Hausdorff and let C ⊂ X be compact. Fix a point
x ∈ X " C and for each y ∈ C take neighborhoods Uy of y and Vy of x
such that Uy ∩ Vy = ∅. Then

⋃
y∈C Uy ⊃ C is a cover of C and has a finite

subcover {Uxi 0 ≤ i ≤ n}. Hence Nx :=
⋂n

i=0 Vyi is a neighborhood of x
disjoint from C. Thus

X " C =
⋃

x∈X!C

Nx

is open and therefore C is closed. !
PROPOSITION 1.5.4. Any compact Hausdorff space is normal.
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PROOF. First we show that a closed set K and a point p /∈ K can be
separated by open sets. For x ∈ K there are open sets Ox, Ux such that
x ∈ Ox, p ∈ Ux and Ox ∩ Ux = ∅. Since K is compact, there is a finite
subcover O :=

⋃n
i=1 Oxi ⊃ K, and U :=

⋂n
i=1 Uxi is an open set containing

p disjoint from O.
Now suppose K, L are closed sets. For p ∈ L, consider open disjoint

sets Op ⊃ K, Up / p. By the compactness of L, there is a finite subcover
U :=

⋃m
j=1 Upj ⊃ L, and so O :=

⋂m
j=1 Opj ⊃ K is an open set disjoint from

U ⊃ L. !
DEFINITION 1.5.5. A collection of sets is said to have the finite inter-

section property if every finite subcollection has nonempty intersection.

PROPOSITION 1.5.6. Any collection of compact sets with the finite in-
tersection property has a nonempty intersection.

PROOF. It suffices to show that in a compact space every collection of
closed sets with the finite intersection property has nonempty intersection.
Arguing by contradiction, suppose there is a collection of closed subsets in
a compact space K with empty intersection. Then their complements form
an open cover of K. Since it has a finite subcover, the finite intersection
property does not hold. !

EXERCISE 1.5.1. Show that if the compactness assumption in the pre-
vious proposition is omitted, then its assertion is no longer true.

EXERCISE 1.5.2. Prove that a subset of R or of Rn is compact iff it is
closed and bounded.

1.5.2. Compactifications of non-compact spaces.

DEFINITION 1.5.7. A compact topological spaceK is called a compact-
ification of a Hausdorff space (X, T ) if K contains a dense subset homeo-
morphic to X .

The simplest example of compactification is the following.

DEFINITION 1.5.8. The one-point compactification of a noncompact
Hausdorff space (X, T ) is X̂ := (X ∪ {∞},S), where

S := T ∪ {(X ∪ {∞}) " K K ⊂ X compact}.

EXERCISE 1.5.3. Show that the one-point compactification of a Haus-
dorff space X is a compact (T1) space with X as a dense subset. Find a
necessary and sufficient condition on X which makes the one-point com-
pactification Hausdorff.

EXERCISE 1.5.4. Describe the one-point compactification of Rn.
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Other compactifications are even more important.
EXAMPLE 1.5.9. Real projective space RP (n) is a compactification of

the Euclidean space Rn. This follows easily form the description of RP (n)
as the identification space of a (say, northern) hemisphere with pairs of op-
posite equatorial points identified. The open hemisphere is homeomorphic
to Rn and the attached “set at infinity” is homeomorphic to the projective
space RP (n− 1).

EXERCISE 1.5.5. Describe the complex projective space CP (n) (see
Example 1.3.8) as a compactification of the space Cn (which is of course
homeomorphic to R2n). Specifically, identify the set of added “points at
infinity” as a topological space. and desribe open sets which contain points
at infinity.
1.5.3. Compactness under products, maps, and bijections. The fol-

lowing result has numerous applications in analysis, PDE, and other math-
ematical disciplines.

THEOREM 1.5.10. The product of any family of compact spaces is com-
pact.

PROOF. Consider an open cover C of the product of two compact topo-
logical spacesX and Y . Since any open neighborhood of any point contains
the product of opens subsets in x and Y we can assume that every element
of C is the product of open subsets in X and Y . Since for each x ∈ X the
subset {x} × Y in the induced topology is homeomorphic to Y and hence
compact, one can find a finite subcollection Cx ⊂ C which covers {x} × Y .

For (x, y) ∈ X × Y , denote by p1 the projection on the first factor:
p1(x, y) = x. Let Ux =

⋂
C∈Ox

p1(C); this is an open neighborhood of
x and since the elements of Ox are products, Ox covers Ux × Y . The
sets Ux, x ∈ X form an open cover of X . By the compactness of X ,
there is a finite subcover, say {Ux1 , . . . , Uxk

}. Then the union of collections
Ox1 , . . . ,Oxk

form a finite open cover of X × Y .
For a finite number of factors, the theorem follows by induction from

the associativity of the product operation and the case of two factors. The
proof for an arbitrary number of factors uses some general set theory tools
based on axiom of choice. !

PROPOSITION 1.5.11. The image of a compact set under a continuous
map is compact.

PROOF. If C is compact and f : C → Y continuous and surjective, then
any open cover Γ of Y induces an open cover f∗Γ := {f−1(O) O ∈ Γ} of
C which by compactness has a finite subcover {f−1(Oi) i = 1, . . . , n}.
By surjectivity, {Oi}n

i=1 is a cover for Y . !
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A useful application of the notions of continuity, compactness, and sep-
aration is the following simple but fundamental result, sometimes referred
to as invariance of domain:

PROPOSITION 1.5.12. A continuous bijection from a compact space to
a Hausdorff space is a homeomorphism.

PROOF. SupposeX is compact, Y Hausdorff, f : X → Y bijective and
continuous, and O ⊂ X open. Then C := X " O is closed, hence compact,
and f(C) is compact, hence closed, so f(O) = Y " f(C) (by bijectivity)
is open. !

Using Proposition 1.5.4 we obtain

COROLLARY 1.5.13. Under the assumption of Proposition 1.5.12 spaces
X and Y are normal.

EXERCISE 1.5.6. Show that for noncompact X the assertion of Propo-
sition 1.5.12 no longer holds.

1.6. Connectedness and path connectedness

There are two rival formal definitions of the intuitive notion of con-
nectedness of a topological space. The first is based on the idea that such a
space “consists of one piece” (i.e., does not “fall apart into two pieces”), the
second interprets connectedness as the possibility of “moving continuously
from any point to any other point”.

1.6.1. Definition and invariance under continuous maps.

DEFINITION 1.6.1. A topological space (X, T ) is said to be
• connected if X cannot be represented as the union of two nonempty

disjoint open sets (or, equivalently, two nonempty disjoint closed sets);
• path connected if for any two points x0, x1 ∈ X there exists a path

joining x0 to x1, i.e., a continuous map c : [0, 1] → X such that c(i) =
xi, i = {0, 1}.

PROPOSITION 1.6.2. The continuous image of a connected space X is
connected.

PROOF. If the image is decomposed into the union of two disjoint open
sets, the preimages of theses sets which are open by continuity would give
a similar decomposition for X . !

PROPOSITION 1.6.3. (1) Interval is connected
(2) Any path-connected space is connected.
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PROOF. (1) Any open subset X of an interval is the union of disjoint
open subintervals. The complement of X contains the endpoints of those
intervals and hence cannot be open.

(2) Suppose X is path-connected and let x = X0 ∪ X1, where X0 and
X1 are open and nonempty. Let x0 ∈ X0, x1 ∈ X1 and c : [0, 1] → X is
a continuous map such that c(i) = xi, i ∈ {0, 1}. By Proposition 1.6.2
the image c([0, 1]) is a connected subset of X in induced topology which
is decomposed into the union of two nonempty open subsets c([0, 1]) ∩X0

and c([0, 1]) ∩X1, a contradiction. !
REMARK 1.6.4. Connected space may not be path-connected as is shown

by the union of the graph of sin 1/x and {0}× [−1, 1] in R2 (see the figure).

O

−1

1

x

y

y = sin 1/x

FIGURE 1.6.1. Connected but not path connected space

PROPOSITION 1.6.5. The continuous image of a path connected space
X is path connected.

PROOF. Let f : X → Y be continuous and surjective; take any two
points y1, y2 ∈ Y . Then by surjectivity the sets f−1(yi), i = 1, 2 are
nonempty and we can choose points xi ∈ f−1(y1), i = 1, 2. Since X is
path connected, there is a path α : [0, 1] → X joining x1 to x2. But then the
path f ◦ α joins y1 to y2. !

1.6.2. Products and quotients.

PROPOSITION 1.6.6. The product of two connected topological spaces
is connected.

PROOF. SupposeX, Y are connected and assume thatX×Y = A∪B,
where A and B are open, and A ∩ B = ∅. Then either A = X1 × Y for
some open X1 ⊂ X or there exists an x ∈ X such that {x} × Y ∩ A += ∅
and {x} × Y ∩B += ∅.
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x y

FIGURE 1.6.2. Path connectedness

The former case is impossible, else we would have B = (X \X1)× Y
and so X = X1 ∪ (X \X1) would not be connected.

In the latter case, Y = p2({x} × Y ∩ A) ∪ p2({x} × Y ∩ B) (where
p2(x, y) = y is the projection on the second factor) that is, {x} × Y is
the union of two disjoint open sets, hence not connected. Obviously p2

restricted to {x}×Y is a homeomorphism onto Y , and so Y is not connected
either, a contradiction. !

PROPOSITION 1.6.7. The product of two path-connected topological
spaces is connected.

PROOF. Let (x0, y0), (x1, y1) ∈ X × Y and cX , cY are paths connect-
ing x0 with x1 and y0 with y1 correspondingly. Then the path c : [0, 1] →
X × Y defined by

c(t) = (cX(t), cY (t))

connects (x0, y0) with (x1, y1). !

The following property follows immediately from the definition of the
quotient topology

PROPOSITION 1.6.8. Any quotient space of a connected topological
space is connected.

1.6.3. Connected subsets and connected components. A subset of a
topological space is connected (path connected) if it is a connected (path
connected) space in the induced topology.

A connected component of a topological space X is a maximal con-
nected subset of X .

A path connected component ofX is a maximal path connected subset
of X .

PROPOSITION 1.6.9. The closure of a connected subset Y ⊂ X is con-
nected.
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PROOF. If Ȳ = Y1 ∪ Y2, where Y1, Y2 are open and Y1 ∩ Y2 = ∅, then
since the set Y is dense in its closure Y = (Y ∩ Y1) ∪ (Y ∩ Y2) with both
Y ∩ Y1 and Y ∩ Y1 open in the induced topology and nonempty. !

COROLLARY 1.6.10. Connected components are closed.

PROPOSITION 1.6.11. The union of two connected subsets Y1, Y2 ⊂ X
such that Y1 ∩ Y2 += ∅, is connected.

PROOF. We will argue by contradiction. Assume that Y1 ∩ Y2 is the
disjoint union of of open sets Z1 and Z2. If Z1 ⊃ Y1, then Y2 = Z2 ∪ (Z1 ∩
Y2) and hence Y2 is not connected. Similarly, it is impossible that Z2 ⊃ Y1.
Thus Y1 ∩ Zi += ∅, i = 1, 2 and hence Y1 = (Y1 ∩ Z1) ∪ (Y1 ∩ Z2) and
hence Y1 is not connected. !

1.6.4. Decomposition into connected components. For any topolog-
ical space there is a unique decomposition into connected components and
a unique decomposition into path connected components. The elements of
these decompositions are equivalence classes of the following two equiva-
lence relations respectively:

(i) x is equivalent to y if there exists a connected subset Y ⊂ X which
contains x and y.

In order to show that the equivalence classes are indeed connected com-
ponents, one needs to prove that they are connected. For, if A is an equiv-
alence class, assume that A = A1 ∪ A2, where A1 and A2 are disjoint and
open. Pick x1 ∈ A1 and x2 ∈ A2 and find a closed connected set A3 which
contains both points. But then A ⊂ (A1 ∪A3)∪A2, which is connected by
Proposition 1.6.11. Hence A = (A1 ∪ A3) ∪ A2) and A is connected.

(ii) x is equivalent to y if there exists a continuous curve c : [0, 1] → X
with c(0) = x, c(1) = y

REMARK 1.6.12. The closure of a path connected subset may be fail
to be path connected. It is easy to construct such a subset by looking at
Remark 1.6.4

1.6.5. Arc connectedness. Arc connectedness is a more restrictive no-
tion than path connectedness: a topological spaceX is called arc connected
if, for any two distinct points x, y ∈ X there exist an arc joining them, i.e.,
there is an injective continuous map h : [0, 1] → X such that h(0) = x and
h(1) = y.

It turns out, however, that arc connectedness is not a much more stronger
requirement than path connectedness – in fact the two notions coincide for
Hausdorff spaces.
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THEOREM 1.6.13. A Hausdorff space is arc connected if and only if it
is path connected.

PROOF. Let X be a path-connected Hausdorff space, x0, x1 ∈ X and
c : [0, 1] → X a continuous map such that c(i) = xi, i = 0, 1. Notice
that the image c([0, 1]) is a compact subset ofX by Proposition 1.5.11 even
though we will not use that directly. We will change the map c within
this image by successively cutting of superfluous pieces and rescaling what
remains.

Consider the point c(1/2). If it coincides with one of the endpoints
xo or x1 we define c1(t) as c(2t − 1) or c(2t) correspondingly. Otherwise
consider pairs t0 < 1/2 < t1 such that c(t0) = c(t1). The set of all such
pairs is closed in the product [0, 1]× [0, 1] and the function |t0− t1| reaches
maximum on that set. If this maximum is equal to zero the map c is al-
ready injective. Otherwise the maximum is positive and is reached at a pair
(a1, b1). we define the map c1 as follows

c1(t) =






c(t/2a1), if 0 ≤ t ≤ a1,

c(1/2), if a1 ≤ t ≤ b1,

c(t/2(1− b1) + (1− b1)/2), if b1 ≤ t ≤ 1.

Notice that c1([0, 1/2)) and c1((1/2, 1]) are disjoint since otherwise there
would exist a′ < a1 < b1 < b′ such that c(a′) = c(b′) contradicting maxi-
mality of the pair (a1, b1).

Now we proceed by induction. We assume that a continuous map
cn : [0, 1] → c([0, 1]) has been constructed such that the images of in-
tervals (k/2n, (k + 1)/2n), k = 0, . . . , 2n − 1 are disjoint. Furthermore,
while we do not exclude that cn(k/2n) = cn((k + 1)/2n) we assume that
cn(k/2n) += cn(l/2n) if |k − l| > 1.

We find ak
n, b

k
n maximizing the difference |t0 − t1| among all pairs

(t0, t1) : k/2n ≤ t0 ≤ t1 ≤ (k + 1)/2n

and construct the map cn+1 on each interval [k/2n, (k+1)/2n] as above with
cn in place of c and ak

n, b
k
n in place of a1, b1 with the proper renormalization.

As before special provision are made if cn is injective on one of the intervals
(in this case we set cn+1 = cn) of if the image of the midpoint coincides with
that of one of the endpoints (one half is cut off that the other renormalized).

!

EXERCISE 1.6.1. Give an example of a path connected but not arc con-
nected topological space.
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1.7. Totally disconnected spaces and Cantor sets

On the opposite end from connected spaces are those spaces which do
not have any connected nontrivial connected subsets at all.

1.7.1. Examples of totally disconnected spaces.

DEFINITION 1.7.1. A topological space (X, T ) is said to be totally dis-
connected if every point is a connected component. In other words, the
only connected subsets of a totally disconnected space X are single points.

Discrete topologies (all points are open) give trivial examples of totally
disconnected topological spaces. Another example is the set

{
0, 1,

1

2
,
1

3
,
1

4
, . . . ,

}

with the topology induced from the real line. More complicated examples
of compact totally disconnected space in which isolated points are dense
can be easily constructed. For instance, one can consider the set of rational
numbers Q ⊂ R with the induced topology (which is not locally compact).

The most fundamental (and famous) example of a totally disconnected
set is the Cantor set, which we now define.

DEFINITION 1.7.2. The (standard middle-third) Cantor set C(1/3) is
defined as follows:

C(1/3); =
{

x ∈ R : x =
∞∑

i=1

xi

3i
, xi ∈ {0, 2}, i = 1, 2, . . .

}
.

Geometrically, the construction of the set C(1/3) may be described in
the following way: we start with the closed interval [0, 1], divide it into three
equal subintervals and throw out the (open) middle one, divide each of the
two remaining ones into equal subintervals and throw out the open middle
ones and continue this process ad infinitum. What will be left? Of course
the (countable set of) endpoints of the removed intervals will remain, but
there will also be a much larger (uncountable) set of remaining “mysterious
points”, namely those which do not have the ternary digit 1 in their ternary
expansion.

1.7.2. Lebesgue measure of Cantor sets. There are many different
ways of constructing subsets of [0, 1] which are homeomorphic to the Can-
tor set C(1/3). For example, instead of throwing out the middle one third
intervals at each step, one can do it on the first step and then throw out in-
tervals of length 1

18 in the middle of two remaining interval and inductively
throw out the interval of length 1

2n3n+1 in the middle of each of 2n intervals
which remain after n steps. Let us denote the resulting set Ĉ
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0 1

0 1

FIGURE 1.7.1. Two Cantor sets

EXERCISE 1.7.1. Prove (by computing the infinite sum of lengths of
the deleted intervals) that the Cantor set C(1/3) has Lebesgue measure 0
(which was to be expected), whereas the set Ĉ, although nowhere dense,
has positive Lebesgue measure.

1.7.3. Some other strange properties of Cantor sets. Cantor sets can
be obtained not only as subsets of [0, 1], but in many other ways as well.

PROPOSITION 1.7.3. The countable product of two point spaces with
the discrete topology is homeomorphic to the Cantor set.

PROOF. To see that, identify each factor in the product with {0, 2} and
consider the map

(x1, x2, . . . ) 1→
∞∑

i=1

xi

3i
, xi ∈ {0, 2}, i = 1, 2, . . . .

This map is a homeomorphism between the product and the Cantor set. !

PROPOSITION 1.7.4. The product of two (and hence of any finite number)
of Cantor sets is homeomorphic to the Cantor set.

PROOF. This follows immediately, since the product of two countable
products of two point spaces can be presented as such a product by mixing
coordinates. !

EXERCISE 1.7.2. Show that the product of countably many copies of
the Cantor set is homeomorphic to the Cantor set.

The Cantor set is a compact Hausdorff with countable base (as a closed
subset of [0, 1]), and it is perfect i.e. has no isolated points. As it turns out,
it is a universal model for compact totally disconnected perfect Hausdorff
topological spaces with countable base, in the sense that any such space
is homeomorphic to the Cantor set C(1/3). This statement will be proved
later by using the machinery of metric spaces (see Theorem 3.6.7). For now
we restrict ourselves to a certain particular case.

PROPOSITION 1.7.5. Any compact perfect totally disconnected subset
A of the real line R is homeomorphic to the Cantor set.
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PROOF. The set A is bounded, since it is compact, and nowhere dense
(does not contain any interval), since it is totally disconnected. Suppose
m = inf A and M = sup A. We will outline a construction of a strictly
monotone function F : [0, 1] → [m,M ] such that F (C) = A. The set
[m, M ] \ A is the union of countably many disjoint intervals without com-
mon ends (since A is perfect). Take one of the intervals whose length
is maximal (there are finitely many of them); denote it by I . Define F
on the interval I as the increasing linear map whose image is the interval
[1/3, 2/3]. Consider the longest intervals I1 and I2 to the right and to the
left to I . Map them linearly onto [1/9.2/9] and [7/9, 8/9], respectively.
The complement [m, M ] \ (I1 ∪ I ∪ I2) consists of four intervals which
are mapped linearly onto the middle third intervals of [0, 1] \ ([1/9.2/9] ∪
[1/3, 2/3] ∪ [7/9, 8/9] and so on by induction. Eventually one obtains a
strictly monotone bijective map [m,M ] \A → [0, 1] \C which by continu-
ity is extended to the desired homeomorphism. !

EXERCISE 1.7.3. Prove that the product of countably many finite sets
with the discrete topology is homeomorphic to the Cantor set.

1.8. Topological manifolds

At the other end of the scale from totally disconnected spaces are the
most important objects of algebraic and differential topology: the spaces
which locally look like a Euclidean space. This notion was first mentioned
at the end of Section 1.2 and many of the examples which we have seen so
far belong to that class. Now we give a rigorous definition and discuss some
basic properties of manifolds.

1.8.1. Definition and some properties. The precise definition of a topo-
logical manifold is as follows.

DEFINITION 1.8.1. A topological manifold is a Hausdorff spaceX with
a countable base for the topology such that every point is contained in an
open set homeomorphic to a ball in Rn for some n ∈ N. A pair (U, h)
consisting of such a neighborhood and a homeomorphism h : U → B ⊂ Rn

is called a chart or a system of local coordinates.

picture illustrating the
definition

REMARK 1.8.2. Hausdorff condition is essential to avoid certain patholo-
gies which we will discuss laler.

Obviously, any open subset of a topological manifold is a topological
manifold.
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If X is connected, then n is constant. In this case it is called the di-
mension of the topological manifold. Invariance of the dimension (in other
words, the fact that Rn or open sets in those for different n are not homeo-
morphic) is one of the basic and nontrivial facts of topology.

PROPOSITION 1.8.3. A connected topological manifold is path con-
nected.

PROOF. Path connected component of any point in a topological man-
ifold is open since if there is a path from x to y there is also a path from
x to any point in a neighborhood of y homeomorphic to Rn. For, one can
add to any path the image of an interval connecting y to a point in such a
neighborhood. If a path connected component is not the whole space its
complement which is the union of path connected components of its points
is also open thus contradicting connectedness. !

1.8.2. Examples and constructions.

EXAMPLE 1.8.4. The n–sphere Sn, the n–torus Tn and the real projec-
tive n–space RP (n) are examples of n dimensional connected topological
manifolds; the complex projective n–space CP (n) is a topological mani-
fold of dimension 2n.

EXAMPLE 1.8.5. Surfaces in 3-space, i.e., compact connected subsets
of R3 locally defined by smooth functions of two variables x, y in appro-
priately chosen coordinate systems (x, y, z), are examples of 2-dimensional
manifolds.

FIGURE 1.8.1. Two 2-dimensional manifolds

EXAMPLE 1.8.6. Let F : Rn → R be a continuously differentiable
function and let c be a noncritical value of F , that is, there are no critical
points at which the value of F is equal to c. Then F−1(c) (if nonempty) is
a topological manifold of dimension n − 1. This can be proven using the
Implicit Function theorem from multivariable calculus.
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Among the most important examples of manifolds from the point of
view of applications, are configuration spaces and phase spaces of mechan-
ical systems (i.e., solid mobile instruments obeying the laws of classical
mechanics). One can think of the configuration space of a mechanical sys-
tem as a topological space whose points are different “positions” of the
system, and neighborhoods are “nearby” positions (i.e., positions that can
be obtained from the given one by motions of “length” smaller than a fixed
number). The phase space of a mechanical system moving in time is ob-
tained from its configuration space by supplying it with all possible veloc-
ity vectors. There will be numerous examples of phase and configuration
spaces further in the course, here we limit ourselves to some simple illus-
trations.

EXAMPLE 1.8.7. The configuration space of the mechanical system
consisting of a rod rotating in space about a fixed hinge at its extremity
is the 2-sphere. If the hinge is fixed at the midpoint of the rod, then the
configuration space is RP 2.

EXERCISE 1.8.1. Prove two claims of the previous example.

EXERCISE 1.8.2. The double pendulum consists of two rods AB and
CD moving in a vertical plane, connected by a hinge joining the extremities
B and C, while the extremity A is fixed by a hinge in that plane. Find the
configuration space of this mechanical system.

EXERCISE 1.8.3. Show that the configuration space of an asymmetric
solid rotating about a fixed hinge in 3-space is RP 3.

EXERCISE 1.8.4. On a round billiard table, a pointlike ball moves with
uniform velocity, bouncing off the edge of the table according to the law
saying that the angle of incidence is equal to the angle of reflection (see the
figure). Find the phase space of this system.

FIGURE ?? Billiards on a circular table
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Another source of manifolds with interesting topological properties and
usually additional geometric structures is geometry. Spaces of various geo-
metric objects are endowed with a the natural topology which is often gen-
erated by a natural metric and also possess natural groups of homeomor-
phisms.

The simplest non-trival case of this is already familiar.

EXAMPLE 1.8.8. The real projective space RP (n) has yet another de-
scription as the space of all lines in Rn+1 passing through the origin. One
can define the distance d between two such line as the smallest of four an-
gles between pairs of unit vectors on the line. This distance generates the
same topology as the one defined before. Since any invertible linear trans-
formation of Rn+1 takes lines into lines and preserves the origin it naturally
acts by bijections on RP (n). Those bijections are homeomorphisms but
in general they do not preserve the metric described above or any metric
generating the topology.

EXERCISE 1.8.5. Prove claims of the previous example: (i) the distance
d defines the same topology on the space Rn+1 as the earlier constructions;
(ii) the groupGL(n+1, R) of invertible linear transformations of Rn+1 acts
on RP (n) by homeomorphisms.

There are various modifications and generalizations of this basic exam-
ple.

EXAMPLE 1.8.9. Consider the space of all lines in the Euclidean plane.
Introduce topology into it by declaring that a base of neighborhoods of a
given line L consist of the sets NL(a, b, ε) where a, b ∈ L, ε > 0 and
NL(a, b, ε) consist of all lines L′ such that the interval of L between a and b
lies in the strip of width ε around L′

EXERCISE 1.8.6. Prove that this defines a topology which makes the
space of lines homeomorphic to the Möbius strip.

EXERCISE 1.8.7. Describe the action of the group GL(2, R) on the
Möbius strip coming from the linear action on R2.

This is the simplest example of the family of Grassmann manifolds
or Grassmannians which play an exceptionally important role in several
branches of mathematics including algebraic geometry and theory of group
representation. The general Grassmann manifold Gk,n (over R) is defined
for i ≤ k < n as the space of all k-dimensional affine subspaces in Rn.
In order to define a topology we again define a base of neighborhoods of a
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given k-space L. Fix ε > 0 and k + 1 points x1, . . . , xk+1 ∈ L. A neighbor-
hood of L consists of all k-dimensional spaces L′ such that the convex hull
of points x1, . . . , xk+1 lies in the ε-neighborhood of L′.

EXERCISE 1.8.8. Prove that the Grassmannian Gk,n is a topological
manifold. Calculate its dimension. 2

Another extension deals with replacing R by C (and also by quater-
nions).

EXERCISE 1.8.9. Show that the complex projective space CP (n) is
homeomorphic to the space of all lines on Cn+1 with topology defined by a
distance similarly to the case of RP (n)

EXERCISE 1.8.10. Define complex Grassmannians, prove that they are
manifolds and calculate the dimension.

1.8.3. Additional structures on manifolds. It would seem that the ex-
istence of local coordinates should make analysis in Rn an efficient tool in
the study of topological manifolds. This, however, is not the case, because
global questions cannot be treated by the differential calculus unless the
coordinates in different neighborhoods are connected with each other via
differentiable coordinate transformations. Notice that continuous functions
may be quite pathological form the “normal” commonplace point of view.
This requirement leads to the notion of differentiable manifold, which will
be introduced in Chapter 4 and further studied in Chapter 10. Actually,
all the manifolds in the examples above are differentiable, and it has been
proved that all manifolds of dimension n ≤ 3 have a differentiable structure,
which is unique in a certain natural sense. For two-dimensional manifolds
we will prove this later in Section 5.2.3; the proof for three–dimensional
manifolds goes well beyond the scope of this book.

Furthermore, this is no longer true in higher dimensions: there are man-
ifolds that possess no differentiable structure at all, and some that have more
than one differentiable structure.

Another way to make topological manifolds more manageable is to en-
dow them with a polyhedral structure, i.e., build them from simple geomet-
ric “bricks” which must fit together nicely. The bricks used for this purpose
are n-simplices, shown on the figure for n = 0, 1, 2, 3 (for the formal defi-
nition for any n, see ??).

2Remember that we cannot as yet prove that dimension of a connected topological
manifold is uniquely defined, i.e. that the same space cannot be a topological manifold of
two different dimensions since we do not know that Rn for different n are not homeomor-
phic. The question asks to calculate dimension as it appears in the proof that the spaces are
manifolds.
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FIGURE ?? Simplices of dimension 0,1,2,3.
A PL-structure on an n-manifold M is obtained by representing M as

the union of k-simplices, 0 ≤ k ≤ n, which intersect pairwise along sim-
plices of smaller dimensions (along “common faces”), and the set of all
simplices containing each vertex (0-simplex) has a special “disk structure”.
This representation is called a triangulation. We do not give precise defi-
nitions here, because we do not study n-dimensional PL-manifolds in this
course, except for n = 1, 2, see ?? and ??. In chapter ?? we study a more
general class of topological spaces with allow a triangulation, the simplicial
complexes.

Connections between differentiable and PL structures on manifolds are
quite intimate: in dimension 2 existence of a differentiable structure will be
derived from simplicial decomposition in ??. Since each two-dimensional
simplex (triangle) possesses the natural smooth structure and in a triangu-
lation these structures in two triangles with a common edge argee along the
edge, the only issue here is to “smooth out” the structure around the corners
of triangles forming a triangulation.

Conversely, in any dimension any differentiable manifold can be trian-
gulated. The proof while ingenuous uses only fairly basic tools of differen-
tial topology.

Again for large values of n not all topological n-manifolds possess a
PL-structure, not all PL-manifolds possess a differentiable structure, and
when they do, it is not necessarily unique. These are deep and complicated
results obtained in the 1970ies, which are way beyond the scope of this
book.

1.9. Orbit spaces for group actions

An important class of quotient spaces appears when the equivalence
relation is given by the action of a groupX by homeomorphisms of a topo-
logical space X .

1.9.1. Main definition and nice examples. The notion of a group act-
ing on a space, which formalizes the idea of symmetry, is one of the most
important in contemporary mathematics and physics.

DEFINITION 1.9.1. An action of a group G on a topological spaceX is
a map G×X → X , (g, x) 1→ xg such that

(1) (xg)h = x(g · h) for all g, h ∈ G;
(2) (x)e = x for all x ∈ X , where e is the unit element in G.
The equivalence classes of the corresponding identification are called

orbits of the action of G on X .
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R2

/SO(3)

R2/SO(3)

FIGURE 1.9.1. Orbits and identification space of SO(2) ac-
tion on R2

The identification space in this case is denoted by X/G and called the
quotient of X by G or the orbit space of X under the action of G.

We use the notation xg for the point to which the element g takes the
point x, which is more convenient than the notation g(x) (nevertheless, the
latter is also often used). To specify the chosen notation, one can say that
G acts on X from the right (for our notation) or from the left (when the
notation g(x) or gx is used).

Usually, in the definition of an action of a group G on a space X , the
group is supplied with a topological structure and the action itself is as-
sumed continuous. Let us make this more precise.

A topological group G is defined as a topological Hausdorff space sup-
plied with a continuous group operation, i.e., an operation such that the
maps (g, h) 1→ gh and g 1→ g−1 are continuous. If G is a finite or countable
group, then it is supplied with the discrete topology. When we speak of the
action of a topological group G on a space X , we tacitly assume that the
map X ×G → X is a continuous map of topological spaces.

EXAMPLE 1.9.2. Let X be the plane R2 and G be the rotation group
SO(2). Then the orbits are all the circles centered at the origin and the
origin itself. The orbit space of R2 under the action of SO(2) is in a natural
bijective correspondence with the half-line R+.

The main issue in the present section is that in general the quotient space
even for a nice looking group acting on a good (for example, locally com-
pact normal with countable base) topological space may not have good sep-
aration properties. The (T1) property for the identification space is easy to
ascertain: every orbit of the action must be closed. On the other hand, there
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does not seem to be a natural necessary and sufficient condition for the quo-
tient space to be Hausdorff. Some useful sufficient conditions will appear
in the context of metric spaces.

Still, lots of important spaces appear naturally as such identification
spaces.

EXAMPLE 1.9.3. Consider the natural action of the integer lattice Zn

by translations in Rn. The orbit of a point p ∈ Rn is the copy of the integer
lattice Zn translated by the vector p. The quotient space is homeomorphic
to the torus Tn.

An even simpler situation produces a very interesting example.
EXAMPLE 1.9.4. Consider the action of the cyclic group of two ele-

ments on the sphere Sn generated by the central symmetry: Ix = −x. The
corresponding quotient space is naturally identified with the real projective
space RP (n).

EXERCISE 1.9.1. Consider the cyclic group of order q generated by the
rotation of the circle by the angle 2π/q. Prove that the identification space
is homeomorphic to the circle.

EXERCISE 1.9.2. Consider the cyclic group of order q generated by the
rotation of the plane R2 around the origin by the angle 2π/q. Prove that the
identification space is homeomorphic to R2.

1.9.2. Not so nice examples. Here we will see that even simple actions
on familiar spaces can produce unpleasant quotients.

EXAMPLE 1.9.5. Consider the following actionA ofR onR2: for t ∈ R
letAt(x, y) = (x+ty, y). The orbit space can be identified with the union of
two coordinate axis: every point on the x-axis is fixed and every orbit away
from it intersects the y-axis at a single point. However the quotient topology
is weaker than the topology induced from R2 would be. Neighborhoods of
the points on the y-axis are ordinary but any neighborhood of a point on the
x-axis includes a small open interval of the y-axis around the origin. Thus
points on the x-axis cannot be separated by open neighborhoods and the
space is (T1) (since orbits are closed) but not Hausdorff.

An even weaker but still nontrivial separation property appears in the
following example.

EXAMPLE 1.9.6. Consider the action of Z on R generated by the map
x → 2x. The quotient space can be identified with the union of the circle
and an extra point p. Induced topology on the circle is standard. However,
the only open set which contains p is the whole space! See Exercise 1.10.21.
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Finally let us point out that if all orbits of an action are dense, then the
quotient topology is obviously trivial: there are no invariant open sets other
than ∅ and the whole space. Here is a concrete example.

EXAMPLE 1.9.7. Consider the action T of Q, the additive group of
rational number on R by translations: put Tr(x) = x + r for r ∈ Q and
x ∈ R. The orbits are translations of Q, hence dense. Thus the quotient
topology is trivial.

1.10. Problems

EXERCISE 1.10.1. How many non-homeomorphic topologies are there
on the 2–element set and on the 3–element set?

EXERCISE 1.10.2. Let S := {(x, y, z) ∈ R3 | z = 0, x2 + y2 = 1}.
Show that R3 \ S can be mapped continuously onto the circle.

EXERCISE 1.10.3. Consider the product topology on the product of
countably many copies of the real line. (this product space is sometimes
denoted R∞).

a) Does it have a countable base?
b) Is it separable?

EXERCISE 1.10.4. Consider the space L of all bounded maps Z → Z
with the topology of pointwise convergece.

a) Describe the open sets for this topology.
b) Prove that L is the countable union of disjoint closed subsets each

homeomorphic to a Cantor set.
Hint: Use the fact that the countable product of two–point spaces with

the product topology is homeomorphic to a Cantor set.

EXERCISE 1.10.5. Consider the profinite topology on Z in which open
sets are defined as unions (not necessarily finite) of (non-constant and infi-
nite in both directions) arithmetic progressions. Show that it is Hausdorff
but not discrete.

EXERCISE 1.10.6. Let T∞ be the product of countably many copies of
the circle with the product topology. Define the map ϕ : Z → T∞ by

ϕ(n) = (exp(2πin/2), exp(2πin/3), exp(2πin/4), exp(2πin/5), . . . )

Show that the map ϕ is injective and that the pullback topology on ϕ(Z)
coincides with its profinite topology.
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EXERCISE 1.10.7. Prove that R (the real line) and R2 (the plane with
the standard topology) are not homeomorphic.

Hint: Use the notion of connected set.

EXERCISE 1.10.8. Prove that the interior of any convex polygon in R2

is homeomorphic to R2.

EXERCISE 1.10.9. A topological space (X, T ) is called regular (or
(T3)- space) if for any closed set F ⊂ X and any point x ∈ X \ F there
exist disjoint open sets U and V such that F ⊂ U and x ∈ V . Give an
example of a Hausdorff topological space which is not regular.

EXERCISE 1.10.10. Give an example of a regular topological space
which is not normal.

EXERCISE 1.10.11. Prove that any open convex subset of R2 is home-
omorphic to R2.

EXERCISE 1.10.12. Prove that any compact topological space is se-
quentially compact.

EXERCISE 1.10.13. Prove that any sequentially compact topological
space with countable base is compact.

EXERCISE 1.10.14. A point x in a topological space is called isolated if
the one-point set {x} is open. Prove that any compact separable Hausdorff
space without isolated points contains a closed subset homeomorphic to the
Cantor set.

EXERCISE 1.10.15. Find all different topologies (up to homeomorphism)
on a set consisting of 4 elements which make it a connected topological
space.

EXERCISE 1.10.16. Prove that the intersection of a nested sequence of
compact connected subsets of a topological space is connected.

EXERCISE 1.10.17. Give an example of the intersection of a nested se-
quence of compact path connected subsets of a Hausdorff topological space
which is not path connected.

EXERCISE 1.10.18. Let A ⊂ R2 be the set of all vectors (x, y) such
that x + y is a rational number and x− y is an irrational number. Show that
R2 \ A is path connected.
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EXERCISE 1.10.19. Prove that any compact one–dimensional manifold
is homeomorphic to the circle.

EXERCISE 1.10.20. Let f : S1 → R2 be a continuous map for which
there are two points a, b ∈ S1 such that f(a) = f(b) and f is injective on
S1 \ {a}. Prove that R2 \ f(S1) has exactly three connected components.

EXERCISE 1.10.21. Consider the one–parameter group of homeomor-
phisms of the real line generated by the map x → 2x. Consider three
separation properties: (T2), (T1), and

(T0) For any two points there exists an open set which contains one of
them but not the other (but which one is not given in advance).

Which of these properties does the quotient topology possess?

EXERCISE 1.10.22. Consider the group SL(2, R) of all 2× 2 matrices
with determinant one with the topolology induced from the natural coordi-
nate embedding into R4. Prove that it is a topological group.



CHAPTER 2

ELEMENTARY HOMOTOPY THEORY

Homotopy theory, which is the main part of algebraic topology, studies topo-
logical objects up to homotopy equivalence. Homotopy equivalence is a weaker re-
lation than topological equivalence, i.e., homotopy classes of spaces are larger than
homeomorphism classes. Even though the ultimate goal of topology is to classify
various classes of topological spaces up to a homeomorphism, in algebraic topol-
ogy, homotopy equivalence plays a more important role than homeomorphism,
essentially because the basic tools of algebraic topology (homology and homotopy
groups) are invariant with respect to homotopy equivalence, and do not distinguish
topologically nonequivalent, but homotopic objects.

The first examples of homotopy invariants will appear in this chapter: degree
of circle maps in Section 2.4, the fundamental group in Section 2.8 and higher
homotopy groups in Section 2.10, while homology groups will appear and will
be studied later, in Chapter 8. In the present chapter, we will see how effectively
homotopy invariants work in simple (mainly low-dimensional) situations.

2.1. Homotopy and homotopy equivalence

2.1.1. Homotopy of maps. It is interesting to point out that in order to define
the homotopy equivalence, a relation between spaces, we first need to consider a
certain relation between maps, although one might think that spaces are more basic
objects than maps between spaces.

DEFINITION 2.1.1. Two continuous maps f0, f1 : X → Y between topo-
logical spaces are said to be homotopic if there exists a a continuous map F :
X × [0, 1] → Y (the homotopy) that F joins f0 to f1, i.e., if we have F (i, ·) = fi

for i = 1, 2.
A map f : X → Y is called null-homotopic if it is homotopic to a constant

map c : X → {y0} ⊂ Y . If f0, f1 : X → Y are homeomorphisms, they are
called isotopic if they can be joined by a homotopy F (the isotopy) which is a
homeomorphism F (t, ·) for every t ∈ [0, 1].

If two maps f, g : X → Y are homotopic, we write f % g.

maybe add a picture (p. 37)

EXAMPLE 2.1.2. The identity map id: D2 → D2 and the constant map c0 :
D2 → 0 ∈ D2 of the disk D2 are homotopic. A homotopy between them may be
defined by F (t, (ρ, ϕ)) = ((1− t) ·ρ, ϕ), where (ρ, ϕ) are polar coordinates in D2.
Thus the identity map of the disk is null homotopic.

41
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X × [0, 1]

f0

f1

F

FIGURE 2.1.1. Homotopic maps

EXAMPLE 2.1.3. If the maps f, g : X → Y are both null-homotopic and Y is
path connected, then they are homotopic to each other.

Indeed, suppose a homotopy F joins f with the constant map to the point
a ∈ Y , and a homotopy G joins g with the constant map to the point b ∈ Y . Let
c : [0, 1] → Y be a path from a to b. Then the following homotopy

H(t, x) :=






F (x, 3t) when 0 ≤ t ≤ 1
3 ,

c(3t− 1) when 1
3 ≤ t ≤ 2

3

G(x, 3− 3t) when 2
3 ≤ t ≤ 1.

joins the map f to g.

EXAMPLE 2.1.4. If A is the annulus A = {(x, y)|1 ≤ x2 + y2 ≤ 2}, and the
circle S1 = {z ∈ C : |z| = 1} is mapped homeomorphically to the outer and inner
boundary circles of A according to the rules f : eiϕ (→ (2, ϕ) and g : eiϕ (→ (1, ϕ)
(here we are using the polar coordinates (r, ϕ)) in the (x, y)− plane), then f and
g are homotopic.

Indeed, H(t, ϕ) := (t + 1, ϕ) provides the required homotopy.
Further, it should be intuitively clear that neither of the two maps f or g is

null homotopic, but at this point we do not possess the appropriate techniques for
proving that fact.

2.1.2. Homotopy equivalence. Tomotivate the definition of homotopy equiv-
alent spaces let us write the definition of homeomorphic spaces in the follow-
ing form: topological spaces X and Y are homeomorphic if there exist maps
f : X → Y and g : Y → X such that

f ◦ g = IdX and g ◦ f = IdY .

If we now replace equality by homotopy we obtain the desired notion:

DEFINITION 2.1.5. Two topological spacesX, Y are called homotopy equiva-
lent if there exist maps f : X → Y and g : Y → X such that

f ◦ g : X → X and g ◦ f : Y → Y

are homotopic to the corresponding identities IdX and IdY .
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S1S1 × [0, 1] anullus

FIGURE 2.1.2. Homotopy equivalent spaces

EXAMPLE 2.1.6. The point, the disk, the Euclidean plane are all homotopy
equivalent. To show that pt% R2, consider the maps f : pt → 0 ∈ R2 and
g : R2 →pt. Then g ◦ f is just the identity of the one point set pt, while the map
f ◦ g : R2 → R2 is joined to the identity of R2 by the homotopy H(t, (r, ϕ)) :=
((1− t)r, ϕ).

EXAMPLE 2.1.7. The circle and the annulus are homotopy equivalent. Map-
ping the circle isometrically on the inner boundary of the annulus and projecting
the entire annulus along its radii onto the inner boundary, we obtain two maps that
comply with the definition of homotopy equivalence.

PROPOSITION 2.1.8. The relation of being homotopic (maps) and being ho-
motopy equivalent (spaces) are equivalence relations in the technical sense, i.e.,
are reflexive, symmetric, and transitive.

PROOF. The proof is quite straightforward. First let us check transitivity for
maps and reflexivity for spaces.

Suppose f % g % h. Let us prove that f % h. Denote by F and G the
homotopies joining f to g and g to h, respectively. Then the homotopy

H(t, x) :=

{
F (2t) when t ≤ 1

2 ,

G(2t− 1) when t ≥ 1
2

joins f to h.
Now let us prove that for spaces the relation of homotopy equivalence is re-

flexive, i.e., show that for any topological space X we have X % X . But the pair
of maps (idX , idX) and the homotopy given by H(t, x) := x for any t shows that
X is indeed homotopy equivalent to itself.

The proofs of the other properties are similar and are omitted. !
maybe add picture (p.39)

PROPOSITION 2.1.9. Homeomorphic spaces are homotopy equivalent.

PROOF. If h : X → Y is a homeomorphism, then h ◦ h−1 and h−1 ◦ h are the
identities of Y and X , respectively, so that the homotopy equivalence of X and Y
is an immediate consequence of the reflexivity of that relation. !
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In our study of topological spaces in the previous chapter, the main equivalence
relation was homeomorphism. In homotopy theory, its role is played by homotopy
equivalence. As we have seen, homeomorphic spaces are homotopy equivalent.
The converse is not true, as simple examples show.refer to the picture above

EXAMPLE 2.1.10. Euclidean space Rn and the point are homotopy equivalent
but not homeomorphic since there is no bijection between them. Open and closed
interval are homotopy equivalent since both are homotopy equivalent to a point but
not homeomorphic since closed interval is compact and open is not.

EXAMPLE 2.1.11. The following five topological spaces are all homotopy
equivalent but any two of them are not homeomorphic:

• the circle S1,
• the open cylinder S1 × R,
• the annulus A = {(x, y)|1 ≤ x2 + y2 ≤ 2},
• the solid torus S1 × D2,
• the Möbius strip.

In all cases one can naturally embed the circle into the space and then project
the space onto the embedded circle by gradually contracting remaining directions.
Proposition 2.2.8 below also works for all cases but the last.

Absence of homeomorphisms is shown as follows: the circle becomes discon-
nected when two points are removed, while the other spaces are not; the annulus
and the solid torus are compact, the open cylinder and the Möbius strip are not.
The remaining two pairs are a bit more tricky since thy require making intuitively
obvious statement rigorous: (i) the annulus has two boundary components and
the solid torus one, and (ii) the cylinder becomes disconnected after removing any
subset homeomorphic to the circle1 while the Möbius strip remains connected after
removing the middle circle.

As is the case with homeomorphisms in order to establish that two spaces are
homotopy equivalent one needs just to produce corresponding maps while in order
to establish the absence of homotopy equivalence an invariant is needed which can
be calculated and shown to be different for spaces in question. Since homotopy
equivalence is a more robust equivalence relation that homeomorphism there are
fewer invariants and many simple homeomorphism invariants do not work, e.g.
compactness and its derivative connectedness after removing one or more points
and so on. In particular, we still lack means to show that the spaces from two
previous examples are not homotopy equivalent. Those means will be provided in
Section 2.4

2.2. Contractible spaces

Now we will study properties of contractible spaces, which are, in a natural
sense, the trivial objects from the point of view of homotopy theory.

1This follows from the Jordan Curve Theorem Theorem 5.1.2
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2.2.1. Definition and examples. As we will see from the definition and exam-
ples, contractible spaces are connected topological objects which have no “holes”,
“cycles”, “apertures” and the like.

DEFINITION 2.2.1. A topological spaceX is called contractible if it is homo-
topically equivalent to a point. Equivalently, a space is contractible if its identity
map is null-homotopic.

EXAMPLE 2.2.2. Euclidean and complex spaces Rn, Cn are contractible for
all n. So is the closed n-dimensional ball (disc)Dn, any tree (graph without cycles;
see Section 2.3), the wedge of two disks. This can be easily proven by constructing
homotopy equivalence On the other hand, the sphere Sn, n ≥ 0, the torus Tn,
any graph with cycles or multiple edges are all not contractible. To prove this one
needs to construct someinvariants, i.e. quantities which are equal for homotopy
equivalent spaces. An this point we do not have such invariants yet.

PROPOSITION 2.2.3. Any convex subset of Rn is contractible.

PROOF. Let C be a convex set in Rn ant let x0 ∈ C, define
h(x, t) = x0 + (1− t)(x− x0).

By convexity for any t ∈ [0, 1]we obtain a map ofC into itself. This is a homotopy
between the identity and the constant map to x0 !

REMARK 2.2.4. The same proof works for a broader class of sets than convex,
namely star-shaped. A set S ⊂ Rn is called star-shaped if there exists a point x0

such that the intersection of any half line with endpoint x0 with S is an interval.
hence any star-shaped set is contractible.

2.2.2. Properties. Contractible spaces have nice intrinsic properties and also
behave well under maps.

PROPOSITION 2.2.5. Any contractible space is path connected.

PROOF. Let x1, x2 ∈ X , whereX is contractible. Take a homotopy h between
the identity and a constant map, to, say x0. Let

f(t) :=

{
h(x, 2t) when t ≤ 1

2 ,

h(y, 2t− 1) when t ≥ 1
2 .

Thus f is a continuous map of [0, 1] to X with f(0) = x and f(1) = y. !

PROPOSITION 2.2.6. If the spaceX is contractible, then any map of this space
f : X → Y is null homotopic.

PROOF. By composing the homotopy takingX to a point p and the map f , we
obtain a homotopy of f and the constant map to f(p). !
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PROPOSITION 2.2.7. If the space Y is contractible, then any map to this space
f : X → Y is null homotopic.

PROOF. By composing the map f with the homotopy taking Y to a point and,
we obtain a homotopy of f and the constant map to that point. !

PROPOSITION 2.2.8. If X is contractible, then for any topological space Y
the product X × Y is homotopy equivalent to X .

PROOF. If h : Y × [0, 1] → Y is a homotopy between the identity and a
constant map of Y ,that is, h(y, 0) = y and h(y, 1) = y0. Then for the map
H := IdX ×h one hasH(x, y, 0) = (x, y) andH(x, y, 1) = (x, y0). Thus the pro-
jection π1 : (x, y) (→ x and the embedding iy0 : x (→ (x, y0) provide a homotopy
equivalence. !

2.3. Graphs

In the previous section, we discussed contractible spaces, the simplest topolog-
ical spaces from the homotopy point of view, i.e., those that are homotopy equiva-
lent to a point. In this section, we consider the simplest type of space from the point
of view of dimension and local structure: graphs, which may be described as one-
dimensional topological spaces consisting of line segments with some endpoints
identified.

We will give a homotopy classification of graphs, find out what graphs can be
embedded in the plane, and discuss one of their homotopy invariants, the famous
Euler characteristic.

2.3.1. Main definitions and examples. Here we introduce (nonoriented) graphs
as classes of topological spaces with an edge and vertex structure and define the
basic related notions, but also look at abstract graphs as very general combinatorial
objects. In that setting an extra orientation structure becomes natural.

DEFINITION 2.3.1. A (nonoriented) graph G is a topological space obtained
by taking a finite set of line segments (called edges or links) and identifying some
of their endpoints (called vertices or nodes).

Thus the graph G can be thought of as a finite sets of points (vertices) some
of which are joined by line segments (edges); the sets of vertices and edges are
denoted by V (G) and E(G), respectively. If a vertex belongs to an edge, we
say that the vertex is incident to the edge or the edge is incident to the vertex.
A morphism of graphs is a map of vertices and edges preserving incidence, an
isomorphism is a bijective morphism.

It the two endpoints of an edge are identified, such an edge is called a loop.
A path (or chain) is a ordered set of edges such that an endpoint of the first edge
coincides with an endpoint of the second one, the other endpoint of the second edge
coincides with an endpoint of the third edge, and so on, and finally an endpoint of
the last edge coincides with an endpoint of the previous one. A closed path (i.e.,
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FIGURE 2.3.1. Constructing a graph by identifying endpoints of segments

a path whose first vertex coincides with its last one) is said to be a cycle; a loop is
regarded as a particular case of a cycle.

A tree is a graph without cycles.
A graph is called connected if any two vertices can be joined by a path. This is

equivalent to the graph being connected (or path-connected) as a topological space.
The number of edges with endpoints at a given vertex is called the degree of

this vertex, the degree of a graph is the maximal degree of all its vertices.
A complete graph is a graph such that each pair of distinct vertices is joined by

exactly one edge. check the terminology

EXERCISE 2.3.1. Prove that any graph can be embedded into R3, i.e. it is
isomorphic to a graph which is a subset of the three-dimensional space R3.

A graph is called planar if it is isomorphic to a graph which is a subset of the
plane R2.

EXAMPLE 2.3.2. The sets of vertices and edges of the n-simplex constitute
a graph, which is connected and complete, and whose vertices are all of degree
n + 1. The sets of edges of an n-dimensional cube constitute a connected graph
whose vertices are all of degree n, but which is not complete (if n ≥ 2).

EXAMPLE 2.3.3. The figure shows two important graphs, K3,3 and K5, both
of which are nonplanar. The first is the formalization of a famous (unsolvable)
problem: to find paths joining each of three houses to each of three wells so that
the paths never cross. In practice would have to build bridges or tunnels. The
second is the complete graph on five vertices. The proof of their nonplanarity will
be discussed on the next subsection.

K5K33

FIGURE 2.3.2. Two nonplanar graphs: K3,3 andK5

DEFINITION 2.3.4. An oriented graph is a graph with a chosen direction on
each edge. Paths and cycles are defined as above, except that the edges must be
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C

L1

L2

FIGURE 2.3.3. The polygonal lines L1 and L2 must intersect

coherently oriented. Vertices with only one edge are called roots if the edge is
oriented away from the vertex, and leaves if it is oriented towards the vertex.

2.3.2. Planarity of graphs. The goal of this subsection is to prove that the
graph K3,3 is nonplanar, i.e., possesses no topological embedding into the plane
R2. To do this, we first prove the polygonal version of the Jordan curve theorem
and show that the graphK3,3 has no polygonal embedding into the plane, and then
show that it has no topological embedding in the plane.

PROPOSITION 2.3.5. [The Jordan curve theorem for broken lines] Any bro-
ken line C in the plane without self-intersections splits the plane into two path
connected components and is the boundary of each of them.

PROOF. Let D be a small disk which C intersects along a line segment, and
thus dividesD into two (path) connected components. Let p be any point inR2\C.
From p we can move along a polygonal line as close as we like to C and then,
staying close to C, move inside D. We will then be in one of the two components
of D \ C, which shows that R2 \ C has no more than two components.

It remains to show that R2 \C is not path connected. Let ρ be a ray originating
at the point p ∈ R2 \ C. The ray intersects C in a finite number of segments and
isolated points. To each such point (or segment) assign the number 1 if C crosses ρ
there and 0 if it stays on the same side. Consider the parity π(p) of the sum S of all
the assigned numbers: it changes continuously as ρ rotates and, being an integer,
π(p) is constant. Clearly, π(p) does not change inside a connected component of
R2 \C. But if we take a segment intersecting C at a non-zero angle, then the parity
π at its end points differs. This contradiction proves the proposition. !

We will call a closed broken line without self-intersections a simple polygonal
line.

COROLLARY 2.3.6. If two broken lines L1 and L2 without self-intersections
lie in the same component of R2 \ C, where C is a simple closed polygonal line,
with their endpoints on C in alternating order, then L1 and L2 intersect.
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PROOF. The endpoints a and c of L1 divide the polygonal curve C into two
polygonal arcs C1 and C2. The curve C and the line L1 divide the plane into three
path connected domains: one bounded by C, the other two bounded by the closed
curves Ci ∪ L, i = 1, 2 (this follows from Proposition 2.3.5). Choose points b and
d on L2 close to its endpoints. Then b and d must lie in different domains bounded
by L1 and C and any path joining them and not intersecting C, in particular L2,
must intersect L1. !

PROPOSITION 2.3.7. The graph K3,3 cannot be polygonally embedded in the
plane.

PROOF. Let us number the vertices x1, . . . , x6 ofK3,3 so that its edges consti-
tute a closed curve C := x1x2x3x4x5x6, the other edges being

E1 := x1x4, E2 := x2x5, E3 := x3x6.

Then, ifK3,3 lies in the plane, it follows from Proposition 2.3.5 that C divides the
plane into two components. One of the two components must contain at least two
of the edges E1, E2, E3, which then have to intersect (by Corollary 2.3.6). This is
a contradiction which proves the proposition. !

THEOREM 2.3.8. The graph K3,3 is nonplanar, i.e., there is no topological
embedding h : K3,3 ↪→ R2.

The theorem is an immediate consequence of the nonexistence of aPL-embedding
ofK3,3 (Proposition 2.3.7) and the following lemma.

LEMMA 2.3.9. If a graphG is planar, then there exists a polygonal embedding
of G into the plane.

PROOF. Given a graphG ⊂ R2, we first modify it in small disk neighborhoods
of the vertices so that the intersection of (the modified graph) G with each disk is
the union of a finite number of radii of this disk. Then, for each edge, we cover
its complement to the vertex disks by disks disjoint from the other edges, choose a
finite subcovering (by compactness) and, using the chosen disks, replace the edge
by a polygonal line. !

We conclude this subsection with a beautiful theorem, which gives a simple geometri- small print for parts outside of
the main line: no proofs or too

difficultcal obstruction to the planarity of graphs. We do not present the proof (which is not easy),
because this theorem, unlike the previous one, is not used in the sequel.

THEOREM 2.3.10. [Kuratowski] A graph is nonplanar if and only if it contains, as a
topological subspace, the graph K3,3 or the graph K5.

REMARK 2.3.11. The words “as a topological subspace” are essential in this theorem.
They cannot be replaced by “as a subgraph”: if we subdivide an edge of K5 by adding a
vertex at its midpoint, then we obtain a nonplanar graph that does not contain either K3,3

orK5.
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EXERCISE 2.3.2. Can the graphK3,3 be embedded in (a) the Möbius strip, (b)
the torus?

EXERCISE 2.3.3. Is there a graph that cannot be embedded into the torus?

EXERCISE 2.3.4. Is there a graph that cannot be embedded into the Mob̈ius
strip?

2.3.3. Euler characteristic of graphs and plane graphs. The Euler charac-
teristic of a graph G is defined as

χ(G) := V − E,

where V is the number of vertices and E is the number of edges.
The Euler characteristic of a graph G without loops embedded in the plane is

defined as
χ(G) := V − E + F,

where V is the number of vertices andE is the number of edges ofG, while F is the
number of connected components ofR2\G (including the unbounded component).

THEOREM 2.3.12. [Euler Theorem] For any connected graphG without loops
embedded in the plane, χ(G) = 2.

PROOF. At the moment we are only able to prove this theorem for polygonal
graphs. For the general case we will need Jordan curve Theorem Theorem 5.1.2.
The proof will be by induction on the number of edges. Without loss of generality,
we can assume (by Lemma 2.3.9) that the graph is polygonal. For the graph with
zero edges, we have V = 1, E = 0, F = 1, and the formula holds. Suppose it
holds for all graphs with n edges; then it is valid for any connected subgraphH of
G with n edges; take an edge e from G which is not in H but incident to H , and
add it to H . Two cases are possible.

Case 1. Only one endpoint of e belongs toH . Then F is the same for G as for
H and both V and E increase by one.

Case 2. Both endpoints of e belong to toH . Then e lies inside a face ofH and
divides it into two.2 Thus by adding e we increase both E and F by one and leave
V unchanged. Hence the Euler characteristic does not change. !

2.3.4. Homotopy classification of graphs. It turns out that, from the view-
point of homotopy, graphs are classified by their Euler characteristic (which is
therefore a complete homotopy invariant.)

EXERCISE 2.3.5. Prove that any tree is homotopy equivalent to a point.

THEOREM 2.3.13. Any connected graphG is homotopy equivalent to the wedge
of k circles, with k = χ(G)− 1.

2It is here that we need the conclusion of Jordan curve Theorem Theorem 5.1.2 in the case of
general graphs. The rest of the argument remains the same as for polygonal graphs.
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FIGURE 2.4.1. Exponential map

PROOF. Consider a maximal tree T which is a subgraph of G. The graph W
obtained by identifying T into a single vertex p is homotopically equivalent to G.
But any edge of W whose one endpoint is p must be a loop since otherwise T
would not be a maximal tree in G. Since W is connected it has a single vertex p
and hence is a wedge of several loops. !

At this point we do not know yet that wedges of different numbers of circles
are mutually not homotopically equivalent or, for that matter that they are not con-
tractible. This will be shown with the use of the first non-trivial homotopy invariant
which we will study in the next section. This will of course also imply that the Eu-
ler characteristic of a graph is invariant under homotopy equivalence.

2.4. Degree of circle maps

Now we will introduce a homotopy invariant for maps of the circle to itself. It
turns out that this invariant can easily be calculated and have many impressive ap-
plications. Some of those applications are presented in three subsequent sections.

2.4.1. The exponential map. Recall the relation between the circle S1 =
R/Z and the line R. There is a projection π : R → S1, x (→ [x], where [x] is
the equivalence class of x in R/Z. Here the integer part of a number is written .·/
and {·} stands for the fractional part.

PROPOSITION 2.4.1. If f : S1 → S1 is continuous, then there exists a contin-
uous map F : R → R, called a lift of f to R, such that

(2.4.1) f ◦ π = π ◦ F,

that is, f([z]) = [F (z)]. Such a lift is unique up to an additive integer constant
and deg(f) := F (x + 1)−F (x) is an integer independent of x ∈ R and the lift F .
It is called the degree of f . If f is a homeomorphism, then |deg(f)| = ±1.
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PROOF. Existence: Pick a point p ∈ S1. Then we have p = [x0] for some
x0 ∈ R and f(p) = [y0] for some y0 ∈ R. From these choices of x0 and y0

define F : R → R by requiring that F (x0) = y0, that F be continuous, and that
f([z]) = [F (z)] for all z ∈ R. One can construct such an F , roughly speaking, by
varying the initial point p continuously, which causes f(p) to vary continuously.
Then there is no ambiguity of how to vary x and y continuously and thus F (x) = y
defines a continuous map.

To elaborate, take a δ > 0 such that

d([x], [x′]) ≤ δ implies d(f([x]), f([x′])) < 1/2.

Then we can define F on [x0 − δ, x0 + δ] as follows: If |x − x0| ≤ δ then
d(f([x]), q) < 1/2 and there is a unique y ∈ (y0 − 1/2, y0 + 1/2) such that
[y] = f([x]). Define F (x) = y. Analogous steps extend the domain by another
δ at a time, until F is defined on an interval of unit length. (One needs to check
consistency, but it is straightforward.) Then f([z]) = [F (z)] defines F on R.

Uniqueness: Suppose F̃ is another lift. Then [F̃ (x)] = f([x]) = [F (x)] for all
x, meaning F̃ − F is always an integer. But this function is continuous, so it must
be constant.

Degree: F (x + 1) − F (x) is an integer (now evidently independent of the
choice of lift) because

[F (x + 1)] = f([x + 1]) = f([x]) = [F (x)].

By continuity F (x + 1)− F (x) =: deg(f) must be a constant.
Invertibility: If deg(f) = 0, then F (x + 1) = F (x) and thus F is not mono-

tone. Then f is noninvertible because it cannot be monotone. If |deg(f)| > 1,
then |F (x + 1)−F (x)| > 1 and by the Intermediate Value Theorem there exists a
y ∈ (x, x + 1) with |F (y) − F (x)| = 1, hence f([y]) = f([x]), and [y] 0= [x], so
f is noninvertible. !

2.4.2. Homotopy invariance of the degree. Here we show that the degree of
circle maps is a homotopy invariant and obtain some immediate corollaries of this
fact.

PROPOSITION 2.4.2. Degree is a homotopy invariant.

PROOF. The lift construction can be simultaneously applied to a continuous
family of circle maps to produce a continuous family of lifts. Hence the degree
must change continuously under homotopy. Since it is an integer, it is in fact
constant. !

COROLLARY 2.4.3. The circle is not contractible.

PROOF. The degrees of any constant map is zero, whereas for the identity map
it is equal to one. !
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THEOREM 2.4.4. Degree is a complete homotopy invariant of circle self–
maps: for any m ∈ Z any map of degree m is homotopic to the map

Em := x (→ mx ( mod 1).

PROOF. Obviously, the map Em lifts to the linear map x (→ mx of R. On the
other hand, every lift F of a degree m map f has the form F (x) = mx + H(x),
where H is a periodic function with period one. Thus the family of maps

Ft(x) := mx + (1− t)H(x)

are lifts of a continuous family of maps of S1 which provide a homotopy between
f and Em. !

Since Em ◦ En = Emn we obtain

COROLLARY 2.4.5. Degree of the composition of two maps is equal to the
product of their degrees.

EXERCISE 2.4.1. Show that any continuous map f : S1 → S1 has at least
|deg f − 1| fixed points.

EXERCISE 2.4.2. Prove Corollary 2.4.5 directly, not using Theorem 2.4.4.

EXERCISE 2.4.3. Given the maps f : S1 → D2 and g : D2 → S1, what can be
said about the degree of their composition.

2.4.3. Degree and wedges of circles. In order to complete homotopy classifi-
cation of graphs started in Section 2.3.4 we need to proof the following fact which
will be deduced from the degree theory for circle maps.

PROPOSITION 2.4.6. The wedges of k circles for k = 0, 1, 2, . . . are pairwise
not homotopy equivalent.

PROOF. We first show that the wedge of any number of circles is not con-
tractible. For one circle this has been proved already (2.4.3). LetW be the wedge
of k > 1 circles and p ∈ W be the common point of the circles. If W is con-
tractible then the identity map IdW of W is homotopic to the constant map cP of
W to p. Let S be one of the circles comprisingW and let U be the union of remain-
ing circles. Then one can identify U into a single point (naturally identified with
p and project the homotopy to the identification space which is naturally identified
with the circle S and thus provides a homotopy between the identity and a constant
map on the circle, a contradiction. More specifically we apply the following pro-
cess which looks like cutting the graph of a continuous function at a constant level
when the function exceeds this level. As long as the images of a point x ∈ S stay
in S we change nothing. When it reaches p and leaves S we replace the images by
the constant p.
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Now assume that the wedgeW ofm circles is homotopically equivalent to the
wedge of n < m circles which can be naturally identified with a subset U of W
consisting of n circles. This implies that there exists a homotopy between IdW

and the map cU : W → W which is equal to the identity on U and maps m − n
circles comprisingW \U into the common point p of all circles inW . As before,this does not follow from

homotopy equivalence directly.
Need to be argued or replaces

by another argument
we identify U into a point and project the homotopy into the identification space
which is naturally identified with the wedge of m − n circles. Thus we obtain a
homotopy between a homotopy between the identity map and the constant map cp

which is impossible by the previous argument. !
Now we can state the homotopy classification of graphs as follows.

COROLLARY 2.4.7. Two graphs are homotopy equivalent if and only if they
have the same Euler characteristic. Any graph with Euler characteristic E is ho-
motopy equivalent to the wedge of E + 1 circles.

2.4.4. Local definition of degree. One of the central ideas in algebraic topol-
ogy is extension of the notion of degree of a self-map from circles to spheres of
arbitrary dimension and then to a broad class of compact manifold. Definition
which follows from Proposition 2.4.1 stands no chance of generalization since the
exponential map is a phenomenon specific for the circle and, for example in has
no counterparts for spheres of higher dimensions. Now we give another definition
which is equivalent to the previous one for the circle but can be generalized to other
manifolds.

We begin with piecewise strictly monotone maps of the circle into itself. For
such a map every point x ∈ S1 has finitely many pre-images and for if we exclude
finitely many values at the endpoints of the interval of monotonicity each pre-image
y ∈ f−1(x) lies on a certain interval of monotonicity where the function f either
“increases”, i.e. preserves orientation on the circle or “decreases”, i.e. reverses
orientation. In the first case we assign number 1 to the point y and call it a positiveprovide picture(s)

pre-image and in the second the number -1 and call it a negative pre-image of x.
Adding those numbers for all y ∈ f−1(x) we obtain an integer which we denote
d(x).

THEOREM 2.4.8. The number d(x) is independent of x and is equal to the
degree of f .

REMARK 2.4.9. Since any continuous map of the circle can be arbitrary well
approximated by a piecewise monotone map (in fact, even by a piecewise linear
one) and by the above theorem the number thus defined for piecewise monotone
maps (call it the local degree) is the same for any two sufficiently close maps we
can define degree of an arbitrary continuous map f : S1 → S1 as the the local
degree of any piecewise monotone map g sufficiently close to f . This is a “baby
version” of the procedure which will be developed for other manifolds in ??.

PROOF. Call a value x ∈ S1 critical if x = f(y) where x is an endpoint of an
interval of monotonicity for f which we will call critical points. Obviously d(x)
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does not change in a neighborhood of any non-critical value. It does not change at
a critical value either since each critical value is the image of several critical points
and near each such point either there is one positive and one negative pre-image
for nearby values on one side and none on the other or vise versa. Thus d(x) is
constant which depends only on the map f and can thus be denoted by d(f).

For any piecewise monotone map f let as call its piecewise linear approxima-
tion fPL the map which has the same intervals of monotonicity and is linear on
any of them. Obviously d(fPL) = d(f); this follows from a simple application of
the intermediate value theorem from calculus. Consider the straight-line deforma-
tion of the map fPL to the linear map Edeg f . Notice that since fPL is homotopic
to f (by the straight line on each monotonicity interval) deg fPL = deg f . This
homotopy passes through piecewise linear maps which we denote by gt and hence
the local degree is defined. A small point is that for some values of t the map gt

may be constant on certain intervals of monotonicity of of f but local degree is
defined for such maps as well. It remains to notice that the local degree does not
change during this deformation. But this is obvious since any non-critical value of
gt remains non-critical with a small change of t and for each t all but finitely many
values are non-critical. Since local degree can be calculated at any non-critical
value this shows that

d(f) = d(fPL) = d(Edeg f ) = deg f.

!

2.5. Brouwer fixed point theorem in dimension two

In the general case, the Brouwer theorem says that any (continuous) self-map
of the disk Dn (a closed ball in Rn) has a fixed point, i.e., there exists a p ∈ Dn

such that f(p) = p.
The simplest instance of this theorem (for n = 1) is an immediate corollary

of the intermediate value theorem from calculus since a continuous map f of a
closed interval [a, b] into itself can be considered as a real-values function such
that f(a) ≥ a and f(b) ≥ b. Hence by the intermediate value theorem the function
f(x)− x has a zero on [a, b].

The proof in dimension two is based on properties of the degree.

THEOREM 2.5.1. [Brouwer fixed-point theorem in dimension two.] Any con-
tinuous map of a closed disk into itself (and hence of any space homeomorphic to
the disk) has a fixed point.

PROOF. We consider the standard closed disc

D2 := {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
Suppose f : D2 → D2 is a continuous map without fixed points. For p ∈ D2

consider the open halfline (ray) beginning at F (p) and passing through the point p.
This halfline intersects the unit circle S1, which is the boundary of the disc D2, at
a single point which we will denote by h(p). Notice that for p ∈ ∂D2, h(p) = p
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FIGURE 2.5.1. Retraction of the disk onto the circle

The map h : D2 → ∂D2 thus defined is continuous by construction (exactly
because f has no fixed points) and is homotopic to the identity map IdD2 via the
straight-line homotopy H(p, t) = (1 − t)p + th(p). Now identify ∂D2 with the
unit circle S1. Taking the composition of hwith this identification, we obtain a map
D2 → S1, which we will denote by g. Let i : S1 → D2 be the standard embedding.
We have

g ◦ i : S1 → S1 = IdS1 , i ◦ g = h is homotopic to IdD2 .

Thus the pair (i, g) gives a homotopy equivalence between S1 and D2.
But this is impossible, since the disc is contractible and the circle is not (Corol-

lary 2.4.3). Hence such a map h cannot be constucted; this implies that F has a
fixed point at which the halfline in question cannot be uniquely defined. !

EXERCISE 2.5.1. Deduce the general form of the Brouwer fixed–point theo-
rem: Any continuous map of a closed n-disc into itself has a fixed point, from the
fact that the identity map on the sphere of any dimension is not null homotopic.
The latter fact will be proved later (??).

2.6. Index of a point w.r.t. a curve

In this section we study curves and points lying in the plane R2 and introduce
an important invariant: the index ind(p, γ) of a point p with respect to a curve
γ : S1 → R2. This invariant has many applications, in particular it will help us
prove the so-called “Fundamental Theorem of Algebra” in the next section.

2.6.1. Main definition and examples. By a curve we mean the image C =
f(S1) of a continuous map f : S1 → R2, not necessarily injective. Recall that C
is compact by Proposition 1.5.11 Let p be a point in the open complement R2 −C
of the curve. The complement is nonempty since C is compact but R2 is not.
Notice however that C may have an interior if f is a so-called Peano curve ??
or somehting similar. Denote by ϕ the angular parameter on S1 and by Vϕ the
vector joining the points p and f(ϕ). As ϕ varies from 0 to 2π, the endpoint of the
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unit vector Vϕ/|Vϕ| moves along the unit circle S0 centered at p, defining a map
γf : S0 → S0.

DEFINITION 2.6.1. The index of the point p with respect to the curve f is
defined as the degree of the map γ, i.e.,

ind(p, f) := deg(γf )

Clearly, ind(p, f) does not change when p varies inside a connected compo-
nent of R2\C): indeed, the function ind is continuous in p /∈ C and takes integer
values, so it has to be a constant when p varies in a connected component ofR2\C).

If the point p is “far from” f(S1) (i.e., in the connected component ofR2\f(S1)
with noncompact closure), then deg(p, f) = 0; indeed, if p is sufficiently far from
C (which is compact), then C is contained in an acute angle with vertex at p, so
that the vector f(ϕ) remains within that angle as ϕ varies from 0 to 2π and γ must
have degree 0.

A concrete example of a curve in R2 is shown on Figure ??, (a); on it, the is this 2.6.1?; wheree is (b)?

integers indicate the values of the index in each connected component of its com-
plement.

2.6.2. Computing the index for immersed curves. When the curve is nice
enough, there is a convenient method for computing the index of any point with
respect to the curve. To formalize what we mean by “nice” we introduce the fol-
lowing definition.

DEFINITION 2.6.2. A curve f : S1 → R2 is said to be an immersion if f
is differentiable, has a nonzero tangent vector, and has a finite number of self-
intersections, all of them transversal, i.e. with all tangent vectors making non-zero
angles with each other.

In order to compute the index of p with respect to an immersed curve f , let us
join p by a (nonclosed) smooth curve α transversal to f to a far away point a and
move from a to p along that curve. At the start, we put i(a) = 0, and, moving along
α, we add one to i when we cross f(S1) in the positive direction (i.e., so that the
tangent vector to f looks to the right of α) and subtract one when we cross it in the
negative direction. When we reach the connected component of the complement
to the curve containing p, we will obtain a certain integer i(p).

EXERCISE 2.6.1. Prove that the integer i(p) obtained in this way is actually
the index of p w.r.t. f (and so i(p) does not depend on the choice of the curve α).

Turn this into a proposition and
provide a proof.

EXERCISE 2.6.2. Compute the indices of the connected components of the
complements to the curve shown on Figure ??(b) by using the algorithm described
above.



58 2. ELEMENTARY HOMOTOPY THEORY

∗

0

0

1

0

1

0

1

1

0

1
2

−1

FIGURE 2.6.1. Index of points w.r.t. a curve

2.7. The fundamental theorem of algebra

2.7.1. Statement and commentary. In our times the term “fundamental the-
orem of algebra” reflects historical preoccupation of mathematicians with solving
algebraic equations, i.e. finding roots of polynomials. Its equivalent statement
is that the field of complex numbers is algebraically complete i.e. that no need
to extend it in order to perform algebraic operations. This in particular explain
difficulties with constructing “hyper-complex” numbers; in order to do that in a
meaningful way, one needs to relax some of the axioms of the field (e.g. commu-
tativity for the four-dimensional quaternions).3 Thus, in a sense, the theorem is
fundamental but not so much for algebra where the field of complex numbers is
only one of many objects of study, and not the most natural one at that, but for
analysis, analytic number theory and classical algebraic geometry.

THEOREM 2.7.1. Any polynomial

p(z) = anzn + an−1z
n−1 + · · · + a1z + a0, an 0= 0, n > 0,

with complex coefficients has a least one complex root.4

REMARK 2.7.2. This theorem has many different proofs, but no “purely alge-
braic” ones. In all existing (correct!) proofs, the crucial point is topological. In the
proof given below, it ultimately comes down to the fact that a degree n self map of
the circle is not homotopic to the identity provided n ≥ 2.

3This by no means implies that one cannot include complex number to a larger field. General
algebraic constructions such as fields of rational functions provide for that.

4The fact that the polynomial x2 +1 has no real roots is the most basic motivation for introduc-
ing complex numbers.
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2.7.2. Proof of the theorem. By dividing all coefficients by an which does
not change the roots we may assume that an = 1. Furthermore, if a0 = 0 than
p(0) = 0. Thus we can also assume that a0 0= 0.

Consider the curve fn : S1 → R2 given by the formula eiϕ (→ Rn
0einϕ,

where R0 is a (large) positive number that will be fixed later. Further, consider the
family of curves fp,R : S1 → R2 given by the formula eiϕ (→ p(Reiϕ), where
R ≤ R0. We can assume that the origin O does not belong to fp,R0(S1) (otherwise
the theorem is proved).

LEMMA 2.7.3. If R0 is sufficiently large, then

ind(O, fp,R0) = ind(O, fn) = n.

Before proving the lemma, let us show that it implies the theorem.
By the lemma, ind(O, fp,R0) = n. Let us continuously decrease R from R0 to

0. If for some value ofR the curve fp,R(S1) passes through the origin, the theorem
is proved. So we can assume that ind(O, fp,R) changes continuously as R → 0;
but since the index is an integer, it remains constant and equal to n. However, if
R is small enough, the curve fp,R(S1) lies in a small neighborhood of a0; but for
such an R we have ind(O, fp,R) = 0. This is a contradiction, because n ≥ 1.

It remains to prove the lemma. The equality ind(O, fn) = n is obvious. To
prove the other equality, it suffices to show that for any ϕ the difference∆ between
the vectors Vp(ϕ) and Vn(ϕ) that join the origin O with the points fp(R0eiϕ) and
fn(R0eiϕ), respectively, is small in absolute value (as compared to Rn

0 = |Vp(ϕ)|)
ifR0 is large enough. Indeed, by the definition of degree, if the mobile vector is re-
placed by another mobile vector whose direction always differs from the direction
of the first one by less than π/2, the degree will be the same for the two vectors.

Rn
0

fn(S1)

fp,R0(S1)

0

R
→

0

R → 0

R
→

0

a0

FIGURE 2.7.1. Proof of the fundamental theorem of algebra
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Clearly, |∆| = |an−1zn−1+· · ·+a1z+a0|. Let us estimate this number, putting
z = R0eϕ and A = max{an−1, an−2, . . . , a0} (here without loss of generality we
assume that R0 > 1). We then have

|∆| = |an−1z
n−1 + · · ·+ a1z + a0| ≤ |A(Rn−1

0 + Rn−2
0 · · ·+ 1)| ≤ A ·n ·Rn−1

0 .

Now if we put R0 := K · A, where K is a large positive number, we will obtain
|∆| ≤ nA(KA)n−1 = nKn−1An. Let us compare this quantity to Rn

0 ; the latter
equals Rn

0 = KnAn, so for K large enough the ratio |∆|/Rn
0 is as small as we

wish. This proves the lemma and concludes the proof of the theorem. !

2.8. The fundamental group; definition and elementary properties

The fundamental group is one of the most important invariants of homotopycalculations for Mobius and
Klein bottle(the latter need to

be defined in Chapter 1 theory. It also has numerous applications outside of topology, especially in com-
plex analysis, algebra, theoretical mechanics, and mathematical physics. In our
course, it will be the first example of a “functor”, assigning a group to each path-
connected topological space and a group homomorphism to each continuous map
of such spaces, thus reducing topological problems about spaces to problems about
groups, which can often be effectively solved. In a more down-to-earth language
this will be the first sufficiently universal non-trivial invariant of homotopy equiv-
alence, defined for all path connected spaces and calculable in many natural situa-
tions.

2.8.1. Main definitions. Let M be a topological space with a marked point
p ∈ M .

DEFINITION 2.8.1. A curve c : [0, 1] → M such that c(0) = c(1) = p will
be called a loop with basepoint p. Two loops c0, c1 with basepoint p are called
homotopic rel p if there is a homotopy F : [0, 1]× [0, 1] → M joining c0 to c1 such
that F (t, x) = p for all t ∈ [0, 1].

If c1 and c2 are two loops with basepoint p, then the loop c1 · c2 given by

c1 · c2(t) :=

{
c1(2t) if t ≤ 1

2 ,

c2(2t− 1) if t ≥ 1
2 .

is called the product of c1 and c2.

PROPOSITION 2.8.2. Classes of loops homotopic rel p form a group with re-
spect to the product operation induced by ·.

PROOF. First notice that the operation is indeed well defined on the homotopy
classes. For, if the paths ci are homotopic to c̃i, i = 1, 2 via the maps h1 :
[0, 1]× [0, 1] → M , then the map h, defined by

h(t, s) :=

{
h1(2t, s) if t ≤ 1

2 ,

h2(2t− 1, s) if t ≥ 1
2

is a homotopy rel p joining c1 to c2.
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Obviously, the role of the unit is played by the homotopy class of the constant
map c0(t) = p. Then the inverse to c will be the homotopy class of the map
c′(t) := c(1 − t). What remains is to check the associative law: (c1 · c2) · c3 is
homotopic rel p to c1 · (c2) · c3) and to show that c · c′ is homotopic to c0. In
both cases the homotpy is done by a reparametrization in the preimage, i.e., on the
square [0, 1]× [0, 1].

For associativity, consider the following continuous map (“reparametrization”)
of the square into itself

R(t, s) =






(t(1 + s), s) if 0 ≤ t ≤ 1
4 ,

(t + s
4 , s) if 1

4 ≤ t ≤ 1
2 ,

(1− 1
1+s + t

1+s , s) if 1
2 ≤ t ≤ 1.

Then the map c1 · (c2 · c3) ◦ R : [0, 1] × [0, 1] → M provides a homotopy rel
endpoints joining the loops c1 · (c2 · c3) and (c1 · c2) · c3.

1/4
1/2

c1 c2 c3

1/2
3/4

c1 c2 c3

t

s

(c1 · c2) · c3 % c1 · (c2 · c3)

FIGURE 2.8.1. Associativity of multiplication

Similarly, a homotopy joining c · c′ to c0 is given by c · c′ ◦ I , where the
reparametrization I : [0, 1]× [0, 1] → [0, 1]× [0, 1] is defined as

I(t, s) =

{
(t, s) if 0 ≤ t ≤ 1−s

2 , or 1+s
2 ≤ t ≤ 1,

(1−s
2 , s) if 1−s

2 ≤ t ≤ 1+s
2 ,

Notice that while the reparametrization I is discontinuous along the wedge t =
(1 ± s)/2, the map (c · c′) ◦ I is continuous by the definition of c′. !

DEFINITION 2.8.3. The group described in Proposition 2.8.2 is called the fun-
damental group ofM at p and is denoted by π1(M,p).

It is natural to ask to what extent π1(M,p) depends on the choice of the point
p ∈ M . The answer is given by the following proposition.

PROPOSITION 2.8.4. If p and q belong to the same path connected component
of M , then the groups π1(M,p) and π1(M, q) are isomorphic.
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PROOF. Let ρ : [0, 1] → M be a path connecting points p and q. It is natural
to denote the path ρ ◦ S where S(t) = 1 − t by ρ−1. It is also natural to extend
the ” · ” operation to paths with different endpoints if they match properly. With
these conventions established, let us associate to a path c : [0, 1] → M with c(0) =
c(1) = p the path c′ := ρ−1 · c · ρ with c′(0) = c′(1) = q. In order to finish
the proof, we must show that this correspondence takes paths homotopic rel p to
paths homotopic rel q, respects the group operation and is bijective up to homotopy.
These staments are proved using appropriate rather natural reparametrizations, as
in the proof of Proposition 2.8.2. !

REMARK 2.8.5. By mapping the interval [0, 1] to the circle with a marked point
e first and noticing that, if the endpoints are mapped to the e, than the homotopy
can also be interpreted as a map of the closed cylinder S1 × [0, 1] to the space
with a based point which maps e × [0, 1] to the base point p, we can interpret the
construction of the fundamental group as the group of homotopy classes of maps
(S1, e) into M,p). Sometimes this language is more convenient and we will use
both versions interchangeably.
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FIGURE 2.8.2. Change of basepoint isomorphism

REMARK 2.8.6. It follows from the construction that different choices of the
connecting path ρ will produce isomorphisms between π1(M,p) and π1(M, q)
which differ by an inner automorphism of either group.

If the spaceM is path connected then the fundamental groups at all of its points
are isomorphic and one simply talks about the fundamental group of M and often
omits the basepoint from its notation: π1(M).

DEFINITION 2.8.7. A path connected space with trivial fundamental group is
said to be simply connected (or sometimes 1-connected).

REMARK 2.8.8. Since the fundamental group is defined modulo homotopy, it
is the same for homotopically equivalent spaces, i.e., it is a homotopy invariant.

The free homotopy classes of curves (i.e., with no fixed base point) correspond
exactly to the conjugacy classes of curves modulo changing base point, so there
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is a natural bijection between the classes of freely homotopic closed curves and
conjugacy classes in the fundamental group.

That this object has no natural group structure may sound rather unfortunate
to many a beginner topologist since the main tool of algebraic topology, namely,
translating difficult geometric problems into tractable algebraic ones, have to be
applied here with fair amount of care and caution here.

2.8.2. Functoriality. Now suppose that X and Y are path connected, f :
X → Y is a continuous maps with and f(p) = q. Let [c] be an element of
π1(X, p), i.e., the homotopy class rel endpoints of some loop c : [0, 1] → X . De-
note by f#(c) the loop in (Y, q) defined by f#(t) := f(c(t)) for all t ∈ [0, 1].
‖fn

∗ (v)‖ ≥ Ce−µ|n|‖v‖, for all n > 0 and v ∈ Ec(p). The following sim-
ple but fundamental fact is proven by a straightforward checking that homotopic
rel based points loop define homotopic images.

PROPOSITION 2.8.9. The assignment c (→ f#(c) is well defined on classes
of loops and determines a homomorphism (still denoted by f#) of fundamental
groups:

f# : π1(X, p) → π1(Y, q)

(refered to as the homomorphism induced by f ), which possesses the following
properties (called functorial):

• (f ◦ g)# = f# ◦ g# (covariance);
• (idX)# = idπ1(X,p) (identity maps induce identity homomorphisms).

The fact that the construction of an invariant (here the fundamental group) is
functorial is very convenient for applications. For example, let us give another
proof of the Brouwer fixed point theorem for the disk by using the isomorphism
π1(S1) = Z (see Proposition 2.8.12 below) and π1(D2) = 0 (since D2 is con-
tractible) and the functoriality of π1(·).

We will prove (by contradiction) that there is no retraction of D2 on its bound-
ary S1 = ∂D2 i.e. a mapD2 → S1 which is identity on S1, Let r : D2 → S1 be such
a retraction, let i : S1 → D2 be the inclusion; choose a basepoint x0 ∈ S1 ⊂ D2.
Note that for this choice of basepoint we have i(x0 = r(x0) = x0). Consider the
sequence of induced maps:

π1(S1, x0)
i∗−→ π1(D2, x0)

r∗−→ π1(S1, x0).

In view of the isomorphisms noted above, this sequence is actually

Z i∗−→ 0 r∗−→ Z.

But such a sequence is impossible, because by functoriality we have

r∗ ◦ i∗ = (r ◦ i)∗ = Id∗ = IdZ . !
In addition to functoriality the fundamental group behaves nicely with respect

to the product.
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PROPOSITION 2.8.10. If X and Y are path connected spaces, then

π1(X × Y ) = π1(X)× π1(Y ).

PROOF. Let us construct an isomorphism of π1(X)×π1(Y ) onto π1(X× Y ).
Let x0, y0 be the basepoints inX and Y , respectively. For the basepoint inX ×Y ,
let us take the point (x0, y0). Now to the pair of loops α and β in X and Y let us
assign the loop α × β given by α × β(t) := (α(t), β(t)). The verification of the
fact that this assignment determines a well-defined isomorphism of the appropriate
fundamental groups is quite straightforward. For example, to prove surjectivity, for
a given loop γ inX×Y with basepoint (x0, y0), we consider the two loops α(t) :=
(prX ◦ γ)(t) and β(t) := (prY ◦ γ)(t), where prX and prY are the projections on
the two factors of X × Y . !

COROLLARY 2.8.11. If C is contractible, then π1(X × C) = π1(X)

EXERCISE 2.8.1. Prove that for any path connected topological space X we
have π1(Cone(X)) = 0.

2.8.3. Examples and applications. The first non-trivial example is an easy
corollary of degree theory.

PROPOSITION 2.8.12. The fundamental group of the circle R/Z is Z and in
additive notation for S1 = R/Z with 0 being the base point the element n ∈ Z is
represented by the map Em.

PROOF. This is essentially a re-statement of Theorem 2.4.4. Since this is a
very fundamental fact of homotopy theory we give a detailed argument.

Let γ : (S1, 0) → (S1, 0) be a loop. LIft it in a unique fashion to a map Γ :
(R, 0) → R, 0). A homotopy rel 0 between any two maps γ, γ′ : (S1, 0) → (S1, 0)
lifts uniquely between a homotopy between lifts. Hence deg γ is a homotopy in-
variant of γ. On the other hand the “straight-line homotopy” between Γ and the
linear map xdeg γx projects to a homotopy rel 0 between γ and Edeg γ . !

Proposition 2.8.12 and Proposition 2.8.10 immediately imply

COROLLARY 2.8.13. π1(Tn) = Zn.

Notice that Tn = Rn/Zn and π1(Tn) is isomorphic to the subgroup Zn by
which Rn is factorized. This is not accidental but the first instance of universal
covering phenomenon, see Section 6.2.2.

On the other hand here is an example of a space, which later will be shown to
be non-contractible, with trivial fundamental group.

PROPOSITION 2.8.14. For any n ≥ 2, π1(Sn) = 0.
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PROOF. The main idea of the proof is to make use of the fact that Sn is the one-
point compactification of the contractible space Rn and that for n ≥ 2 any loop is
homotopic to one which avoids this single point. For such a loop the contraction
(deformation) of Sn with one point removed to the base point of the loop also
produces a homotopy of the loop to the trivial one. However exotic a loop whose
image covers the whole sphere may look such loops exist (see Peano curves, ??).
Still any loop is homotopic to a loop which consist of a finite number of arcs of
great circles and hence does not cover the whole sphere. The method we use here
is interesting since we will make use of a geometric structure (spherical geometry
on this occasion) to prove a purely topological statement, so we will describe it in
detail.

For any two points p and q on the standard unit n-sphere in Rn+1, which are
not diametrically opposite, there is a unique shortest curve connecting these points,
namely the shorter of the two arcs of the great circle which can be described as
the intersection of the two-dimensional plane passing through p, q and the origin.
Such curves give the next simplest example after straight lines in the Euclidean
space of geodesics which play a central role in Riemannian geometry, the core part
of differential geometry. We will mention that subject somewhat more extensively
in ?? and will describe the basics of a systematic theory in ??. An important thing
to remember is that any geodesic is provided with the natural length parameter and
that they depend continuously on the endpoints as long those are not too far away
(e.g. are not diametrically opposite in the case of the standard round sphere).

Now come back to our general continuous loop γ in Sn. By compactness
one can find finitely many points 0 = t0 < t1 < · · · < tm−1, tm = 1 such
that for k = 0, 1 . . . , m − 1 the set Γk := γ[tk, tk+1] lies is a sufficiently small
ball. In fact for our purpose it would be sufficient if this set lies within an open
half-sphere. Now for any open half-sphere H ⊂ Sn and any p, q ∈ H there is
a canonical homotopy of H into the arc of the great circle C in H connecting p
and q keeping these two points fixed. Namely, first for any x ∈ H consider the
unique arcAx of the great circle perpendicular to the great circle C and connecting
x with C and lying inH . Our homotopy moves x alongAx according to the length
parameter normalized to 1/2. The result is a homotopy of H to C ∩ H keeping
every point on C ∩H fixed. After that one contracts C ∩H to the arc between p
and q by keeping all points on that arc fixed and uniformly contracting the length
parameter normalized to 1/2 on the remaining two arcs. This procedure restricted it would be nice to have

illustrations hereto γ[tk, tk+1] on each interval [tk, tk+1], k = 0, . . . ,m − 1 produces a homotopy
of γ to a path whose image is a finite union of arcs of great circles and hence does
not cover the whole sphere. !

Now we can make an advance toward a solution of a natural problem which
concerned us since we first introduced manifolds: invariance of dimension. We
proved that one-dimensional manifolds and higher dimensional ones are not home-
omorphic by an elementary observation that removing a single point make the for-
mer disconnected locally while the latter remains connected. Now we can make a
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step forward from one to two. This will be the first instance when we prove absence
of homeomorphism by appealing to homotopy equivalence.

PROPOSITION 2.8.15. Any two-dimensional manifold and any n-dimensional
manifold for n ≥ 3 are not homeomorphic.

PROOF. First let us show that R2 and Rn for n ≥ 3 are not homeomorphic. By
removing one point we obtain in the first case the space homotopically equivalent
to the circle which hence has fundamental group Z by Proposition 2.8.12 and in
the second the space homotopically equivalent to Sn−1 which is simply connected
by Proposition 2.8.14.

Now assume that h : Mn → M2 is a homeomorphism from an n-dimensional
manifold to a two-dimensional manifold. Let h(p) = q. Point p has a base of
neighborhoods homeomorphic to Rn. Hence any loop in such a neighborhood
which does not touch p can be contracted to a point within the neighborhood with-
out the homotopy touching p. On the other hand, q has a base of neighborhoods
homeomorphic to R2 which do not possess this property. Let N - q be such a
neighborhood and let N ′ - p be a neighborhood of p homeomorphic to Rn such
that h(N ′) ⊃ N . Let γ : [0, 1] → N ′ \ {p} be a loop which is hence contractible
in N ′ \ {p}. Then h ◦ γ : [0, 1] → h(N ′) \ {q} is a loop which is contractible in
h(N ′) \ {q} and hence in N \ {q}, a contradiction. !

REMARKS 2.8.16. (1) In order to distinguish between the manifolds of
dimension higher than two the arguments based on the fundamental group
are not sufficient. One needs either higher homotopy group s introduced
below in Section 2.10 or degree theory for maps of spheres of higher
dimension ??.

(2) Our argument above by no means shows that manifolds of different di-
mension are not homotopically equivalent; obviously all Rns are since
they are all contractible. More interestingly even, the circle and Móbius
strip are homotopically equivalent as we already know. However a proper
even more general version of degree theory (which is a basic part of ho-
mology theory for manifolds) will allow as to show that dimension is an
invariant of homotopy equivalence for compact manifolds.

2.8.4. The Seifert–van Kampen theorem. In this subsection we state a classical the-
orem which relates the fundamental group of the union of two spaces with the fundamental
groups of the summands and of their intersection. The result turns out to give an efficient
method for computing the fundamental group of a “complicated” space by putting it to-
gether from “simpler” pieces.

In order to state the theorem, we need a purely algebraic notion from group theory.

DEFINITION 2.8.17. Let Gi, i = 1, 2, be groups, and let ϕi : K → Gi, i = 1, 2 be
monomorphisms. Then the free product with amalgamation of G1 and G2 with respect to
ϕ1 and ϕ2, denoted by G1 ∗K G2 is the quotient group of the free product G1 ∗ G2 by
the normal subgroup generated by all elements of the form ϕ1(k)(ϕ2(k))−1, k ∈ K.
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THEOREM 2.8.18 (Van Kampen’s Theorem). Let the path connected space X be the
union of two path connected spaces A and B with path connected intersection containing
the basepoint x0 ∈ X . Let the inclusion homomorphisms

ϕA : π1(A ∩B) → π1(A), ϕB : π1(A ∩B) → π1(B)

be injective. Then π1(X, x0) is the amalgamated product
π1(X, x0) ∼= π1(A, x0) ∗π1(A∩B,x0) π1(B, x0).

For a proof see G, Bredon, Geometry and Topology, Theorem 9.4.

2.9. The first glance at covering spaces

A covering space is a mapping of spaces (usually manifolds) which, locally, is
a homeomorphism, but globally may be quite complicated. The simplest nontrivial
example is the exponential map R → S1 discussed in Section 2.4.1.

2.9.1. Definition and examples.

DEFINITION 2.9.1. If M,M ′ are topological manifolds and π : M ′ → M is
a continuous map such that cardπ−1(y) is independent of y ∈ M and every x ∈
π−1(y) has a neighborhood on which π is a homeomorphism to a neighborhood of
y ∈ M then π is called a covering map and M ′ (or (M ′, π)) is called a covering
(space) or cover of M . If n = cardπ−1(y) is finite, then (M ′, π) is said to be an
n-fold covering.

If f : N → M is continuous and F : N → M ′ is such that f = π ◦ F , then
F is said to be a lift of f . If f : M → M is continuous and F : M ′ → M ′ is
continuous such that f ◦ π = π ◦ F then F is said to be a lift of f as well.

0 1

p

B

E

FIGURE 2.9.1. Lift of a closed curve

DEFINITION 2.9.2. A simply connected covering is called the universal cover.
A homeomorphism of a coveringM ′ ofM is called a deck transformation if it is a
lift of the identity onM .
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EXAMPLE 2.9.3. (R, exp(2πi(·))) is a covering of the unit circle. Geometri-
cally one can view this as the helix (e2πix, x) covering the unit circle under projec-
tion. The map defined by taking the fractional part likewise defines a covering of
the circle R/Z by R.

PROPOSITION 2.9.4. If π : M ′ → M and ρ : N ′ → N are covering maps,
then π × ρ : M ′ ×N ′ → M ×N is a covering map.

EXAMPLE 2.9.5. The torus T2 = S1 × S1 is covered by the cylinder S1 × R
which is in turn covered byR2. Notice that the fundamental group Z of the cylinder
is a subgroup of that of the torus (Z2) and R2 is a simply connected cover of both.

EXAMPLE 2.9.6. The maps Em, |m| ≥ 2 of the circle define coverings of the
circle by itself.

EXAMPLE 2.9.7. The natural projection Sn → RP (n) which send points x
and −x into their equivalence class is a two-fold covering. On the other, hand, the
identification map S2n−1 → CP (n) is not a covering since the pre-image on any
point is a continuous curve.

EXERCISE 2.9.1. Describe two-fold coverings of
(1) the (open) Möbius strip by the open cylinder S1 × R;
(2) the Klein bottle by the torus T2.

2.9.2. Role of the fundamental group. One of the remarkable aspects of any
covering space p : X → B is that it is, in a sense, entirely governed by the
fundamental groups of the spaces B and X , or more precisely, by the induced
homomorphism p# : π1(X) → π1(B) of their fundamental groups. We shall
observe this in the two examples given below, postponing the exposition of the
general theory to Chapter 6.

EXAMPLE 2.9.8. Let B be the plane annulus given by the inequalities 1 ≤
r ≤ 2 in the polar coordinates (r, ϕ) on the plane R2, and let X be another copy
of this annulus. Consider the map p : X → B given by (r, ϕ) (→ (r, 3ϕ). It is
obviously a covering space. Geometrically, it can be viewed as in the figure, i.e., as
the vertical projection of the strip aba′b′ (with the segments ab and a′b′ identified)
onto the horizontal annulus.
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FIGURE ?? A triple covering of the annulus

The fundamental group of B (and of X) is isomorphic to Z, and the induced
homomorphism p# : π1(X) → π1(B) is the monomorphism of Z into Z with
image 3Z ⊂ Z. The deck transformations constitute a group isomorphic to Z3

∼=
Z

/
3Z.

This is a fairly general situation. The homomorphism p# is always injective
(for any covering space p) and, provided Im(p#) is a normal subgroup of π1(B), 5
the deck transformations form a group isomorphic to the quotient π1(B)

/
Im(p#).

More remarkable is that the covering map p is entirely determined (up equiva-
lence, defined in a natural way) by the choice of a subgroup of π1(B), in our case,
of the infinite cyclic subgroup of π1(B) generated by the element 3e, where e is the
generator of π1(B) ∼= Z. There is in fact a geometric procedure for constructing
the covering space X , which in our case will yield the annulus.

Another way of defining the geometric structure of a covering space in alge-
braic terms is via the action of a discrete group in some spaceX . Then the covering
is obtained as the quotient map of X onto the orbit space of the group action. In
our case the space X is the annulus, the discrete group is Z3 and it acts on X by
rotations by the angles 0, 2π/3, 4π/3, the orbit space is B (another annulus), and
the quotient map is p.

EXAMPLE 2.9.9. LetB be the torus S1×S1 with coordinates (ϕ, ψ) andX be
the cylinder r = 1 in 3-space endowed with the cylindrical coordinates (r, θ, h).
Consider the map p : X → B given by

(1, ϕ, h) (→ (2ϕ, h mod 2π).

It is obviously a covering space map. Geometrically, it can be described as wrap-
ping the cylinder an infinite number of times along the parallels of the torus and
simultaneously covering it twice along the meridians.

The fundamental group of B is isomorphic to Z, that of X is Z ⊕ Z and the
induced homomorphism p# : π1(X) → π1(B) is the monomorphism of Z into
Z⊕ Z with image 2Z⊕ Z ⊂ Z⊕ Z. The deck transformations constitute a group
isomorphic to (Z/2Z)⊕ Z ⊂ Z⊕ Z.

Here also the covering p can be obtained by an appropriate choice of a discrete
group acting on the cylinderX; then p will be the quotient map ofX onto the orbit
space of this action.

For an arbitrary “sufficiently nice” space B, say a manifold, there is natural bi-
jection between conjugacy classes of subgroups of π1(M) and classes of covering
spaces modulo homeomorphisms commuting with deck transformations. This bi-
jection will be described in detail in Chapter 6, where it will be used, in particular,
to prove the uniqueness of the universal cover.

5This is an important condition which prevents pathologies which may appear for other cover-
ings
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2.10. Definition of higher homotopy groups

The fundamental group has natural generalizations (with S1 replaced by Sn,
n ≥ 2) to higher dimensions, called (higher)homotopy groups (and denoted by
πn(·)). The higher homotopy groups are just as easy (in a sense easier) to define
than the fundamental group, and, unlike the latter, they are commutative.

Let X be a topological space with a marked point p ∈ X . On the sphere Sn,
fix a marked point q ∈ Sn, and consider a continuous map

f : Sn → X such that f(q) = p.

Such a map is called a spheroid. Two spheroids are considered equivalent if they
are homotopic rel basepoints, i.e., if there exists a homotopy ht : Sn → X , t ∈
[0, 1], joining the two spheroids and satisfying ht(q) = p for all t ∈ [0, 1]. By
an abuse of language, we will also refer to the corresponding equivalence classes
as spheroids. It is sometimes more convenient to regard spheroids as homotopy
classes of maps

f : (Dn, ∂Dn) → (X, p),

where the homotopy ht must take ∂Dn, the n − 1-dimensional sphere Sn−1, to p
for all t ∈ [0, 1].

Let us denote by πn(X, p) the set of all (equivalence classes of) spheroids and
introduce a binary operation in that set as follows. Suppose f, g : (Sn, q) →
(X, p) are two spheroids; then their product is the spheroid fg : (Sn, q) → (X, p)
obtained by pulling the equator of Sn containing p to a point and then defining fg
by using f on one of the two spheres in the obtained wedge and g on the other (see
the figure).

s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0

s0 X
α

β

(a)

α

β
X

(b)

FIGURE 2.10.1. The product of two spheroids

Note that for n = 1 this definition coincides with the product of loops for the
fundamental group π1(X, p). We will also sometimes consider the set π0(X, p),
which by definition consists of the path connected components of X and has no
natural product operationdefined on it.

PROPOSITION 2.10.1. For n ≥ 2 and all path connected spaces X , the set
πn(X, p) under the above definition of product becomes an Abelian group, known
as the n-th homopoty group of X with basepoint p.
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f

f̃

0

−1

+1

−s

s

FIGURE 2.10.2. Inverse element in πn(X, p)

PROOF. The verification of the fact that πn(X, p)) is a group is straightfor-
ward; we will only show how inverse elements are constructed. This construction
is shown on the figure.

On the figure f : (Dn, ∂Dn) → (X, p) is a spheroid. Denote by f̃ : In−1 ×
[−1, 1] → X the spheroid given by f̃(x, s) := f(x,−s). Then the map (spheroid)
ff̃ satisfies ff̃(x, s) = f̃f(x,−s) (look at the figure again). Therefore we can
consider the family of maps

ht(x, s) =

{
ff̃(x, s), for |s| ≥ t,
f̃f(x,−s), for |s| ≤ t.

For this family of maps we have h0 = ff̃ , while h1 is the constant map. For the
map h(·, s) the shaded area is mapped to p. This shows that every map has an
inverse.

To see that the group πn(X, p)), n ≥ 2, is abelian, the reader is invited to look
at the next figure, which shows a homotopy between fg and gf , where g and f are
arbitrary spheroids. !

PROPOSITION 2.10.2. For n ≥ 2 and all path connected spacesX , the groups
πn(X, p) and πn(X, q), where p, q ∈ X , are isomorphic, but the isomorphism is
not canonical, it depends on the homotopy class (rel endpoints) of the path joining
p to q.

PROOF. The proof is similar to that of an analogous fact about the fundamental
group. ! elaborate a bit

PROPOSITION 2.10.3. The homotopy groups are homotopy invariants of path
connected spaces.

PROOF. The proof is a straightforward verification similar to that of an analo-
gous statement about the fundamental group. ! elaborate

EXERCISE 2.10.1. Prove that all the homotopy groups of a contractible space
are trivial.
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FIGURE 2.10.3. Multiplication of spheroids is commutative
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γ

FIGURE 2.10.4. Change of basepoint isomorphism for spheroids

2.11. Hopf fibration

Unlike the fundamental group and homology groups (see Chapter 8), for which
there exist general methods and algorithm for computation , the higher homotopy
groups are extremely difficult to compute. The are certain “easy” cases: for exam-
ple πk(Sn) = 0 for k < n which we will be able to show by a proper extension
of the method used in Proposition 2.8.14. Furthermore, πn(Sn) = Z. this will be
shown in ?? after developing a proper extension of degree theory.

However already computation of πk(Sn) = 0 for k > n present very difficult
problem which has not been completely solved. The first nontrivial example is the
computation of π3 for the sphere S2, based on one of the most beautiful construc-
tions in topology – the Hopf fibration which we will describe now. Computation
of π3(S2) is presented later in Chapter ??. The Hopf fibration appears in a number
of problems in topology, geometry and differential equations.make more specific

Consider the unit sphere in C2:

{(z1, z2) : |z1|2 + |z2|2 = 1}
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and the action H of the circle on it by scalar multiplication: for λ ∈ S1 put
Hλ(z1, z2) = (λz1, λz2).

PROPOSITION 2.11.1. The identification space of this action is homeomorphic
to S2.

PROOF. This identification space is the same as the identification space of C2

where all proportional vectors are identified; it is simply the restriction of this
equivalence relation to the unit sphere. The identification space is CP (1) which is
homeomorphic to S2. !

The Hopf fibration is defined by a very simple formula. To help visualize we
think of the sphere S3 as the one-point compactification of R3, so that we can
actually draw the preimages of the Hopf map h : S3 → S2 (which are circles) in
the way shown on the figure.

∞

FIGURE 2.11.1. The Hopf fibration



74 2. ELEMENTARY HOMOTOPY THEORY

EXERCISE 2.11.1. Let z(t) = (z1(t), z2(t)) ∈ C2. Consider the system of
differential equations ż = iz and restrict it to the 3-sphere {z ∈ C2 | |z| = 1}.
Show that the trajectories of this system are circles constituting the Hopf fibration.

2.12. Problems

EXERCISE 2.12.1. Prove that in S3, represented as R3∪{∞}, the complement
of the unit circle in the xy-plane centered at the origin is homotopy equivalent to
the circle.

EXERCISE 2.12.2. Prove that the 2-sphere with three points removed is homo-
topy equivalent to the figure eight (the wedge of two circles).

EXERCISE 2.12.3. The torus with three points removed is homotopy equiva-
lent to the wedge of four circles.

EXERCISE 2.12.4. Let f : S1 → D2 and g : D2 → S1 be any continuous
maps. Prove that their composition g ◦ f is homotopic to the constant map.

EXERCISE 2.12.5. For any finite cyclic group C there exists a compact con-
nected three-dimensional manifold whose fundamental group is isomorphic to C.

Hint: Use the Hopf fibration.

EXERCISE 2.12.6. Show that the complex projective plane CP (2) (which is
a four–dimensional manifold) is simply connected, i.e. its fundamental group is
trivial.

EXERCISE 2.12.7. Consider the following map f of the torus T2 into itself:
f(x, y) = (x + sin 2πy, 2y + x + 2 cos 2πx) ( mod 1).

Describe the induced homomorphism f∗ of the fundamental group.
Hint: You may use the description of the fundamental group of the direct prod-

uct π1(X × Y ) = π1(X)× π1(Y ).

EXERCISE 2.12.8. Let X = R2 \ Q2. Prove that π1(X) is uncountable.

EXERCISE 2.12.9. The real projective space RP (n) is not simply connected.
Note: Use the fact that RP (n) is the sphere Sn with diametrically opposed

points identified.

EXERCISE 2.12.10. For any abelian finitely generated group A there exists a
compact manifold whose fundamental group is isomorphic to A.

EXERCISE 2.12.11. The fundamental group of any compact connected mani-
fold is no more than countable and is finitely generated.

EXERCISE 2.12.12. Let X be the quotient space of the disjoint union of S1

and S2 with a pair of points x ∈ S1 and y ∈ S2 identified. Calculate π1(X).



CHAPTER 3

METRIC SPACES AND UNIFORM STRUCTURES

The general notion of topology does not allow to compare neighborhoods of
different points. Such a comparison is quite natural in various geometric contexts.
The general setting for such a comparison is that of a uniform structure. The most
common and natural way for a uniform structure to appear is via a metric, which
was already mentioned on several occasions in Chapter 1, so we will postpone
discussing the general notion of union structure to Section 3.11 until after detailed
exposition of metric spaces. Another important example of uniform structures is
that of topological groups, see Section 3.12 below in this chapter. Also, as in turns
out, a Hausdorff compact space carries a natural uniform structure, which in the
separable case can be recovered from any metric generating the topology. Metric
spaces and topological groups are the notions central for foundations of analysis.

3.1. Definition and basic constuctions

3.1.1. Axioms of metric spaces. We begin with listing the standard axioms
of metric spaces, probably familiar to the reader from elementary real analysis
courses, and mentioned in passing in Section 1.1, and then present some related
definitions and derive some basic properties.

DEFINITION 3.1.1. If X is a set, then a function d : X × X → R is called a
metric if

(1) d(x, y) = d(y, x) (symmetry),
(2) d(x, y) ≥ 0; d(x, y) = 0 ⇔ x = y (positivity),
(3) d(x, y) + d(y, z) ≥ d(x, z) (the triangle inequality).
If d is a metric, then (X, d) is called a metric space.

The set
B(x, r) := {y ∈ X d(x, y) < r}

is called the (open) r-ball centered at x. The set
Bc(x, r) = {y ∈ X d(x, y) ≤ r}

is called the closed r-ball at (or around) x.
The diameter of a set in a metric space is the supremum of distances between

its points; it is often denoted by diam A. The set A is called bounded if it has finite
diameter.

A map f : X → Y between metric spaces with metrics dX and dY is called as
isometric embedding if for any pair of points x, x′ ∈ X dX(x, x′) = dY (f(x), f(x′)).
If an isometric embedding is a bijection it is called an isometry. If there is an

75
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isometry between two metric spaces they are called isometric. This is an obvious
equivalence relation in the category of metric spaces similar to homeomorphism
for topological spaces or isomorphism for groups.

3.1.2. Metric topology. O ⊂ X is called open if for every x ∈ O there exists
r > 0 such that B(x, r) ⊂ O. It follows immediately from the definition that open
sets satisfy Definition 1.1.1. Topology thus defined is sometimes called the metric
topology or topology, generated by the metric d. Naturally, different metrics may
define the same topology.

Metric topology automatically has some good properties with respect to bases
and separation.

Notice that the closed ballBc(x, r) contains the closure of the open ballB(x, r)
but may not coincide with it (Just consider the integers with the the standard metric:
d(m,n) = |m− n|.)

Open balls as well as balls or rational radius or balls of radius rn, n = 1, 2, . . . ,
where rn converges to zero, form a base of the metric topology.

PROPOSITION 3.1.2. Every metric space is first countable. Every separable
metric space has countable base.

PROOF. Balls of rational radius around a point form a base of neighborhoods
of that point.

By the triangle inequality, every open ball contains an open ball around a point
of a dense set. Thus for a separable spaces balls of rational radius around points of
a countable dense set form a base of the metric topology. !

Thus, for metric spaces the converse to Proposition 1.1.12 is also true.
Thus the closure of A ⊂ X has the form

A = {x ∈ X ∀r > 0, B(x, r) ∩A += ∅}.
For any closed set A and any point x ∈ X the distance from x to A,

d(x,A) := inf
y∈A

d(x, y)

is defined. It is positive if and only if x ∈ X \ A.

THEOREM 3.1.3. Any metric space is normal as a topological space.

PROOF. For two disjoint closed sets A,B ∈ X , let
OA := {x ∈ X d(x,A) < d(x,B), OB := {x ∈ X d(x, B) < d(x,A).

These sets are open, disjoint, and contain A and B respectively. !
Let ϕ : [0,∞] → R be a nondecreasing, continuous, concave function such

that ϕ−1({0}) = {0}. If (X, d) is a metric space, then φ ◦ d is another metric on d
which generates the same topology.

It is interesting to notice what happens if a function d as in Definition 3.1.1
does not satisfy symmetry or positivity. In the former case it can be symmetrized
producing a metric dS(x, y):=max(d(x, y), d(y, x)). In the latter by the symmetry
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and triangle inequality the condition d(x, y) = 0 defines an equivalence relation
and a genuine metric is defined in the space of equivalence classes. Note that
some of the most impotrant notions in analysis such as spaces Lp of functions on
a measure space are actually not spaces of actual functions but are such quotient
spaces: their elements are equivalence classes of functions which coincide outside
of a set of measure zero.

3.1.3. Constructions.
1. Inducing. Any subset A of a metric space X is a metric space with an

induced metric dA, the restriction of d to A×A.
2. Finite products. For the product of finitely many metric spaces, there are

various natural ways to introduce a metric. Let ϕ : ([0,∞])n → R be a continuous
concave function such that ϕ−1({0}) = {(0, . . . , 0)} and which is nondecreasing
in each variable.

Given metric spaces (Xi, di), i = 1, . . . , n, let

dϕ := ϕ(d1, . . . , dn) : (X1 × . . . Xn)× (X1 × . . . Xn) → R.

EXERCISE 3.1.1. Prove that dϕ defines a metric onX1× . . . Xn which gener-
ates the product topology.

Here are examples which appear most often:
• the maximum metric corresponds to

ϕ(t1, . . . , tn) = max(t1, . . . , tn);

• the lp metric for 1 ≤ p < ∞ corresponds to

ϕ(t1, . . . , tn) = (tp1 + · · · + tpn)1/p.

Two particularly important cases of the latter are t = 1 and t = 2; the latter
produces the Euclidean metric in Rn from the standard (absolute value) metrics on
n copies of R.

3. Countable products. For a countable product of metric spaces, various met-
rics generating the product topology can also be introduced. One class of such met-
rics can be produced as follows. Let ϕ : [0,∞] → R be as above and let a1, a2, . . .
be a suquence of positive numbers such that the series

∑∞
n=1 an converges. Given

metric spaces (X1, d1), (X2, d2) . . . , consider the metric d on the infinite product
of the spaces

{
Xi

}
defined as

d((x1, x2, . . . ), (y1, y2, . . . )) :=
∞∑

n=1

anϕ(dn(xn, yn)).

EXERCISE 3.1.2. Prove that d is really a metric and that the corresponding
metric topology coincides with the product topology.
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4. Factors. On the other hand, projecting a metric even to a very good factor
space is problematic. Let us begin with an example which exhibits some of the
characteristic difficulties.

EXAMPLE 3.1.4. Consider the partition of the plane R2 into the level sets of
the function xy, i.e. the hyperboli xy = const += 0 and the union of coordinate
axes. The factor topology is nice and normal. It is easy to see in fact that the
function xy on the factor space establishes a homeomorphism between this space
and the real line. On the other hand, there is no natural way to define a metric in
the factor space based on the Euclidean metric in the plane. Any two elements of
the factor contain points arbitrary close to each other and arbitrary far away from
each other so manipulating with infimums and supremums of of distances between
the points in equivalence classes does not look hopeful.

We will see later that when the ambient space is compact and the factor-
topology is Hausdorff there is a reasonable way to define a metric as the Hausdorff
metric (see Definition 3.10.1) between equivalence classes considered as closed
subsets of the space.

Here is a very simple but beautiful illustration how this may work.

EXAMPLE 3.1.5. Consider the real projective space RP (n) as the factor space
of the sphere Sn with opposite points identified. Define the distance between the
pairs (x,−x) and (y,−y) as the minimum of distances between members of the
pairs. Notice that this minimum is achieved simultaneously on a pair and the pair
of opposite points. This last fact allows to check the triangle inequality (positivity
and symmetry are obvious) which in general would not be satisfied for the minimal
distance of elements of equivalence classes even if those classes are finite.

EXERCISE 3.1.3. Prove the triangle inequality for this example. Prove that the
natural projection from Sn to RP (n) is an isometric embedding in a neighborhood
of each point. Calculate the maximal size of such a neighborhood.

Our next example is meant to demonstrate that the chief reason for the success
of the previous example is not compactness but the fact that the factor space is the
orbit space of an action by isometries (and of course is Hausdorff at the same time):

EXAMPLE 3.1.6. Consider the natural projection Rn → Rn/Zn = Tn. De-
fine the distance d(aZn, bZn) on the torus as the minimum of Euclidean distances
between points in Rn in the equivalence classes representing corresponding points
on the torus. Notice that since translations are isometries the minimum is always
achieved and if it is achieved on a pair (x, y) it is also achieved on any integer
translation of (x, y).

EXERCISE 3.1.4. Prove the triangle inequality for this example. Prove that
the natural projection from Rn to Tn is an isometric embedding in any open ball of
radius 1/2 and is not an isometric embedding in any open ball of any greater radius.
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3.2. Cauchy sequences and completeness

3.2.1. Definition and basic properties. The notion of Cauchy sequence in
Euclidean spaces and the role of its convergence should be familiar from elemen-
tary real analysis courses. Here we will review this notion in the most general
setting, leading up to general theorems on completion, which play a crucial role in
functional analysis.

DEFINITION 3.2.1. A sequence {xi}i∈N is called a Cauchy sequence if for all
ε > 0 there exists an N ∈ N such that d(xi, xj) < ε whenever i, j ≥ N; X is said
to be complete if every Cauchy sequence converges.

PROPOSITION 3.2.2. A subset A of a complete metric space X is a complete
metric space with respect to the induced metric if and only if it is closed.

PROOF. For a closed A ∈ X the limit of any Cauchy sequence in A belongs
to A. If A is not closed take a sequence in A converging to a point in Ā \ A. It is
Cauchy but does not converge in A. !

The following basic property of complete spaces is used in the next two theo-
rems.

PROPOSITION 3.2.3. Let A1 ⊃ A2 ⊃ . . . be a nested sequence of closed sets
in a complete metric space, such that diam An → 0 as n →∞. Then

⋂∞
n=1 An is

a single point.

PROOF. Since diam An → 0 the intersection cannot contain more than one
point. Take a sequence xn ∈ An. It is Cauchy since diam An → 0. Its limit x
belongs to An for any n. Since the sets Ai are closed, it follows that x ∈ An for
any n. !

3.2.2. The Baire category theorem.

THEOREM 3.2.4 (Baire Category Theorem). In a complete metric space, a
countable intersection of open dense sets is dense. The same holds for a locally
compact Hausdorff space.

PROOF. If {Oi}i∈N are open and dense in X and ∅ += B0 ⊂ X is open then
inductively choose a ball Bi+1 of radius at most ε/i for which we have B̄i+1 ⊂
Oi+1 ∩Bi. The centers converge by completeness, so

∅ +=
⋂

i

B̄i ⊂ B0 ∩
⋂

i

Oi.

For locally compact Hausdorff spaces take Bi open with compact closure and use
the finite intersection property. !
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The Baire Theorem motivates the following definition. If we want to mesure
massivenes of sets in a topological or in particular metric space, we may assume
that nowhere dense sets are small and their complements are massive. The next
natural step is to introduce the following concept.

DEFINITION 3.2.5. Countable unions of nowhere dense sets are called sets of
first (Baire) category.

The complement to a set of first baire category is called a residual set.

The Baire category theorem asserts that, at least for complete metric spaces,
sets of first category can still be viewed as small, since they cannot fill any open
set.

The Baire category theorem is a simple but powerful tool for proving exis-
tence of various objects when it is often difficult or impossible to produce those
constructively.

3.2.3. Minimality of the Cantor set. Armed with the tools developed in the
previous subsections, we can now return to the Cantor set and prove a universality
theorem about this remarkable object.

THEOREM 3.2.6. (cf. Exercise 1.10.14)
Any uncountable separable complete metric space X contains a closed subset

homeomorphic to the Cantor set.

PROOF. First consider the following subset

X0 : {x ∈ X|any neigbourhood of x contains uncountably many points}

Notice that the set X0 is perfect, i.e., it is closed and contains no isolated points.

LEMMA 3.2.7. The set X \ X0 is countable.

PROOF. To prove the lemma, for each point x ∈ X \ X0 find a neighborhood
from a countable base which contains at most countably many points (Proposi-
tion 3.1.2). ThusX\X0 is covered by at most countably many sets each containing
at most countably many points. !

Thus the theorem is a consequence of the following fact.

PROPOSITION 3.2.8. Any perfect complete metric space X contains a closed
subset homeomorphic to the Cantor set.

PROOF. To prove the the proposition, pick two points x0 += x1 in X and let
d0 := d(x0, x1). Let

Xi := B(xi, (1/4)d0), i = 0, 1

and C1 := X0 ∪X1.
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Then pick two different points xi,0, xi,1 ∈ IntXi, i = 0, 1. Such choices are
possible because any open set in X contains infinitely many points. Notice that
d(xi,0, xi,1) ≤ (1/2)d0. Let

Yi1,i2 := B(xi1,i2 , (1/4)d(xi1,0, xi1,1)), i1, i2 = 0, 1,

Xi1,i2 := Yi1,i2 ∩ C1 and C2 = X0,0 ∪X0,1 ∪X1,0 ∪X1,1.
Notice that diam(Xi1,i2) ≤ d0/2.

Proceed by induction. Having constructed

Cn =
⋃

i1,...,in∈{0,1}

Xi1,...,in

with diam Xi1,...,in ≤ d0/2n, pick two different points xi1,...,in,0 and xi1,...,in,1 in
IntXi1,...,in and let us successively define

Yi1,...,in,in+1 := B(xi1,...,in,in+1 , d(xi1,...,in,0, xi1,...,in,1)/4),

Xi1,...,in,in+1 := Yi1,...,in,in+1 ∩ Cn,

Cn+1 :=
⋃

i1,...,in,in+1∈{0,1}

Xi1,...,in,in+1 .

Since diam Xi1,...,in ≤ d0/2n, each infinite intersection
⋂

i1,...,in,···∈{0,1}

Xi1,...,in,...

is a single point by Heine–Borel (Proposition 3.2.3). The set C :=
⋂∞

n=1 Cn is
homeomorphic to the countable product of the two point sets {0, 1} via the map

⋂

i1,...,in,···∈{0,1}

Xi1,...,in,... 0→ (i1, . . . , in . . . ).

By Proposition 1.7.3, C is homeomorphic to the Cantor set. !
The theorem is thus proved. !

3.2.4. Completion. Completeness allows to perform limit operations which
arise frequently in various constructions. Notice that it is not possible to define
the notion of Cauchy sequence in an arbitrary topological space, since one lacks
the possibility of comparing neighborhoods at different points. Here the uniform
structure (see Section 3.11) provides the most general natural setting.

A metric space can be made complete in the following way:

DEFINITION 3.2.9. If X is a metric space and there is an isometry from X
onto a dense subset of a complete metric space X̂ then X̂ is called the completion
of X .

THEOREM 3.2.10. For any metric space X there exists a completion unique
up to isometry which commutes with the embeddings of X into a completion.
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PROOF. The process mimics the construction of the real numbers as the com-
pletion of rationals, well–known from basic real analysis. Namely, the elements of
the completion are equivalence classes of Cauchy sequences by identifying two se-
quences if the distance between the corresponding elements converges to zero. The
distance between two (equivalence classes of) sequences is defined as the limit of
the distances between the corresponding elements. An isometric embedding of X
into the completion is given by identifying element of X with constant sequences.
Uniqueness is obvious by definition, since by uniform continuity the isometric em-
bedding of X to any completion extends to an isometric bijection of the standard
completion. !

3.3. The p-adic completion of integers and rationals

This is an example which rivals the construction of real numbers in its impor-
tance for various areas of mathematics, especially to number theory and algebraic
geometry. Unlike the construction of the reals, it gives infinitely many differnt
nonisometric completions of the rationals.

3.3.1. The p-adic norm. Let p be a positive prime number. Any rational num-
ber r can be represented as pm k

l where m is an integer and k and l are integers
realtively prime with p. Define the p-adic norm ‖r‖p := p−m and the distance
dp(r1, r2) := ‖r1 − r2‖p.

EXERCISE 3.3.1. Show that the p-adic norm is multiplicative, i.e., we have
‖r1 · r2‖p = ‖r1‖p‖r2‖p.

PROPOSITION 3.3.1. The inequality

dp(r1, r3) ≤ max(dp(r1, r2), dp(r2, r3))

holds for all r1, r2, r3 ∈ Q.

REMARK 3.3.2. A metric satisfying this property (which is stronger than the
triangle inequality) is called an ultrametric.

PROOF. Since ‖r‖p= ‖ − r‖p the statement follows from the property of p-
norms:

‖r1 + r2‖p ≤ ‖r1‖p + ‖r2‖p.

To see this, write ri = pm
i

ki
li

, i = 1, 2 with ki and li relatively prime with p and
assume without loss of generality thatm2 ≥ m1. We have

r1 + r2 = pm
1

k1l2 + pm2−m1k2l1
l1l2

.

The numerator k1l2 + pm2−m1k2l1 is an integer and if m2 > m1 it is relatively
prime with p. In any event we have ‖r1+r2‖p ≤ p−m1 = ‖r1‖p = max(‖r1‖p, ‖r2‖p).

!
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3.3.2. The p-adic numbers and the Cantor set. Proposition 3.3.1 and the
multiplicativity prorerty of the p-adic norm allow to extend addition and multipli-
cation fromQ to the completion. This is done in exacly the same way as in the real
analysis for real numbers. The existence of the opposite and inverse (the latter for
a nonzero element) follow easily.

Thus the completion becomes a field, which is called the field of p-adic num-
bers and is usually denoted by Qp. Restricting the procedure to the integers which
always have norm ≤ 1 one obtains the subring of Qp, which is called the ring of
p-adic integers and is usually denoted by Zp.

The topology of p–adic numbers once again indicates the importance of the
Cantor set.

PROPOSITION 3.3.3. The space Zp is homeomorphic to the Cantor set; Zp is
the unit ball (both closed and open) in Qp.

The space Qp is homeomorphic to the disjoint countable union of Cantor sets.

PROOF. We begin with the integers. For any sequence

a = {an} ∈
∞∏

n=1

{0, 1 . . . , p− 1}

the sequence of integers

kn(a) :=
n∑

i=1

anpi

is Cauchy; for different {an} these sequences are non equivalent and any Cauchy
sequence is equivalent to one of these. Thus the correspondence

∞∏

n=1

{0, 1 . . . , p− 1} → Zp, {an} 0→ the equivalence class of kn(a)

is a homeomorphism. The space
∏∞

n=1{0, 1 . . . , p − 1} can be mapped homeo-
morphically to a nowhere dense perfect subset of the interval by the map

{an}∞n=1 0→
∞∑

n=1

an(2p− 1)−i

. Thus the statement about Zp follows from Proposition 1.7.5.
Since Z is the unit ball (open and closed) around 0 in the matric dp and any

other point is at a distance at least 1 from it, the same holds for the completions.
Finally, any rational number can be uniquely represented as

k +
n∑

i=1

aip
−i, k ∈ Z, ai ∈ {0, . . . , p− 1}, i = 1, . . . , n.

If the corresponging finite sequences ai have different length or do not coincide,
then the p-adic distance between the rationals is at least 1. Passing to the com-
pletion we see that any x ∈ Qp is uniquely represented as k +

∑n
i=1 aip−i with

k ∈ Zp. with pairwise distances for different ai’s at least one. !
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EXERCISE 3.3.2. Where in the construction is it important that p is a prime
number?

3.4. Maps between metric spaces

3.4.1. Stronger continuity properties.

DEFINITION 3.4.1. A map f : X → Y between the metric spaces (X, d),
(Y, dist) is said to be uniformly continuous if for all ε > 0 there is a δ > 0 such
that for all x, y ∈ X with d(x, y) < δ we have dist(f(x), f(y)) < ε. A uni-
formly continuous bijection with uniformly continuous inverse is called a uniform
homeomorphism.

PROPOSITION 3.4.2. A uniformly continuous map from a subset of a metric
space to a complete space uniquely extends to its closure.

PROOF. Let A ⊂ X , x ∈ Ā, f : A → Y uniformly continuous. Fix an
ε > 0 and find the corresponding δ from the definition of uniform continuity. Take
the closed δ/4 ball around x. Its image and hence the closure of the image has
diameter ≤ ε. Repeating this procedure for a sequence εn → 0 we obtain a nested
sequence of closed sets whose diameters converge to zero. By Proposition 3.2.3
their intersection is a single point. If we denote this point by f(x) the resulting map
will be continuous at x and this extension is unique by uniqueness of the limit since
by construction for any sequence xn ∈ A, xn → x one has f(xn) → f(x). !

DEFINITION 3.4.3. A family F of maps X → Y is said to be equicontinuous
if for every x ∈ X and ε > 0 there is a δ > 0 such that d(x, y) < δ implies

dist(f(x), f(y)) < ε for all y ∈ X and f ∈ F .

DEFINITION 3.4.4. A map f : X → Y is said to be Hölder continuous with
exponent α, or α-Hölder, if there exist C, ε > 0 such that d(x, y) < ε implies

d(f(x), f(y)) ≤ C(d(x, y))α,

Lipschitz continuous if it is 1-Hölder, and biLipschitz if it is Lipschitz and has a
Lipschitz inverse.

It is useful to introduce local versions of the above notions. A map f : X → Y
is said to be Hölder continuous with exponent α, at the point x ∈ X or α-Hölder,
if there exist C, ε > 0 such that d(x, y) < ε implies

d(f(x), f(y)) ≤ C(d(x, y))α,

Lipschitz continuous at x if it is 1-Hölder at x.
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3.4.2. Various equivalences of metric spaces. Besides the natural relation of
isometry, the category of metric spaces is endowed with several other equivalence
relations.

DEFINITION 3.4.5. Twometric spaces are uniformly equivalent if there exists a
homeomorphism between the spaces which is uniformly continuous together with
its inverse.

PROPOSITION 3.4.6. Any metric space uniformly equivalent to a complete
space is complete.

PROOF. A uniformly continuous map obviously takes Cauchy sequences to
Cauchy sequences. !

EXAMPLE 3.4.7. The open interval and the real line are homeomorphic but
not uniformly equivalent because one is bounded and the other is not.

EXERCISE 3.4.1. Prove that an open half–line is not not uniformly equivalent
to either whole line or an open interval.

DEFINITION 3.4.8. Metric spaces are Hölder equivalent if there there exists a
homeomorphism between the spaces which is Hölder together with its inverse.

Metric spaces are Lipschitz equivalent if there exists a biLipschitz homeomor-
phism between the spaces.

EXAMPLE 3.4.9. Consider the standard middle–third Cantor set C and the
subset C1 of [0, 1] obtained by a similar procedure but with taking away at every
step the open interval in the middle of one half of the length. These two sets are
Hólder equivalent but not Lipschitz equivalent.

EXERCISE 3.4.2. Find a Hölder homeomorphism with Hölder inverse in the
previous example.

As usual, it is easier to prove existence of an equivalence that absence of one.
For the latter one needs to produce an invariant of Lipschitz equivalence calculate
it for two sets and show that the values (which do not have to be numbers but
may be mathematical objects of another kind) are different. On this occasion one
can use asymptotics of the minimal number of ε-balls needed to cover the set as
ε → 0. Such notions are called capacities and are related to the important notion
of Hausdorff dimension which, unlike the topological dimension, is not invariant
under homeomorphisms. See ??.

EXERCISE 3.4.3. Prove that the identity map of the product space is biLIps-
chitz homeomorphism between the space provided with the maximal metric and
with any lp metric.

EXAMPLE 3.4.10. The unit square (open or closed) is Lipschitz equivalent to
the unit disc (respectively open or closed), but not isometric to it.
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EXERCISE 3.4.4. Consider the unit circle with the metric induced from the R2

and the unit circle with the angular metric. Prove that these two metric spaces are
Lipschitz equivalent but not isometric.

3.5. Role of metrics in geometry and topology

3.5.1. Elementary geometry. The study of metric spaces with a given met-
ric belongs to the realm of geometry. The natural equivalence relation here is the
strongest one, mentioned above, the isometry. Recall that the classical (or “ele-
mentary”) Euclidean geometry deals with properties of simple objects in the plane
or in the three-dimensional space invariant under isometries, or, according to some
interpretations, under a larger class of similarity transformations since the abso-
lute unit of length is not fixed in the Euclidean geometry (unlike the prototype
non-Euclidean geometry, the hyperbolic one!).

Isometries tend to be rather rigid: recall that in the Euclidean plane an isom-
etry is uniquely determined by images of three points (not on a line) , and in the
Euclidean space by the images of four (not in a plane), and those images cannot be
arbitrary.

EXERCISE 3.5.1. Prove that an isometry of Rn with the standard Euclidean
metric is uniquely determined by images of any points x1, . . . , xn+1 such that the
vectors xk − x1, k = 2, . . . , n + 1 are linearly independent.

3.5.2. Riemannian geometry. The most important and most central for math-
ematics and physics generalization of Euclidean geometry is Riemannian geome-
try. Its objects are manifolds (in fact, differentiable or smooth manifolds which
are defined and discussed in Chapter 4) with an extra structure of a Riemannian
metric which defines Euclidean geometry (distances and angles) infinitesimally at
each point, and the length of curves is obtained by integration. A smooth mani-
folds with a fixed Riemannian metric is called a Riemannian manifold. While we
will wait till Section 13.2 for a systematic introduction to Riemannian geometry,
instances of it have already appeared, e.g. the metric on the standard embedded
sphere Sn ⊂ Rn+1 where the distance is measured along the great circles, (and is
not induced fromRn+1), its projection toRP (n), and projection of Euclidean met-
ric inRn to the torus Tn. More general and more interesting classes of Riemannian
manifolds will continue to pop up along the way, e.g. in ?? and ??.

EXERCISE 3.5.2. Prove that in the spherical geometry the sum of angels of a
triangle whose sides are arcs of great circles is always greater than π

3.5.3. More general metric geometries. Riemannian geometry is the richest
and the most important but by no means only and not the most general way met-
ric spaces appear in geometry. While Riemannian geometry, at least classically,
has been inspired mostly by analytic methods of classical geometries (Euclidean,
spherical and suchlike) there are other more contemporary directions which to a
large extent are developing the synthetic methods of classical geometric reasoning;
an outstanding example is the geometry of Aleksandrov spaces.
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EXERCISE 3.5.3. Let a > 0 and denote by Ca the surface of the cone in R3

given by the conditions a2z2 = x2 + y2, z ≥ 0. Call a curve in Ca a line segment
if it is the shortest curve between its endpoints. Find all line segments in Ca.

3.5.4. Metric as a background and a base for Lipschitz structure. The
most classical extensions of Euclidean geometry dealt (with the exception of spher-
ical geometry) not with other metrics spaces but with geometric structures more
general that Euclidean metric, such as affine and projective structures. To this one
should add conformal structure which if of central importance for complex analy-
sis. In all these geometries metrics appear in an auxiliary role such as the metric
from Example 3.1.5 on real projective spaces.

EXERCISE 3.5.4. Prove that there is no metric on the projective line RP (1)
generating the standard topology which is invariant under projective transforma-
tions.

EXERCISE 3.5.5. Prove that there is no metric in R2 generating the standard
topology and invariant under all area preserving affine transformations, i.e trans-
formations of the form x 0→ Ax+ b where A is a matrix with determinanat±1 and
b is a vector.

The role played by metrics in the principal branches of topology, algebraic and
differential topology, is somewhat similar. Most spaces studied in those disciplines
are metrizable; especially in the case of differential topology which studies smooth
manifolds and various derivative objects, fixing a Riemannian metric on the man-
ifold is very useful. It allows to bring precise measurements into the picture and
provides various function spaces associated with the manifold such as spaces of
smooth functions or differential forms, with the structure of a Banach space. But
the choice of metric is usually arbitrary and only in the special cases, when the ob-
jects of study possess many symmetries, a particular choice of metric sheds much
light on the core topological questions.

One should also point out that in the study of non-compact topological spaces
and group actions on such spaces often a natural class of biLipschitz equivalent
metrics appear. The study of such structures has gained importance over last two
decades.

3.6. Separation properties and metrizability

As we have seen any metric topology is first countable (Proposition 3.1.2) and
normal ( Theorem 3.1.3). Conversely, it is natural to ask under what conditions a
topological space has a metric space structure compatible with its topology.

A topological space is said to be metrizable if there exists a metric on it that
induces the given topology. The following theorem gives necessary and sufficient
conditions for metrizability for second countable topological spaces. Theorem 9.10 from Bredon.

THEOREM 3.6.1. [Urysohn Metrization Theorem]
A normal space with a countable base for the topology is metrizable.
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PROOF. ++++++++++++++++++++++++++ !

Theorem 3.6.1 and Proposition 1.5.4 imply

COROLLARY 3.6.2. Any compact Hausdorff space with a countable base is
metrizable.

Example: normal first
countable not metrizable?

3.7. Compact metric spaces

3.7.1. Sequential compactness.

PROPOSITION 3.7.1. Any compact metric space is complete.

PROOF. Suppose the opposite, that is, X is a compact metric space and a
Cauchy sequence xn, n = 1, 2, . . . does not converge. By taking a subsebuence
if necessary we may assume that all points xn are different. The union of the
elements of the sequence is closed since the sequence does not converge. Let

On := X \
∞⋃

i=n

{xn}.

These sets form an open cover of X but since they are increasing there is no
finite subcover. !

DEFINITION 3.7.2. Given r > 0 a subset A of a metric space X is called an
r-net if for any x ∈ X there is a ∈ A such that the distance d(x, a). Equivalently
r-balls around the points of A cover X .

A set A ⊂ X is called r-separated if the distance between any two different
points in A is greater than r.

The following observation is very useful in the especially for quantifying the
notion of compactness.

PROPOSITION 3.7.3. Any maximal r-separated set is an r-net.

PROOF. If A is r-separated and is not an r-net then there is a point x ∈ X at a
distance ≥ r from every point of A Hence the set A ∪ {x} is r-separated !

PROPOSITION 3.7.4. The following properties of a metric space X are equiv-
alent

(1) X is compact;
(2) for any ε > 0 X contains a finite ε-net, or, equivalently, any r-separated

set for any r > 0 is finite;
(3) every sequence contains a congerving subsequence.
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PROOF. (1)→ (2). If X is compact than the cover of X by all balls of radius
ε contains a finite subcover; centers of those balls form a finite ε-net.

(2)→ (3) By Proposition 3.7.1 it is sufficient to show that every sequence has
a Cauchy subsequence. Take a sequence xn, n = 1, 2, . . . and consider a finite
1-net. There is a ball of radius 1 which contains infinitely many elements of the
sequence. Consider only these elements as a subsequence. Take a finite 1/2-net and
find a subsequence which lies in a single ball of radius 1/2. Continuing by induction
we find nested subsequences of the original sequence which lie in balls of radius
1/2n. Using the standard diagonal process we construct a Cauchy subsequence.

(3)→ (1). Let us first show that the space must be separable. This implies that
any cover contains a countable subcover since the space has countable base. If the
space is not separable than there exists an ε > 0 such that for any countable (and
hence finite) collection of points there is a point at the distance greater than ε from
all of them. This allows to construct by induction an infinite sequence of points
which are pairwise more than ε apart. Such a sequence obviously does not contain
a converging subsequence.

Now assume there is an open countable cover {O1,O2, . . . } without a finite
subcover. Take the union of the first n elements of the cover and a point xn out-
side of the union. The sequence xn, n = 1, 2, . . . thus defined has a converging
subsequence xnk → x. But x belong to a certain element of the cover, say ON .
Then for a sufficinetly large k, nk > N hence xnk /∈ ON , a contradiction to
convergence. !

An immediate corollary of the proof is the following.

PROPOSITION 3.7.5. Any compact metric space is separable.

Aside from establishing equivalence of compactness and sequential compact-
ness for metric spaces Proposition 3.7.4 contains a very useful criterion of com-
pactness in the form of property (2). Right away it gives a necessary and sufficient
condition for a (in general incomplete) metric space to have compact completion.
As we see it later in Section 3.7.5 it is also a starting point for developing qualitative
notions related to the “size” of a metric space.

DEFINITION 3.7.6. A metric space (X, d) is totally bounded if it contains a
finite ε-net for any ε > 0, or, equivalently if any r-separates subset of X for any
r > 0 is finite.

Since both completion and any subset of a totally bounded space are totally
bounded Proposition 3.7.4 immediately implies

COROLLARY 3.7.7. Completion of a metric space is compact if and only if the
space is totally bounded.

EXERCISE 3.7.1. Prove that an isometric embedding of a compact metric
space into itself is an isometry.
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3.7.2. Lebesgue number.

PROPOSITION 3.7.8. For an open cover of a compact metric space there exists
a number δ such that every δ-ball is contained in an element of the cover.

PROOF. Suppose the opposite. Then there exists a cover and a sequence of
points xn such that the ball B(xn, 1/2n) does not belong to any element of the
cover. Take a converging subsequence xnk → x. Since the point x is covered by
an open set, a ball of radius r > 0 around x belongs to that element. But for k large
enough d(x, xnk) < r/2 and hence by the triangle inequality the ball B(xnk , r/2)
lies in the same element of the cover. !

The largest such number is called the Lebesgue number of the cover.

3.7.3. Characterization of Cantor sets.

THEOREM 3.7.9. Any perfect compact totally disconnected metric space X is
homeomorphic to the Cantor set.

PROOF. Any point x ∈ X is contained in a set of arbitrally small diameter
which is both closed and open. For x is the intersection of all sets which are open
and closed and contain x. Take a cover of X \ X by sets which are closed and
open and do not contain x Adding the ball B(x, ε) one obtains a cover ofX which
has a finite subcover. Union of elements of this subcover other than B(x, ε) is a set
which is still open and closed and whose complement is contained in B(x, ε).

Now consider a cover of the space by sets of diameter≤ 1which are closed and
open. Take a finite subcover. Since any finite intersection of such sets is still both
closed an open by taking all possible intersection we obtain a partition of the space
into finitely many closed and open sets of diameter ≤ 1. Since the space is perfect
no element of this partition is a point so a further division is possible. Repeating
this procedure for each set in the cover by covering it by sets of diameter≤ 1/2 we
obtain a finer partition into closed and open sets of of diameter ≤ 1/2. Proceeding
by induction we obtain a nested sequence of finite partitions into closed and open
sets of positive diameter ≤ 1/2n, n = 0, 1, 2, . . . . Proceeding as in the proof
of Proposition 1.7.5, that is, mapping elements of each partition inside a nested
sequence of contracting intervals, we constuct a homeomorphism of the space onto
a nowhere dense perfect subset of [0, 1] and hence by Proposition 1.7.5 our space
is homeomorphic to the Cantor set. !

3.7.4. Universality of the Hilbert cube. Theorem 3.2.6 means that Cantor
set is in some sense a minimal nontrivial compact metrizable space. Now we will
find a maximal one.

THEOREM 3.7.10. Any compact separable metric space X is homeomorphic
to a closed subset of the Hilbert cube H .
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PROOF. First by multiplying the metric by a constant if nesessary we may
assume that the diameter of X is less that 1. Pick a dense sequence of points
x1, x2 . . . in X . Let F : X → H be defined by

F (x) = (d(x, x1), d(x, x2), . . . ).

This map is injective since for any two distict points x and x′ one can find n
such that d(x, xn) < (1/2)d(x′, xn) so that by the triangle inequality d(x, xn) <
d(x′, xn) and hence F (x) += F (x′). By Proposition 1.5.11 F (X) ⊂ H is compact
and by Proposition 1.5.13 F is a homeomorphism between X and F (X). !

EXERCISE 3.7.2. Prove that the infinite-dimensioanl torus T∞, the product of
the countably many copies of the unit circle, has the same universality property as
the Hilbert cube, that is, any compact separable metric space X is homeomorphic
to a closed subset of T∞.

3.7.5. Capacity and box dimension. For a compact metric space there is a
notion of the “size” or capacity inspired by the notion of volume. Suppose X
is a compact space with metric d. Then a set E ⊂ X is said to be r-dense if
X ⊂

⋃
x∈E Bd(x, r), where Bd(x, r) is the r-ball with respect to d around x (see

??). Define the r-capacity of (X, d) to be the minimal cardinality Sd(r) of an
r-dense set.

For example, if X = [0, 1] with the usual metric, then Sd(r) is approximately
1/2r because it takes over 1/2r balls (that is, intervals) to cover a unit length,
and the 22 + 1/2r3-balls centered at ir(2 − r), 0 ≤ i ≤ 21 + 1/2r3 suffice.
As another example, if X = [0, 1]2 is the unit square, then Sd(r) is roughly r−2

because it takes at least 1/πr2 r-balls to cover a unit area, and, on the other hand,
the (1 + 1/r)2-balls centered at points (ir, jr) provide a cover. Likewise, for the
unit cube (1 + 1/r)3, r-balls suffice.

In the case of the ternary Cantor set with the usual metric we have Sd(3−i) =
2i if we cheat a little and use closed balls for simplicity; otherwise, we could use
Sd((3− 1/i)−i) = 2i with honest open balls.

One interesting aspect of capacity is the relation between its dependence on r
[that is, with which power of r the capacity Sd(r) increases] and dimension.

If X = [0, 1], then

lim
r→0

− log Sd(r)
log r

≥ lim
r→0

− log(1/2r)
log r

= lim
r→0

log 2 + log r

log r
= 1

and

lim
r→0

− log Sd(r)
log r

≤ lim
r→0

− log22 + 1/2r3
log r

≤ lim − log(1/r)
log r

= 1,

so limr→0− log Sd(r)/ log r = 1 = dim X . If X = [0, 1]2, then

lim
r→0

− log Sd(r)/ log r = 2 = dim X,
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and if X = [0, 1]3, then
lim
r→0

− log Sd(r)/ log r = 3 = dim X.

This suggests that limr→0− log Sd(r)/ log r defines a notion of dimension.

DEFINITION 3.7.11. IfX is a totally bounded metric space (Definition 3.7.6),
then

bdim(X) := lim
r→0

− log Sd(r)
log r

is called the box dimension of X .

Let us test this notion on a less straightforward example. If C is the ternary
Cantor set, then

bdim(C) = lim
r→0

− log Sd(r)
log r

= lim
n→∞

− log 2i

log 3−i
=

log 2
log 3

.

If Cα is constructed by deleting a middle interval of relative length 1 − (2/α)
at each stage, then bdim(Cα) = log 2/ log α. This increases to 1 as α → 2
(deleting ever smaller intervals), and it decreases to 0 as α → ∞ (deleting ever
larger intervals). Thus we get a small box dimension if in the Cantor construction
the size of the remaining intervals decreases rapidly with each iteration.

This illustrates, by the way, that the box dimension of a set may change under
a homeomorphism, because these Cantor sets are pairwise homeomorphic. Box
dimension and an associated but more subtle notion of Hausdorff dimension are
the prime exhibits in the panoply of “fractal dimensions”, the notion surrounded
by a certain mystery (or mystique) at least for laymen. In the next section we will
present simple calculations which shed light on this notion.

3.8. Metric spaces with symmetries and self-similarities

3.8.1. Euclidean space as an ideal geometric object and some of its close
relatives. An outstanding, one may even say, the central, feature of Euclidean ge-
ometry, is an abundance of isometries in the Euclidean space. Not only there is
isometry which maps any given point to any other point (e.g. the parallel transla-
tion by the vector connecting those points) but there are also isometries which inter-
change any given pair of points, e.g the central symmetry with respect to the mid-
point of the interval connecting those points, or the reflection in the (hyper)plane
perpendicular to that interval at the midpoint. The latter property distinguishes a
very important class of Riemannian manifolds, called symmetric spaces. The next
obvious examples of symmetric space after the Euclidean spaces are spheres Sn

with the standard metric where the distance is measure along the shorter arcs of
great circles. Notice that the metric induced from the embedding of Sn as the unit
sphere into Rn+1 also possesses all there isometries but the metric is not a Rieman-
ninan metric, i.e. the distance cannot be calculated as the minimum of lengths of
curves connecting two points, and thus this metric is much less interesting.

EXERCISE 3.8.1. How many isometries are there that interchange two points
x, y ∈ Rn for different values of n?
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EXERCISE 3.8.2. How many isometries are there that interchange two points
x, y ∈ Sn for different values of n and for different configurations of points?

EXERCISE 3.8.3. Prove that the real projective space RP (n) with the metric
inherited from the sphere (??) is a symmetric space.

EXERCISE 3.8.4. Prove that the torus Tn is with the metric inherited from Rn

a symmetric space.

There is yet another remarkable property of Euclidean spaces which is not
shared by other symmetric spaces: existence of similarities, i.e. transformations
which preserve angles and changes all distances with the same coefficient of pro-
portionality. It is interesting to point out that in the long quest to “prove” Euclid’s
fifth postulate, i.e. to deduce it from other axioms of Euclidean geometry, one
among many equivalent formulations of the famous postulate is existence of a sin-
gle pair of similar but not equal ( not isometric) triangles. In the non-Euclidean
hyperbolic geometry which results from adding the negation of the fifth postulates
there no similar triangles and instead there is absolute unit of length! Inciden-
tally the hyperbolic plane (as well as its higher-dimensional counterparts) is also a
symmetric space. Existence of required symmetries can be deduced synthetically
form the axioms common to Euclidean and non-Euclidean geometry, i.e. it belong
s to so-called absolute geometry, the body of statement which can be proven in
Euclidean geometry without the use of fifth postulate.

Metric spaces for which there exists a self-map which changes all distance with
the same coefficient of proportionality different from one are called self-similar.

Obviously in a compact globally self-similar space which contain more one
point the coefficient of proportionality for any similarity transformation must be
less than one and such a transformation cannot be bijective; for non-compact spaces
this is possible however.

3.8.2. Metrics on the Cantor set with symmetries and self-similarities.
There is an interesting example of a similarity on the middle-third Cantor set,
namely, f0 : [0, 1] → [0, 1], f0(x) = x/3. Since f0 is a contraction, it is also
a contraction on every invariant subset, and in particular on the Cantor set. The
unique fixed point is obviously 0. There is another contraction with the same con-
traction coefficient 1/3 preserving the Cantor set, namely f1(x) = x+2

3 with fixed
point 1. Images of these two contractions are disjoint and together they cover the
whole Cantor set

EXERCISE 3.8.5. Prove that any similarity of the middle third Cantor set be-
longs to the semigroup generated by f0 and f1.

EXERCISE 3.8.6. Find infinitely many different self-similar Cantor sets on
[0, 1] which contain both endpoints 0 and 1.
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FIGURE 3.8.1. Sierpinski carpet and Sierpinski gasket.

FIGURE 3.8.2. The Koch snowflake.

3.8.3. Other Self-Similar Sets. Let us describe some other interesting self-
similar metric spaces that are of a different form. The Sierpinski carpet (see ??) is
obtained from the unit square by removing the “middle-ninth” square (1/3, 2/3)×
(1/3, 2/3), then removing from each square (i/3, i + 1/3) × (j/3, j + 1/3) its
“middle ninth,” and so on. This construction can easily be described in terms of
ternary expansion in a way that immediately suggests higher-dimensional analogs.

Another very symmetric construction begins with an equilateral triangle with
the bottom side horizontal, say, and divide it into four congruent equilateral tri-
angles of which the central one has a horizontal top side. Then one deletes this
central triangle and continues this construction on the remaining three triangles. he
resulting set is sometimes called Sierpinski gasket.

The von Koch snowflake is obtained from an equilateral triangle by erecting
on each side an equilateral triangle whose base is the middle third of that side
and continuing this process iteratively with the sides of the resulting polygon It is
attributed to Helge von Koch (1904).

A three-dimensional variant of the Sierpinski carpet S is the Sierpinski sponge
or Menger curve defined by {(x, y, z) ∈ [0, 1]3 (x, y) ∈ S, (x, z) ∈ S (y, z) ∈
S}. It is obtained from the solid unit cube by punching a 1/3-square hole through
the center from each direction, then punching, in each coordinate direction, eight
1/9-square holes through in the right places, and so on. Both Sierpinski carper and
Menger curve have important universality properties which we do not discuss in
this book.

Let as calculate the box dimension of these new examples. For the square
Sierpinski carpet we can cheat as in the capacity calculation for the ternary Cantor
set and use closed balls (sharing their center with one of the small remaining cubes
at a certain stage) for covers. Then Sd(3−i/

√
2) = 8i and

bdim(S) = lim
n→∞

− log 8i

log 3−i/
√

2
=

log 8
log 3

=
3 log 2
log 3

,

which is three times that of the ternary Cantor set (but still less than 2, of course).
For the triangular Sierpinski gasket we similarly get box dimension log 3/ log 2.

The Koch snowflake K has Sd(3−i) = 4i by covering it with (closed) balls
centered at the edges of the ith polygon. Thus

bdim(K) = lim
n→∞

− log 4i

log 3−i
=

log 4
log 3

=
2 log 2
log 3

,

which is less than that of the Sierpinski carpet, corresponding to the fact that the
iterates look much “thinner”. Notice that this dimension exceeds 1, however, so it is
larger than the dimension of a curve. All of these examples have (box) dimension
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that is not an integer, that is, fractional or “fractal”. This has motivated calling such
sets fractals.

Notice a transparent connection between the box dimension and coefficients of
self-similarity on all self-similar examples.

3.9. Spaces of continuous maps

IfX is a compact metrizable topological space (for example, a compact mani-
fold), then the spaceC(X, X) of continuous maps ofX into itself possesses theC0

or uniform topology. It arises by fixing a metric ρ inX and defining the distance d
between f, g ∈ C(X, X) by

d(f, g) := max
x∈X

ρ(f(x), g(x)).

The subset Hom(X) of C(X, X) of homeomorphisms of X is neither open nor
closed in the C0 topology. It possesses, however, a natural topology as a complete
metric space induced by the metric

dH(f, g) := max(d(f, g), d(f−1, g−1)).

IfX is σ-compact we introduce the compact–open topologies for maps and home-
omorphisms, that is, the topologies of uniform convergence on compact sets.

We sometimes use the fact that equicontinuity gives some compactness of a
family of continuous functions in the uniform topology.

THEOREM 3.9.1 (Arzelá–Ascoli Theorem). Let X , Y be metric spaces, X
separable, and F an equicontinuous family of maps. If {fi}i∈N ⊂ F such that
{fi(x)}i∈N has compact closure for every x ∈ X then there is a subsequence
converging uniformly on compact sets to a function f .

Thus in particular a closed bounded equicontinuous family of maps on a com-
pact space is compact in the uniform topology (induced by the maximum norm).

Let us sketch the proof. First use the fact that {fi(x)}i∈N has compact clo-
sure for every point x of a countable dense subset S of X . A diagonal argument
shows that there is a subsequence fik which converges at every point of S. Now
equicontinuity can be used to show that for every point x ∈ X the sequence fik(x)
is Cauchy, hence convergent (since {fi(x)}i∈N has compact, hence complete, clo-
sure). Using equicontinuity again yields continuity of the pointwise limit. Finally
a pointwise convergent equicontinuous sequence converges uniformly on compact
sets. elaborate

EXERCISE 3.9.1. Prove that the set of Lipschitz real-valued functions on a
compact metric space X with a fixed Lipschitz constant and bounded in absolute
value by another constant is compact in C(x, R).

EXERCISE 3.9.2. Is the closure in C([0, 1], R) (which is usually denoted sim-
ply by C([0, 1])) of the set of all differentiable functions which derivative bounded
by 1 in absolute value and taking value 0 at 1/2 compact?
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3.10. Spaces of closed subsets of a compact metric space

3.10.1. Hausdorff distance: definition and compactness. An interesting con-
struction in the theory of compact metric spaces is that of the Hausdorff metric:

DEFINITION 3.10.1. If (X, d) is a compact metric space and K(X) denotes
the collection of closed subsets of X , then the Hausdorff metric dH on K(X) is
defined by

dH(A,B) := sup
a∈A

d(a,B) + sup
b∈B

d(b, A),

where d(x, Y ) := infy∈Y d(x, y) for Y ⊂ X .

Notice that dH is symmetric by construction and is zero if and only if the two
sets coincide (here we use that these sets are closed, and hence compact, so the
“sup” are actually “max”). Checking the triangle inequality requires a little ex-
tra work. To show that dH(A,B) ≤ dH(A,C) + dH(C,B), note that d(a, b) ≤
d(a, c) + d(c, b) for a ∈ A, b ∈ B, c ∈ C, so taking the infimum over b we get
d(a,B) ≤ d(a, c) + d(c,B) for a ∈ A, c ∈ C. Therefore, d(a,B) ≤ d(a,C) +
supc∈C d(c,B) and supa∈A d(a,B) ≤ supa∈A d(a,C) + supc∈C d(c,B). Like-
wise, one gets supb∈B d(b, A) ≤ supb∈B d(b, C) + supc∈C d(c, A). Adding the
last two inequalities gives the triangle inequality.

PROPOSITION 3.10.2. The Hausdorff metric on the closed subsets of a com-
pact metric space defines a compact topology.

PROOF. We need to verify total boundedness and completeness. Pick a finite
ε/2-net N . Any closed set A ⊂ X is covered by a union of ε-balls centered
at points of N , and the closure of the union of these has Hausdorff distance at
most ε from A. Since there are only finitely many such sets, we have shown that
this metric is totally bounded. To show that it is complete, consider a Cauchy
sequence (with respect to the Hausdorff metric) of closed sets An ⊂ X . If we let
A :=

⋂
k∈N

⋃
n≥k An, then one can easily check that d(An, A) → 0. !

EXERCISE 3.10.1. Prove that for the Cantor set C the space K(C) is homeo-
morphic to C.

EXERCISE 3.10.2. Prove thatK([0, 1]) contains a subset homeomorphic to the
Hilbert cube.

3.10.2. Existence of a minimal set for a continuous map. Any homeomor-
phism of a compact metric space X induces a natural homeomorphism of the col-
lection of closed subsets ofX with the Hausdorff metric, so we have the following:

PROPOSITION 3.10.3. The set of closed invariant sets of a homeomorphism f
of a compact metric space is a closed set with respect to the Hausdorff metric.

PROOF. This is just the set of fixed points of the induced homeomorphism;
hence it is closed. !



3.10. SPACES OF CLOSED SUBSETS OF A COMPACT METRIC SPACE 97

We will now give a nice application of the Hausdorff metric. Brouwer fixed
point Theorem (Theorem 2.5.1 and Theorem 9.3.7) does not extend to continuous
maps of even very nice spaces other than the disc. The simplest example of a
continuous map (in fact a self–homeomorphism) which does not have have fixed
points is a rotation of the circle; if the angle of rotation is a rational multiple of π
all points are periodic with the same period; otherwise there are no periodic points.
However, there is a nice generalization which works for any compact Hausdorff
spaces. An obvious property of a fixed or periodic point for a continuous map is its
minimality: it is an invariant closed set which has no invariant subsets.

DEFINITION 3.10.4. An invariant closed subsetA of a continuous map f : X →
X is minimal if there are no nonempty closed f -invariant subsets of A.

THEOREM 3.10.5. Any continuous map f of a compact Hausdorff space X
with a countable base into itself has an invariant minimal set.

PROOF. By Corollary 3.6.2 the spaceX is metrizable. Fix a metric d onX and
consider the Hausdorff metric on the spaceK(X) of all closed subsets ofX . Since
any closed subset A of X is compact (Proposition 1.5.2) f(A) is also compact
(Proposition 1.5.11) and hence closed (Corollary 3.6.2). Thus f naturally induces
a map f∗ : K(X) → K(X) by setting f∗(A) = f(A). A direct calculation shows
that the map f∗ is continuous in the topology induced by the Hausdorff metric.
Closed f -invariant subsets of X are fixed points of f∗. The set of all such sets
is closed, hence compact subset I(f) of K(X). Consider for each B ∈ I(f) all
A ∈ I(f) such that A ⊂ B. Such A form a closed, hence compact, subset IB(f).
Hence the function on IB(f) defined by dH(A,B) reaches its maximum, which
we denote bym(B), on a certain f -invariant setM ⊂ B.

Notice that the functionm(B) is also continuous in the topology of Hausdorff
metric. Hence it reaches its minimumm0 on a certain set N . Ifm0 = 0, the set N
is a minimal set. Now assume thatm0 > 0.

Take the set M ⊂ B such that dH(M,B) = m(B) ≥ m0. Inside M one
can find an invariant subset M1 such that dH(M1,M) ≥ m0. Notice that since
M1 ⊂ M, dH(M1, B) ≥ dH(M,B) = m(B) ≥ m0.

Continuing by induction we obtain an infinite sequence of nested closed in-
variant sets B ⊃ M ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ . . . such that the Hausdorff
distance between any two of those sets is at leastm0. This contradicts compactness
ofK(X) in the topology generated by the Hausdorff metric. !

EXERCISE 3.10.3. Give detailed proofs of the claims used in the proof of The-
orem 3.10.5:

• the map f∗ : K(X) → K(X) is continuous;
• the functionm(·) is continuous;
• dH(Mi,Mj) ≥ m0 for i, j = 1, 2, . . . ; i += j.
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EXERCISE 3.10.4. For every natural number n give an example of a homeo-
morphism of a compact path connected topological space which has no fixed points
and has exactly n minimal sets.

3.11. Uniform structures

3.11.1. Definitions and basic properties. Themain difference between a met-
ric topology and an even otherwise very good topology defined abstractly is the
possibility to choose “small” neighborhoods for all points in the space simultane-
ously; we mean of course fixing an (arbitrary small) positive number r and taking
balls B(x, r) for all x. The notion of uniform structure is a formalization of such a
possibility without metric (which is not always possible under the axioms below)

3.11.2. Uniform structure associated with compact topology.

3.12. Topological groups

In this section we introduce groups which carry a topology invariant under
the group operations. A topological group is a group endowed with a topology
with respect to which all left translations Lg0 : g 0→ g0g and right translations
Rg0 : g 0→ gg0 as well as g 0→ g−1 are homeomorphisms. Familiar examples are
Rn with the additive structure as well as the circle or, more generally, the n-torus,
where translations are clearly diffeomorphisms, as is x 0→ −x.

3.13. Problems

EXERCISE 3.13.1. Prove that every metric space is homeomorphic to a bounded
space.

EXERCISE 3.13.2. Prove that in a compact setA in metric spaceX there exists
a pair or points x, y ∈ A such that d(x, y) = diam A.

EXERCISE 3.13.3. Suppose a function d : X×X → R satisfies conditions (2)
and (3) of Definition 3.1.1 but not (1). Find a natural way to modify this function
so that the modified function becomes a metric.

EXERCISE 3.13.4. Let S be a smooth surface inR3, i.e. it may be a non-critical
level of a smooth real-valued function, or a closed subset locally given as a graph
when one coordinate is a smooth function of two others. S carries two metrics: (i)
induced from R3 as a subset of a metric space, and (ii) the natural internal distance
given by the minimal length of curves in S connecting two points.

Prove that if these two metrics coincide then S is a plane.

EXERCISE 3.13.5. Introduce a metric d on the Cantor set C (generating the
Cantor set topology) such that (C, d) cannot be isometrically embedded to Rn for
any n.
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EXERCISE 3.13.6. Introduce a metric d on the Cantor set C such that (C, d) is
not Lipschitz equivalent to a subset of Rn for any n.

EXERCISE 3.13.7. Prove that the set of functions which are not Hölder con-
tinuous at any point is a residual subset of C([0, 1]).

EXERCISE 3.13.8. Let f : [0, 1]R2 be α-Höder with α > 1/2. Prove that
f([0, 1)] is nowhere dense.

EXERCISE 3.13.9. Find a generalization of the previous statement for the maps
of them-dimensional cube Im to Rn withm < n.

EXERCISE 3.13.10. Prove existence of 1/2-Hölder surjective map f : [0, 1] →
I2. (Such a map is usually called a Peano curve).

EXERCISE 3.13.11. Prove that any connected topological manifold is metriz-
able. check!

EXERCISE 3.13.12. Find a Riemannian metric on the complex projective space
CP (n) which makes it a symmetric space.

EXERCISE 3.13.13. Prove that Sn is not self-similar.



CHAPTER 4

REAL AND COMPLEX SMOOTHMANIFOLDS

The notion of smooth or differentiable manifold is one of the central concepts
of modern mathematics and its applications, and is also of fundamental importance
in theoretical mechanics and physics. Roughly speaking, a smooth manifold is a
topological space which may have a complicated global structure, but locally is
like Euclidean space, i.e. it is a topological manifold as in Section 1.8 (it possesses
“local coordinates”), with the transition from one system of local coordinates to a
neighboring one being ensured by smooth functions. The fact that the transition
functions are smooth allows the use of the whole machinery of the multivariable
differential and integral calculus, which interacts very efficiently with geometric
and topological tools in that setting.

This chapter is only a first introduction to real (and complex) smooth mani-
folds. We will return to this topic in Chapter 10, where, after having further devel-
oped some of these tools, in particular homology theory, we will have a glance at
deep connections between algebraic and differential topology.

4.1. Differentiable manifolds, smooth maps and diffeomorphisms

4.1.1. Definitions.

DEFINITION 4.1.1. A Hausdorff topological space M with countable base is
said to be an n-dimensional differentiable (or smooth) manifold if it is covered
by a family A = {(Uα, hα)}α∈A of open sets Uα called charts and supplied with
homeomorphisms into Rn,

⋃

α

Uα = M, hα : Uα → Rn

(the index set A may be finite, countable or uncountable) that satisfy the compati-
bility condition: for any two charts (U1, h1) and (U2, h2) inAwith hi : Ui → Bi ⊂
Rn the coordinate change h2 ◦ h−1

1 (also sometimes called transition function) is
differentiable on h1(U1 ∩ U2) ⊂ B1.

Here “differentiable” can be taken to mean Cr for any r ∈ N∪∞, or analytic.
A collection of such charts covering M is called an atlas of M . Any atlas defines
a unique maximal atlas obtained by taking all charts compatible with the present
ones. A maximal atlas is called a differentiable (or smooth) structure.

DEFINITION 4.1.2. A smooth or differentiable map of one smooth manifold
to another is a map f : M → N which is expressed by differentiable functions in
the local coordinates of any chart. More precisely, for any charts (U, h), U ( x

101
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h2 ◦ h1 ∈ C∞

U1

U2

h1

h2

Rn

R2

FIGURE 4.1.1. Definition of a smooth manifold

and (V, k), V ( f(x), the map k ◦ f ◦ h−1 is a differentiable map of one domain
of Euclidean space into another.

In view of the compatibility condition, in order to check the smoothness of a
map f : M → N it suffices to check that it is smooth on any cover ofM by charts
and not on all charts of the maximal atlas.

DEFINITION 4.1.3. A diffeomorphism between smooth manifolds is a bijective
smooth map with smooth inverse.

Obviously, any diffeomorphism is a homeomorphism,

EXERCISE 4.1.1. Give an example of a homeomorphism which is not a dif-
feomorphism.

The notion of diffeomorphism provides the natural concept of isomorphism of
the smooth structures of manifolds: diffeomorphic manifolds are undistinguishable
as differentiable manifolds. 1

REMARK 4.1.4. In the definition above the local model for a differentiable
manifold is Rn with its differentiable structure. It follows form the definition that
any manifold diffeomorphic to Rn may serve as an alternative model. Two useful
special cases are an open ball in Rn and the open unit disc (0, 1)n. This follows
from the fact that all those models are diffeomorphic smooth manifolds, see Exer-
cise 4.1.2 and Exercise 4.1.3.

The Inverse Function Theorem from multi-variable calculus provides the fol-
lowing criterion which can be checked on most occasions.

PROPOSITION 4.1.5. A map f : M → N between differentiable manifolds is a
diffeomorphism if and only if (i) it is bijective and (ii) there exists atlases A and B
for the differentiable structures inM andN correspondingly such that for any x ∈
M there exist (U, h) ∈ A, x ∈ U with h(x) = p ∈ Rn and (V, k) ∈ B, f(x) ∈ V
such that det A )= 0 where A the matrix of partial derivatives of h−1 ◦ f ◦ k at p.

1However, the same manifold may have different representations which, for example, may carry
different geometric structures.
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PROOF. Necessity follows directly from the definition.
To prove sufficiency first notice that by the chain rule for the coordinate changes

in Rn condition (ii) is independent from a choice of (U, h) and (V, k) from the
maximal atlases providing x ∈ U and f(x) ∈ V .

The Inverse Function Theorem guarantees that h−1 ◦f ◦k is a diffeomorphism
between a sufficiently small ball around p and its image. Taking such balls and
their images for covers of M and N correspondingly we see that both f and f−1

are smooth. !

PROPOSITION 4.1.6. LetM be a differentiable manifold, A ⊂ M an open set.
Then A has a natural structure of differentiable manifold compatible with that for
M .

PROOF. Let x ∈ A ant let (U, h) be an element of the atlas for M such that
x ∈ U . Then since A is open so is h(U ∩ A ⊂ Rn. Hence there is an open ball
B ⊂ U ∩A centered at h(x). let V := h−1(B) and h′ be the restriction of h to V .
By Remark 4.1.4 pairs (V, h′) obtained this way from various points x ∈ A form
an atlas compatible with the differentiable structure onM . !

Smooth manifolds constitute a category, whose morphisms are appropriately
called smooth (or differentiable) maps. An important class of smooth maps of a
fixed manifold is the class of its maps to R, or smooth functions. We will see
that smooth functions form an R-algebra from which the manifold can be entirely
reconstructed.

A real-valued function f : M → R on a smooth manifoldM is called smooth
(or differentaible) if on each chart (U, h) the composition f ◦h−1 is a differentiable
function from Rn to R. Using the compatibility condition, it is easy to verify that
it suffices to check differentiability for any set of charts covering M (rather than
for all charts of its maximal atlas). maybe we should do this at

least once?The set of all smooth functions onM will be denoted by C∞(M) (or Cn(M),
n ∈ N, depending on the differentiability class under consideration).

One of the remarkable mathematical discoveries of the mid-twentieth century
was the realization that a topological manifold can have more than one differen-
tiable structure: even the sphere (e.g. in dimension 7) can have several different
smooth structures. Further, certain topological manifolds have no smooth structure
compatible with their topology. These delicate questions will not be discussed in
this course.

4.1.2. First examples.

EXAMPLE 4.1.7. Rn is a smooth manifold with an atlas consisting of a single
chart: the identity of Rn.

Any open subset of Rn is also an n-dimensional differentiable manifold by
Proposition 4.1.6. However, it may not be diffeomorphic to Rn and hence in gen-
eral would not possess an atlas with single chart.



104 4. REAL AND COMPLEX SMOOTH MANIFOLDS

EXAMPLE 4.1.8. An interesting specific example of this kind is obtained by
viewing the linear space of n × n matrices as Rn2 . The condition det A )= 0 then
defines an open set, hence a manifold (of dimension n2), which is familiar as the
general linear group GL(n, R) of invertible n× n matrices.

EXERCISE 4.1.2. Construct an explicit diffeomorphism between Rn and the
open unit ball Bn.

EXERCISE 4.1.3. Prove that any convex open set in Rn is diffeomorphic to
Rn.this exercise is better turned

into a proposition; at least it
requires an extensive hint

EXAMPLE 4.1.9. The standard sphere S2 ⊂ R3 is a differentiable manifold.
As charts modeled on the open ball one can take six appropriately chosen parallel
projections of hemispheres to the coordinate planes. More economically, one gets
a cover by two charts modeled on R2 by the two stereographic projections of the
sphere from its north and south poles. As a forward reference we notice that if
R2 is identified with C the latter method also provides S2 with the structure of
one-demansional complex manifold (see Section 4.9.1).

EXAMPLE 4.1.10. The embedded torus

T2 =
{

(x, y, z) ∈ R3 :
(√

x2 + y2 − 2
)2

+ z2 = 1
}

can be covered by overlapping pieces of parametrized surfaces
W ( (u, v) ,→

(
x(u, v), y(u.v), z(u, v)

)
∈ U ⊂ T2

whose inverses U → W (see the figure) constitute an atlas of T2, so it has the
structure of a two-dimensional smooth manifold.

FIGURE ??? Chart on the embedded torus

EXERCISE 4.1.4. Using the square with identified opposite sides as the model
of the torus, construct a smooth atlas of the torus with four charts homeomorphic
to the open disk.

EXERCISE 4.1.5. Construct a smooth atlas of the projective space RP (3) with
as few charts as possible.
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EXAMPLE 4.1.11. The surface of a regular tetrahedron can be endowed with
the structure of a two-dimensional smooth manifold by embedding it into 3-space,
projecting it from its center of gravityG onto a 2-sphere of large radius centered at
G, and pulling back the charts of the sphere to the surface.

Intuitively, there is something unnatural about this smooth structure, because
the embedded tetrahedron has “corners”, which are not “smooth” in the everyday
sense. We will see below that a rigorous definition corresponds to this intuitive feel-
ing: the embedded tetrahedron is not a “submanifold” of R3 (see Definition 4.2.1).

4.1.3. Manifolds defined by equations. Joint level sets of smooth functions
into R or Rm corresponding to regular values are an interesting general class of
manifolds. This is the most classical source of examples of manifolds.

Charts are provided by the implicit function theorem. Due to importance of
this method we will give a detailed exposition here.

THEOREM 4.1.12 (Implicit Function Theorem). Let O ⊂ Rn × Rm be open
and f : O → Rn a Cr map. If there is a point (a, b) ∈ O such that f(a, b) = 0
and D1f(a, b) is invertible then there are open neighborhoods U ⊂ O of (a, b),
V ⊂ Rm of b such that for every y ∈ V there exists a unique x =: g(y) ∈
Rn with (x, y) ∈ U and f(x, y) = 0. Furthermore g is Cr and Dg(b) =
−(D1f(a, b))−1D2f(a, b).

Proof of this theorem can be found in ??.
Examples are the sphere in Rn (which is the level set of one function, e.g.

F (x, y, z) = x2 + y2 + z2, for which 1 is a regular value) and the special linear
group SL(n, R) of n × n matrices with unit determinant. Viewing the space of
n×nmatrices asRn2 , we obtain SL(n, R) as the manifold defined by the equation
det A = 1. One can check that 1 is a regular value for the determinant. Thus this
is a manifold defined by one equation.

4.2. Principal constructions

Now we will look at how the notion of smooth manifold behaves with respect
to the basic constructions. This will provide as with two principal methods of
constructing smooth manifolds other than directly describing an atlas: embeddings
as submanifolds, and projections into factor-spaces.

4.2.1. Submanifolds. In the case of a topological or a metric space, any sub-
set automatically acquires the corresponding structure (induced topology or met-
ric). For smooth manifolds, the situation is more delicate: arbitrary subsets of a
smooth manifold do not necessarily inherit a differentiable structure from the am-
bient manifold. The following definition provides a natural generalization of the
notion described in the previous subsection.

DEFINITION 4.2.1. A submanifold V of M (of dimension k ≤ n) is a differ-
entiable manifold that is a subset ofM such that the maximal atlas forM contains
charts {(U, h)} for which the restrictions h"U∩V

map U ∩ V to Rk × {0} ⊂ Rn

define charts for V compatible with the differentiable structure of V .
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EXAMPLE 4.2.2. An open subset of a differentiable manifold M with the in-
duced atlas as described in Proposition 4.1.6 is a submanifold of dimension n.

EXAMPLE 4.2.3. Let C be simple closed polygonal curve in R2 and let h :
C → S1 be a homeomorphism; then C acquires a smooth structure (via the at-
las Ah, the pullback by h of the standard atlas of S1). The curve C with this
smooth structure is not a submanifold of the smooth manifold R2 (because of the
“corners”). The same can be said of the tetrahedron embedded in 3-space, see
Exercise 4.1.11.

EXERCISE 4.2.1. Prove that the n-dimensional torus in R2n:

x2
2k−1 + x2

2k =
1
n

, k = 1, . . . , n

is a smooth submanifold of the (2n− 1)-dimensional sphere
2n∑

i=1

x2
i = 1.

EXERCISE 4.2.2. Prove that the upper half of the cone

x2 + y2 = z2, z ≥ 0

is not a submanifold of R3, while the punctured one

x2 + y2 = z2, z > 0

is a submanifold of R3.

Conversely, every smooth n-manifold can be viewed as a submanifold of RN

for a large enough N (see Theorem 4.5.1 and ??).

4.2.2. Direct products. The Cartesian product of two smooth manifolds M
andN of dimensionsm and n automatically acquires the structure of an (n + m)–
dimensional manifold in the following (natural) way. In the topological spaceM×
N , consider the atlas consisting of the products Ui × Vj of all pairs of charts ofM
and N with the natural local coordinates

lij := hi × kj : Ui × Vj → Rm+n.

It is easy to see that these charts are compatible and constitute an atlas ofM ×N .

EXERCISE 4.2.3. Show that the smooth structure obtained on the torus T2 =
S1×S1 in the above way coincides with that induced from the standard embedding
of the torus in 3-space.
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4.2.3. Quotient spaces. Identification spaces can also be smooth manifolds,
for example, the unit circle viewed as R/Z, the torus as Rn/Zn, or compact factors
of the hyperbolic plane ??.properly discontinuous actions

by diffeomorphisms (discrete);
examples with continuous
fibers (implicit function)

Note that, conversely, given a covering map of a smooth manifold, its smooth
structure always lifts to a smooth structure of the covering space.

EXERCISE 4.2.4. Prove that the following three smooth structures on the torus
T2 are equivalent, i.e. the torus provided with any of these structure is diffeomor-
phic to the one provided with another:

• T2 = S1 × S1 with the product structure;
• T2 = R2/Z2 with the factor-structure;
• The embedded torus of revolution in R3

T2 =
{

(x, y, z) ∈ R3 :
(√

x2 + y2 − 2
)2

+ z2 = 1
}

with the submanifold structure.

4.3. Orientability and degree

4.3.1. Orientation and orientability.

4.3.2. Easy part of Sard theorem.

4.3.3. Degree for maps of compact orientable manifolds.

4.3.4. Calculation of πn(Sn).

4.4. Paracompactness and partition of unity

An important result for analysis on manifolds is the fact that (using our as-
sumption of second countability, that is, that there is a countable base for the topol-
ogy) every smooth manifold admits a partition of unity (used below, in particular,
to define the volume element of a manifold), which is defined as follows.

DEFINITION 4.4.1. A partition of unity subordinate to a cover {Ui} of a smooth
manifold M is a collection of continuous real-valued functions ϕi : M → [0, 1]
such that

• the collection of functions ϕi is locally finite, i.e., any point x ∈ M has a
neighborhood V which intersects only a finite number of sets supp(ϕi) (recall that
the support of a function is the closure of the set of points at which it takes nonzero
values);

•
∑

i ϕi(x) = 1 for any x ∈ M ;
• supp(ϕ) ⊂ Ui for all i.

PROPOSITION 4.4.2. For any locally finite cover of a smooth manifold M ,
there exists a partition of unity subordinate to this cover.
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PROOF. Define the functions gi : M → [0, 2−i] by setting if we need a SMOOTH
partition of unity, I can give

another proofgi := min{d(x,M \ Ui, 2−i},
where d(· , ·) denotes the distance between a point and a set and {Ui} is the given
cover ofM . Then we have gi(x) > 0 for x ∈ Ui and gi(x) = 0 for x /∈ Ui. Further
define

G(x) := lim
N→∞

GN (x) = lim
N→∞

N∑

i=1

fi(x).

Since {Ui} is a cover, it follows that G(x) > 0 for all x ∈ M .
Now put

fi(x) := max
{

gi(x)− 1
3
G(x), 0

}
.

It is then easy to see that supp(fi) ⊂ Ui, and, since the cover {Ui} is locally finite,
so is the system of functions {fi}.

Now let us show that

F (x) :=
∞∑

i=1

fi(x) > 0 for allx ∈ M,

i.e., for any x ∈ M there is an i for which fi(x) > 0. We do know that gj(x > 0)
for some j and gn(x) < 2−n, hence supj∈N gj(x) = gi0(x) for a certain i0 such
that gi0 > 0. The definition of the function G(x) implies

G(x) =
∞∑

j=0

2−jgj(x) ≤
∞∑

j=0

2−jgi0(x) = 2gi0 .

Therefore
fi0(x) ≥ gi0(x)− 2gi0(x)

3
=

gi0(x)
3

> 0.

Now we can define the required partition of unity by setting

ϕ(x) := fi(x)/F (x).

The proof of the facts that the ϕi are continuous, form a locally finite family, and
add up to 1 at any point x ∈ M is a straightforward verification that we leave to
the reader. !

A topological spaceX is called paracompact if a locally finite open cover can
be inscribed in in any open cover of X .

PROPOSITION 4.4.3. Any smooth manifold M is paracompact.

PROOF. Let {Ui} be an open cover ofM , which we assume countable without
loss of generality. Then the interiors of the supports of the functions ϕi obtained
by the construction (which does not use the local finiteness of the covering {Ui})
in the proof of the previous proposition will form a locally finite open cover ofM
subordinated to {Ui}. !
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COROLLARY 4.4.4. Any smooth manifold possesses a locally finite cover with
a partition of unity subordinate to it.

4.5. Embedding into Euclidean space

In this section we will prove that any compact differentiable manifold is dif-
feomorphic to a submanifold of a Euclidean space of a sufficiently high dimension.

THEOREM 4.5.1. Any smooth compact manifold Mn can be smoothly embed-
ded in Euclidean space RN for sufficiently large N .

Why only compact here? This
is true for any manifold

PROOF. Since the manifold Mn is compact, it possesses a finite family of
charts fi : Ui → Rn, i = 1, . . . , k, such that

(1) the sets fi(Ui) are open balls of radius 2 centered at the origin of Rn;
(2) the inverse images (denoted Vi) by fi of the unit balls centered at the origin

of Rn coverMn.
We will now construct a smooth “cut off” function λ : Rn → R such that

λ(x) =

{
1 for ‖y‖ ≤ 1,

0 for ‖y‖ ≥ 2,

and 0 < λ(y) < 1 for 1 < ‖y‖ < 2. To do this, we first consider the function

α(x) :=

{
0 for ‖x‖ ≤ 0,

e−1/x for ‖x‖ > 0,

and then put β(t) := α(x − 1)α(2 − x); the function β is positive on the open
interval (1, 2). Finally, we define

γ(τ) :=
( ∫ 2

τ
β(t)dt

)/( ∫ 2

1
β(t)dt

)

and put λ(y) := γ(‖y‖). This function obviously satisfies the conditions listed
above.

We set λi(x) := λ(fi(x)) (see the figure).

FIGURE ??? The cut off function λi

Now let us consider the map h : Mn → R(n+1)k given by the formula

x ,→
(
λ1(x), λ1(x)f1(x), . . . , λk(x), λk(x)fk(x)

)
.
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The map h is one-to-one. Indeed, let x1, x2 ∈ Mn. Then x1 belongs to Vi for
some i, and two cases are possible: x2 ∈ Vi and x2 /∈ Vi. In the first case, we have
λi(x1) = λi(x2) = 1, and therefore the relation

λi(x1)fi(x1) = λi(x2)fi(x2)

is equivalent to fi(x1) = fi(x2) and so x1 = x2. In the second case (when
x2 /∈ Vi), we have λi(x1) = 1 while λi(x2) < 1, and so h(x1) )= h(x2).

Now the restriction of the map x ,→ λi(x)fi(x) to Ui is an immersion (i.e., at
any point its Jacobian is of rank n), because the inclusion x ∈ Ui implies λi(x) =
1), while the map x ,→ fi(x) is a local diffeomorphism. Hence the map h is also
an immersion.

But we know (see ??) that any one-to-one map of a compact space into a
Hausdorff space (in our case h : MnR(n+1)k) is a homeomorphism onto its image.
Thus h is a smooth embedding into R(n+1)k. !

4.6. Derivatives and the tangent bundle

4.6.1. Derivations as classes of curves. Recall that the derivative of a func-
tion f : Rn → R in the direction of a vector v = (v1, . . . , vn) is defined in calculus
courses as

Dv(f) := v1
∂f

∂x1
+ · · · + vn

∂f

∂xn
.

Derivations form a linear space of dimension nwhose canonical basis is constituted
by the partial derivatives

∂

∂x1
, . . . ,

∂

∂xn
.

In order to give a similar definition of the derivative of a function on a smooth
manifold, we must, first of all, define what we mean by the direction along which
we differentiate. We will do this by defining tangent vectors as equivalence classes
of curves. The underlying intuitive consideration is that curves passing through
a point are viewed as trajectories, two curves being regarded as equivalent if the
“velocity of motion” at the chosen point is the same.

DEFINITION 4.6.1. Let M be a C∞ manifold and p ∈ M . Consider curves
c : (a, b) → M , where a < 0 < b, c(0) = p such that h ◦ c is differentiable at 0 for
one (hence any) chart (U, h) with p ∈ U . Each such curve c passing through the
point p assigns to each function f ∈ C∞(M) the real number

Dc,p(f) :=
d

dt

(
f(c(t)

)∣∣
t=0

,

the derivative of f at p along c. Two curves c′ and c′′ are called equivalent if in
some chart (U, h) (and hence, by compatibility, in all charts) containing p, we have

d

dt

(
h(c′(t)

)∣∣
t=0

=
d

dt

(
h(c′′(t)

)∣∣
t=0

.

An equivalence class of curves at the point p is called a tangent vector to M at
p and denoted by v = v(c), where c is any curve in the equivalence class. The
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derivative of f in the direction of the vector v can now be (correctly!) defined by
the formula

Dv,p(f) :=
d

dt

(
f(c(t)

)∣∣
t=0

, for any c ∈ v.

The space of all the derivations at p (i.e., equivalence classes of curves at p)
obtained in this way, has a linear space structure (since each derivation is a real-
valued function) which turns out to have dimension n. It is called the tangent space
at p ofM and denoted TpM .
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FIGURE 4.6.1. Tangent spaces to a manifold

Given a specific chart (U, h), we define the standard basis
∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

of TpM by taking the canonical basis {e1, . . . , en} of Rn and setting
∂

∂xi

∣∣∣
p
(f) :=

d

dt

(
f(ci(t)

)∣∣∣
t=0

, where ci(t) = h−1(h(p) + tei)

for all i = 1, . . . , n.

4.6.2. Derivations as linear operators. Another intrinsic way of defining
derivatives, more algebraic than the geometric approach described in the previous
subsection, is to define them by means of linear operators satisfying the Leibnitz
rule.

DEFINITION 4.6.2. Let p be a point of a smooth manifold M . A derivation
of C∞(M) at the point p is a linear functional D : C∞(M) → R satisfying the
Leibnitz rule, i.e.,

D(f · g) = Df · g(p) + f(p) · Dg.

The derivations at p (in this sense) obviously constitute a linear space. If we choose
a fixed chart (U, h) with coordinates (x1, . . . , xn) containing p, then we can deter-
mine a basis (∂1, . . . , ∂n) of this space by setting

D1(f) :=
∂

∂x1
(h ◦ f)

∣∣∣
f(p)

, . . . , Dn(f) :=
∂

∂x2
(h ◦ f)

∣∣∣
f(p)

;

here ∂/∂xi denotes the usual partial derivative in the target space Rn of our chart
h.
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EXERCISE 4.6.1. Prove that the linear space of derivations can be identified
with the tangent space Tp(M) defined in the previous subsection, so that the deriva-
tions defined above are nothing but tangent vectors and the basis {Di} can be iden-
tified with the basis {(∂/∂xi)|p}.

REMARK 4.6.3. Note that the definition of derivation given in this subsection
yields a purely algebraic approach to the differential calculus on smooth manifolds:
none of the classical tools of analysis (e.g. limits, continuity via the ε−δ language,
infinite series, etc.) are involved.

4.6.3. The tangent bundle. We define the tangent bundle of M to be the
disjoint union

TM :=
⋃

p∈m

TpM

of the tangent spaces with the canonical projection π : TM → M given by π(TpM) =
{p}. Any chart (U, h) ofM then induces a chart

(
U ×

⋃

p∈U

TpU,H
)
, where H(p, v) := (h(p), (v1, . . . , vn)) ∈ Rn × Rn;

here the vi are the coefficients of v ∈ TpM with respect to the basis
{ ∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

}

of TpM . In this way TM is a differentiable manifold (of dimension 2) itself.
A vector field is a map X : M → TM such that π ◦ X = IdM , that is, X

assigns to each p a tangent vector at p. We denote by Γ(M) the space of smooth
vector fields on M , i.e., vector fields defined by a smooth map of the manifold M
to the manifold TM . Thus smooth vector fields determine operators (that we will
sometimes denote by DX ) on C∞(M) by acting on functions via derivations, i.e.,
DX(f) := X(p)(f).

We shall see later that £vw := [v, w] := vw − wv also acts on functions by
derivations, that is, as a vector field, and we call [v, w] the Lie bracket of v and w
and £v the Lie derivative .

4.7. Smooth maps and the tangent bundle

As we already noted, smooth manifolds, like any other self-respecting mathe-
matical objects, form a category: we defined their morphisms (called smooth maps)
and their “isomorphisms” (called diffeomorphisms) at the beginning of the present
chapter. We now return to these notions and look at them from the perspective of
tangent bundles.
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4.7.1. Main definitions. We now define the morphisms of the differentiable
structure.

DEFINITION 4.7.1. Let M and N be differentiable manifolds. Recall that a
map f : M → N is said to be smooth if for any charts (U, h) of M and (V, g) of
N the map g ◦ f ◦ h−1 is differentiable on h(U ∩ f−1(V )).

A smooth map f acts on derivations by sending curves c : (a, b) → M to
f ◦c : (a, b) → N . Differentiability means that curves inducing the same derivation
have images inducing the same derivation. Thus we define the differential of f to
be the map

Df : TM =
⋃

p∈M

TpM → TN =
⋃

q∈N

TqN

that takes each vector v ∈ TpM determined by a curve c to the vector w ∈ Tf(p)

given by the curve f ◦ c. It is easy to deduce from the definition of equivalence
of curves (see ??) that the definition of w does not depend on the choice of curve
c ∈ v. The restriction of Df to TpM (which takes TpM to Tf(p)N ) is denoted by
Df

∣∣
p
.
A diffeomorphism is a differentiable map with differentiable inverse. Twoman-

ifolds M,N are said to be diffeomorphic or diffeomorphically equivalent if and
only if there is a diffeomorphism M → N . An embeddingof a manifold M in
a manifold N is a diffeomorphism f : M → V of M onto a submanifold V of
N . We often abuse terminology and refer to an embedding of an open subset of
M into N as a (local) diffeomorphism as well. An immersion of a manifold M
into a manifold N is a differentiable map f : M → V onto a subset of N whose
differential is injective everywhere.

4.7.2. Examples. Smooth maps must be compatible, in a sense, with the dif-
ferentiable structure of the source and target manifolds. As we shall see, not all
naturally defined maps (e.g. some projections) have this property.

EXAMPLE 4.7.2. The orthogonal projection on the (x, y)-plane of the standard
unit sphere x2 + y2 + z2 = 1 is not a smooth map.

Further, even injectively immersed manifolds may fail to be smooth submani-
folds.

EXAMPLE 4.7.3. Choose a point on the standard embedding of the torus T2

and consider a curve passing through that point and winding around T2 with ir-
rational slope (forming the same irrational angle at all its intersections with the
parallels of the torus). In that way, we obtain a (dense) embedding of R into T2,
which is a smooth map locally, but is not a smooth map of R to T2.

Clearly, diffeomorphic manifolds are homeomorphic. The converse is, how-
ever, not true. As we mentioned above, there are “exotic” spheres and other mani-
folds whose smooth structure is not diffeomorphic to the usual smooth structure.
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α is irrational
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FIGURE 4.7.1. Dense embedded trajectory on the torus

EXAMPLE 4.7.4. In the space R9 with coordinates (x1, . . . , x9), consider the
cone C given by

x7
1 + 3x4

7x
3
2 + x6

5x6 = 0
and take the intersection of C with the standard unit 8-sphere S8 ⊂ R9. The
intersection Σ := C ∩S8 is clearly homeomorphic to the 7-sphere. It turns out that
Σ with the smooth structure induced on from R9 is not diffeomorphic to S7 with
the standard smooth structure. (The proof of this fact lies beyond the scope of the
present book.)

4.8. Manifolds with boundary

The notion of real smooth manifold with boundary is a generalization of the
notion of real smooth manifold obtained by adding the half-space

Rn
+ := {(x1, . . . , xn ∈ Rn |xn ≥ 0}

to Rn as the possible target space of the charts (Ui, hi); we must also appropriately
modify the compatibility condition: we now require that, whenever Ur ∩ Us )= ∅,
there must exist two mutually inverse diffeomorphisms ϕr,s and ϕs,r of open sets
in Rn whose restrictions are hr ◦ h−1

s and hs ◦ h−1
r . (The necessity of such a

version of the compatibility condition is in that smooth maps are defined only on
open subsets of Rn, whereas an open set in Rn

+, e.g. hi(Ui), may be non open in
Rn.)

If M is a smooth manifold with boundary, then it has two types of points: the
interior points (those contained in only in those charts (Ui, hi) for which Ui ⊂ M
is open) and the boundary points (those not contained in any such charts). It seems
obvious that the boundary ∂M of a manifold with boundary (i.e., the set of its
boundary points) coincides with the set

⋃

j

h−1
j ((x1, . . . , xn−1, 0)),

where the intersection is taken over only those hj whose target space is Rn
+. How-

ever, this fact is rather nontrivial, and we state it as a lemma.
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LEMMA 4.8.1. The two definitions of boundary point of a manifold with bound-
ary coincide.

PROOF. We need to prove that any point contained in an open chart Ui cannot
be mapped by hi to a boundary point (x1, . . . , xn−1, 0) ∈ Rn

+. This can be done
by using the inverse function theorem. We omit the details. !

Sometimes, in order to stress that someM is an ordinary manifold (not a man-
ifold with boundary), we will say thatM is a “manifold without boundary”. It may
happen that the set of boundary points of a manifold with boundary M is empty.
In that case, all the charts of its maximal atlas targeted to Rn

+ are in fact redundant;
deleting them, we obtain a smooth manifold without boundary.

PROPOSITION 4.8.2. The set of boundary points ∂M of a manifold with bound-
ary has the natural structure of a smooth (n − 1)-dimensional manifold (without
boundary).

PROOF. An atlas for ∂M is obtained by taking the restrictions of the charts hi

to the sets h−1
i (hi(Ui) ∩ Rn

+). !

4.9. Complex manifolds

4.9.1. Main definitions and examples. Complex manifolds are defined quite
similarly to real smooth manifolds by considering charts with values in Cn instead
of Rn and requiring the coordinate changes between charts to be holomorphic.
Since holomorphic maps are much more rigid that differentiable maps, the result-
ing theory differs from the one above in several aspects. For example the one–
dimensional complex manifolds (Riemann surfaces) is a much richer subject than
one- and even two-dimensional differentiable manifolds.

Complex manifolds form a category, the natural notion of morphism ϕ : M →
N being defined similarily to that of smooth map for their real counterparts, except
that the maps k ◦ ϕh−1 (where h and k are charts in M and N ) must now be
holomorphic rather than differentiable.

In this course, we do not go deeply into the theory of complex manifolds,
limiting our study to some illustrative examples.

EXAMPLE 4.9.1. The Riemann sphere, C ∪ {∞}, which is homeomorphic to
S2, becomes a one–dimensional complex manifold by considering an atlas of two
charts (C, Id) and (C ∪ {∞} \ {0}, I), where

I(z) =

{
1/z if z ∈ C
0 if z = ∞

.

EXERCISE 4.9.1. Identify R2 with C and define the torus T2 as the quotient
space C/Z2.
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EXERCISE 4.9.2. Describe a complex atlas for the complex projective space
CPn.

EXERCISE 4.9.3. Describe a complex atlas for the group U(n) of unitary ma-
trices

4.9.2. Riemann surfaces. An attractive showcase of examples of complex
manifolds comes from complex algebraic curves (or Riemann surfaces, as they
are also called), which are defined as zero sets of complex polynomials of two
variables in the space C2.

More precisely, consider the algebraic equation
(4.9.1) p(z, w) := a0(z)wn + a1(z)wn−1 + · · · + an(z) = 0, a0(z) )= 0,

where the ai(z) are polynomials in the complex variable z ∈ C with complex
coefficients and w = w(z) is an unknown complex-valued function.

Already in the simplest cases (e.g. for w2−z = 0), this equation does not have
a univalent analytic solution w : C → C defined for all z ∈ C. However, as Rie-
mann noticed, such a solution exists provided we replace the domain of definition
of the solution by an appropriately chosen surface that we will now define.

To do this, it will be convenient to replace C by its natural compactification
C̄ := C ∪ {∞}, the Riemann sphere, which is of course homeomorphic to the
ordinary sphere S2). We now regard equation (4.5.1.) as given on C̄× C̄ and define
the corresponding Riemann surface Sp as the set of zeros of this equation, i.e., as

Sp :=
{
(z, w) ∈ C̄× C̄ | p(z, w) = 0

}
.

Now the projection (given by the assignment (z, w) ,→ w) of Sp on the second
factor of the product C̄ × C̄ is by definition univalent, so that on the Riemann
surface Sp equation (4.5.1.) defines a single-valued function w = w(z).

It is of course difficult to visualize Riemann surfaces, which are two-dimensional
objects embedded in a four-dimensional manifold homeomorphic to S2 × S2, but
we will see that there is an effective geometric construction that, given p(z, w),
specifies the topological structure of Sp.

We will now consider several examples of this construction.
EXAMPLE 4.9.2. Consider the equation

p(z) := w2 − z = 0.

Obviously, there are two values of w that satisfy this equation for a fixed (nonzero)
value of z = reϕ, namelyw1 = +

√
r eiϕ/2 andw2 = −

√
r eiϕ/2. These determine

the two “sheets” of the solution; when we go around the origin of the z-plane, we
“jump” from one sheet to the other. Let us cut the z-plane along the real axis,
or more precisely cut the Riemann sphere C̄ along the arc arc of the great circle
joining the points 0 and ∞. Take another copy of C̄ (which will be the second
sheet of our Riemann surface), make the same cut joining 0 and ∞, and identify
the “shores” of the cuts (see the figure below).

Thus we see that the Riemann surface of the equation under consideration is
the sphere.
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FIGURE 4.9.1. The Riemann surface of a polynomial linear in z

EXERCISE 4.9.4. Show that the Riemann surface of the quadratic equation

w2 − (z − a1)(z − a2) = 0,

where a1 and a2 are distinct complex numbers, is the sphere §2b .

EXAMPLE 4.9.3. Consider the cubic equation

q(z, w) := w2 − (z − a1)(z − a2)(z − a3) = 0,

where a1, a2, a3 are distinct complex numbers. This function also has two sheets,
but the passage from one sheet to the other is more complicated than in the previous
example: if we circle around one of the points a1, a2, a3, or∞, we pass from one
sheet to the other, if we circle around any two of them, we stay on the same sheet,
if we circle around three, we switch sheets again. To obstruct these switches, we
perform cuts along the arcs a1a2 and a3∞ on two copies of the Riemann sphere
and glue the two copies along the shores of the cuts. The construction is shown on
the figure.

The result will clearly be homeomorphic to the torus.

EXERCISE 4.9.5. Find a polynomial whose zero set is a complex curve home-
omorphic to the sphere with two handles.
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FIGURE 4.9.2. The Riemann surface of a polynomial cubic in z

4.10. Lie groups: first examples

DEFINITION 4.10.1. An n-dimensional Lie group is an n-dimensional smooth
manifoldGwith a group operation such that the product mapG×G → G : (x, y) ,→
xy and the inverse map G → G : x ,→ x−1 are differentiable.

Lie groupsG andH are isomorphic is there exists a group isomorphism i : G →
H which is at the same time a diffeomorphism between smooth manifolds.

A Lie subgroup of a Lie group G is a smooth submanifold H of G which is
also a subgroup. 2

Lie groups form one of the most important and interesting classes of smooth
manifolds. Here we discuss few examples of the classical Lie groups and mention

2In fact, any closed subgroup of a Lie group is a Lie subgroup. This is one of the fundamental
results of the Lie group theory which is used quite often. Its proof is far from elementary.
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some of their properties. More systematic study of Lie groups in their connection
to geometry and topology will be presented in Chapter 11.

Notice that any groups with discrete topology is a zero-dimensional Lie group.
Direct product of Lie groups also has natural Lie group structure. Thus in the
structural theory of Lie groups interest in concentrated primarily on connected Lie
groups. However discrete subgroups of connected Lie groups are of great interest.

Abelian Lie groups have rather simple structure. First, Rn with addition as
the group operation is a Lie group. All its closed subgroups and factor-groups
by closed subgroups are also Lie groups. Proofs of those facts will be given in
Chapter 11. Now we consider natural examples.

EXAMPLE 4.10.2. Any linear subspace of Rn is a Lie subgroup isomorphic to
Rk for some k < n.

The integer lattice Zk ⊂ Rk ⊂ Rn is a discrete subgroup and the factor group
Rn/Zk is isomorphic to Tk × Rn−k and is a Lie group. In particular the torus
Tn = Rn/Zn is a compact connected abelian Lie group.

EXERCISE 4.10.1. Prove that the groupC∗ of non-zero complex numbers with
multiplication as group operation is isomorphic to R× S1.

The group GL(n, R) is the group of all invertible n × n matrices with dif-
ferentiable structure inherited from its representation as the open subset of Rn2

determined by the condition det A )= 0 as in Example 4.1.8. Those groups play
in the theory of Lie groups role somewhat similar to that played by the Euclidean
spaces in the theory of differentiable manifolds. Many manifolds naturally appear
as submanifolds of Rn and many more are diffeomorphic to submanifolds of Rn

(see Theorem 4.5.1). The situation with Lie groups is similar. Most Lie groups nat-
urally appear as Lie subgroups of GL(n, R); such groups are called linear groups.

EXAMPLE 4.10.3. The orthogonal group O(n) consists of all matrices A sat-
isfying AAt = Id. Here the superscript t indicates transposition. It consists of two
connected components according to the value of the determinant: +1 or -1. The
former is also a group which is usually called the special orthogonal group and is
denoted by SO(n).

EXERCISE 4.10.2. Prove that SO(2) is isomorphic to S1.

EXERCISE 4.10.3. Prove that O(n) consist of matrices which represent all
isometries of the Euclidean space Rn fixing the origin, or, equivalently, all isome-
tries of the the unit sphere S2 ⊂ R3.

Many geometric structures naturally give rise to Lie groups, namely groups of
transformations preserving the structure. In the example above the structure was
the standard symmetric Riemannian metric on the sphere with O(n) as the group
of isometries. An even more basic example is given by GL(n, R), the group of
automorphisms of Rn, the structure being that of linear space.

However, one needs to be cautious: this happens if for the group of transforma-
tions preserving the structure is finite–dimensional. For example, if one considers
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Rn as a smooth manifold its automorphism group, the group of all diffeomor-
phisms, is not a Lie group.

EXERCISE 4.10.4. Identify isometries of the Euclidean plane with certain 3×3
matrices and prove that they form a linear group. Calculate its dimension.

For representation of groups of Euclidean isometries and affine transformations
as linear groups see Exercise 4.11.14 and Exercise 4.11.15.

Notice that projective structure does not give as much new it terms of its group
of automorphisms: projective transformations ofRP (n) are simply linear transfor-
mations of Rn+1. However, scalar matrices act identically on RP (n) so the group
of projective transformations is not simply GL(n + 1, R) but its factor group.

If n is even and hence n + 1 is odd one can find unique transformation with
determinant one in each equivalence class, simply my multiplying all elements of
a given matrix by the (n + 1) root of its determinant. hence in this case the group
of projective transformations is isomorphic to SL(n + 1, R).

If n is odd the above procedure only works for matrices with positive deter-
minant but it still leaves one non-identity matrix acting as identity, namely − Id
which has determinant one in this case. On the other hand, matrices with nega-
tive determinant can be reduced to those with determinant -1, again with a similar
identification. Thus the group of projective transformations in this case has a factor
goup of index two which is isomorphic to PSL(n+1, R):=SL(n+1, R)/{± Id}.

EXAMPLE 4.10.4. The groupGL(n, C) of invertible n×nmatrices with com-
plex entries is a Lie group since it is an open subset det A )= 0 in the space of all
n× n complex matrices which is isomorphic to R2n2 .

It is also a linear group since every complex number a + bi can be identified

with 2× 2 real matrix
(

a b
−b a

)
and any n× n complex matrix can be associated

with an 2n × 2n real matrix by substituting each matrix element with the corre-
sponding 2×2matrix. This correspondence preserves addition and multiplication.

Its Lie subgroup SL(n, C) consists of matrices with determinant one.

The group GL(n, C) can be interpreted as the group of linear automorphisms
of R2n preserving and extra structure which in complex form corresponds to the
multiplication of all coordinates of a vector by i.

EXAMPLE 4.10.5. The groupU(n) appears as groups of transformations of the
space Cn preserving the Hermitian product

∑n
i=1 ziw̄i for z = (z1, . . . , zn), w =

(w1, . . . , wn). It is embedded into GL(n, C) as the Lie subgroup of matrices A
such that AA∗ Id. Here A∗ is the matrix conjugate to A: its (i, j) matrix element
is equal to the complex conjugate to the (j, i) element of A.

EXAMPLE 4.10.6. The symplectic group of 2n × 2n consists of matrices A
satisfying

AJAt = J, where J =
(

0 Id
− Id 0

)
,



4.11. PROBLEMS 121

4.11. Problems

The next exercises are examples of smooth manifolds. Many examples of
manifolds are given by configuration and phase spaces of mechanical systems.
One can think of the configuration space of a mechanical system as a topologi-
cal space whose points are different “positions” of the system, and neighborhoods
are “nearby” positions (i.e., positions that can be obtained from the given one by
motions of “length” smaller than a fixed number). The phase space of a mechani-
cal system moving in time is obtained from its configuration space by supplying it
with all possible velocity vectors.

EXERCISE 4.11.1. Describe the configuration space of the mechanical system
consisting of a rod rotating in space about a fixed hinge at its extremity. What
configuration space is obtained if the hinge is fixed at the midpoint of the rod?

EXERCISE 4.11.2. The double pendulum consists of two rods AB and CD
moving in a vertical plane, connected by a hinge joining the extremities B and C,
while the extremityA is fixed by a hinge in that plane. Find the configuration space
of this mechanical system.

EXERCISE 4.11.3. On a round billiard table, a pointlike ball moves with uni-
form velocity, bouncing off the edge of the table according to the law saying that
the angle of incidence is equal to the angle of reflection. Find the phase space of
this system.

EXERCISE 4.11.4. Show that the configuration space of an asymetric solid
rotating about a fixed hinge in 3-space is RP 3.

EXERCISE 4.11.5. In R9 consider the set of points satisfying the following
system of algebraic equations:

x2
1 + x2

2 + x2
3 = 1; x1x4 + x2x5 + x3x6 = 0;

x2
4 + x2

5 + x2
6 = 1; x1x7 + x2x8 + x3x9 = 0;

x2
1 + x2

8 + x2
9 = 1; x4x7 + x5x8 + x6x9 = 0.

Show that this set is a smooth 3-dimensional submanifold of R9 and describe it.
(Solution sets of systems of algebraic equations are not necessarily smooth mani-
folds: they may have singularities.)

EXERCISE 4.11.6. Show that the topological spaces obtained by identifying
diametrically opposed points of the 3-sphere S3 and by identifying diametrically
opposed boundary points of the 3-disk

D3 :=
{
(x1, x2, x3) ∈ R3 |x2

1 + x2
2 + x2

3 ≤ 1
}

have a natural smooth manifold structure and are homeomorphic to each other.

EXERCISE 4.11.7. Seven rods of length 1 in the plane are joined end to end by
hinges, and the two “free” ends are fixed to the plane by hinges at the distance 6.5
from each other. Find the configuration space of this mechanical system.
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EXERCISE 4.11.8. Five rods of length 1 in the plane are joined end to end by
hinges, and the two “free” ends are fixed to the plane by hinges at the distance 1
from each other. Find the configuration space of this mechanical system.

EXERCISE 4.11.9. Prove that the groupO(2) of orthogonal transformations of
the plane is not isomorphic to S1 × C2.define standard notation for

cyclic groups

EXERCISE 4.11.10. Prove that the Lie group SO(3) is diffeomorphic to the
real projective space RP (3).

EXERCISE 4.11.11. Prove that the Lie group SU(2) is diffeomorphic to the
sphere S3.

EXERCISE 4.11.12. Represent the torus Tn as a linear group.

EXERCISE 4.11.13. What is the minimal value ofm such thatTn is isomorphic
to a Lie subgroup of GL(m, R)?

EXERCISE 4.11.14. Prove that the group of Euclidean isometries of of Rn is
isomorphic to a Lie subgroup of GL(n + 1, R). Calculate its dimension.

EXERCISE 4.11.15. Prove that the group of affine transformations of Rn is
isomorphic to a Lie subgroup of GL(n + 1, R). Calculate its dimension.



CHAPTER 5

TOPOLOGY AND GEOMETRY OF SURFACES

Compact (and some noncompact) surfaces are a favorite showcase for various
branches of topology and geometry. They are two-dimensional topological mani-
folds, which can be supplied with a variety of naturally defined differentiable and
Riemannian structures. Their complete topological classification, which coincides
with their smooth (differentiable) classification, is obtained via certain simple in-
variants. These invariants allow a variety of interpretations: combinatorial, analyt-
ical and geometrical.

Surfaces are also one-dimensional complex manifolds; but, surprisingly, the
complex stuctures are not all equivalent (except for the case of the sphere), although
they can be classified. This classification if the first result in a rather deep area at
the junction of analysis, geometry, and algebraic geometry known as Teichmüller
theory, which recently has led to spectacular applications in theoretical physics.

In this chapter we study the classification of compact surfaces (two-dimen-
sional manifolds) from various points of view. We start with a fundamental prepara-
tory result, which we will prove by using a beautiful argument based on combina-
torial considerations.

5.1. Two big separation theorems: Jordan and Schoenflies

The goal of this section is to prove the famous Jordan Curve Theorem, which
we will need in the next section, and which is constantly used in many areas of
analysis and topology. Note that although the statement of the theorem seems
absolutely obvious, it does not have a simple proof.

5.1.1. Statement of the theorem and strategy of proof. Here we state the
theorem and outline the main steps of the proof.

DEFINITION 5.1.1. A simple closed curve on a manifold M (in particular on
the plane R2) is the homeomorphic image of the circle S1 in M , or equivalently
the image of S1 under a topological embedding S1 → M .

THEOREM 5.1.2 (Jordan Curve Theorem). A simple closed curve C on the
plane R2 separates the plane into two connected components.

COROLLARY 5.1.3. A simple closed curve C on the sphere S2 separates the
sphere into two connected components.

125
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PROOF. The proof is carried out by a simple but clever reduction of the Jordan
Curve Theorem to the nonplanarity of the graphK3,3, established in ??

Suppose that C is an arbitrary (not necessarily polygonal) simple closed curve
in the plane R2. Suppose l and m are parallel support lines of C and p is a line
perpendicular to them and not intersecting the curve. Let A1 and A2 be points of
the intersections of C with l andm, respectively. Further, letB3 be the intersection
point of l and p. The pointsA1 andA2 divide the curveC into two arcs, the “upper”
one and the “lower” one. Take a line q in between l and m parallel to them. By
compactness, there is a lowest intersection point B1 of q with the upper arc and a
highest intersection point B2 of q with the lower arc. Let A3 be an inner point of
the segment [B1, B2] (see the figure).

q p
z0

m l
n

w b

FIGURE 5.1.1. Proof of the Jordan Curve Theorem

We claim that R2 \ C is not path connected, in fact there is no path joining
A3 and B3. Indeed, if such a path existed, by Lemma ?? there would be an arc
joining these two points. Then we would have nine pairwise nonintersecting arcs
joining each of the points A1, A2, A3 with all three of the points B1, B2, B3. This
means that we have obtained an embedding of the graph K3,3 in the plane, which
is impossible by Theorem 5.2.4. !

5.1.2. Schoenflies Theorem. The Schoenflies Theorem is an addition to the
Jordan curve theorem asserting that the curve actually bounds a disk. We state this
theorem here without proof.

THEOREM 5.1.4 (Schoenflies Theorem). A simple closed curveC on the plane
R2 separates the plane into two connected components; the component with bounded
closure is homeomorphic to the disk, that is,

R2 ! C = D1 ∪ D2, where D1 ∩ D2 = ∅ and D1 ≈ D2.

COROLLARY 5.1.5. A simple closed curve C on the sphere S2 separates the
sphere into two connected components, each of which has closure homeomorphic
to the disk, that is,

S2 ! C = D1 ∪ D2, where D1 ∩ D2 = ∅ and Di ≈ D2, i = 1, 2.
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C

L1

L2

FIGURE 5.2.1. The polygonal lines L1 and L2 must intersect

5.2. Planar and non-planar graphs

5.2.1. Non-planarity ofK3,3. We first show that the graphK3,3 has no polyg-
onal embedding into the plane, and then show that it has no topological embedding
in the plane.

PROPOSITION 5.2.1. [The Jordan curve theorem for broken lines] Any bro-
ken line C in the plane without self-intersections splits the plane into two path
connected components and is the boundary of each of them.

PROOF. Let D be a small disk which C intersects along a line segment, and
thus dividesD into two (path) connected components. Let p be any point inR2\C.
From p we can move along a polygonal line as close as we like to C and then,
staying close to C, move inside D. We will then be in one of the two components
of D \ C, which shows that R2 \ C has no more than two components.

It remains to show that R2 \C is not path connected. Let ρ be a ray originating
at the point p ∈ R2 \ C. The ray intersects C in a finite number of segments and
isolated points. To each such point (or segment) assign the number 1 if C crosses ρ
there and 0 if it stays on the same side. Consider the parity π(p) of the sum S of all
the assigned numbers: it changes continuously as ρ rotates and, being an integer,
π(p) is constant. Clearly, π(p) does not change inside a connected component of
R2 \C. But if we take a segment intersecting C at a non-zero angle, then the parity
π at its end points differs. This contradiction proves the proposition. !

We will call a closed broken line without self-intersections a simple polygonal
line.

COROLLARY 5.2.2. If two broken lines L1 and L2 without self-intersections
lie in the same component of R2 \ C, where C is a simple closed polygonal line,
with their endpoints on C in alternating order, then L1 and L2 intersect.

PROOF. The endpoints a and c of L1 divide the polygonal curve C into two
polygonal arcs C1 and C2. The curve C and the line L1 divide the plane into three
path connected domains: one bounded by C, the other two bounded by the closed
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curves Ci ∪ L, i = 1, 2 (this follows from Proposition 5.2.1). Choose points b and
d on L2 close to its endpoints. Then b and d must lie in different domains bounded
by L1 and C and any path joining them and not intersecting C, in particular L2,
must intersect L1. !

PROPOSITION 5.2.3. The graph K3,3 cannot be polygonally embedded in the
plane.

PROOF. Let us number the vertices x1, . . . , x6 ofK3,3 so that its edges consti-
tute a closed curve C := x1x2x3x4x5x6, the other edges being

E1 := x1x4, E2 := x2x5, E3 := x3x6.

Then, ifK3,3 lies in the plane, it follows from Proposition 5.2.1 that C divides the
plane into two components. One of the two components must contain at least two
of the edges E1, E2, E3, which then have to intersect (by Corollary 5.2.2). This is
a contradiction which proves the proposition. !

THEOREM 5.2.4. The graph K3,3 is nonplanar, i.e., there is no topological
embedding h : K3,3 ↪→ R2.

The theorem is an immediate consequence of the nonexistence of aPL-embedding
ofK3,3 (Proposition 5.2.3) and the following lemma.

LEMMA 5.2.5. If a graphG is planar, then there exists a polygonal embedding
of G into the plane.

PROOF. Given a graphG ⊂ R2, we first modify it in small disk neighborhoods
of the vertices so that the intersection of (the modified graph) G with each disk is
the union of a finite number of radii of this disk. Then, for each edge, we cover
its complement to the vertex disks by disks disjoint from the other edges, choose a
finite subcovering (by compactness) and, using the chosen disks, replace the edge
by a polygonal line. !

5.2.2. Euler characteristic and Euler theorem. The Euler characteristic of
a graph G without loops embedded in the plane is defined as

χ(G) := V − E + F,

where V is the number of vertices andE is the number of edges ofG, while F is the
number of connected components ofR2\G (including the unbounded component).

THEOREM 5.2.6. [Euler Theorem] For any connected graph G without loops
embedded in the plane, χ(G) = 2.
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PROOF. At the moment we are only able to prove this theorem for polygonal
graphs. For the general case we will need Jordan curve Theorem Theorem 5.1.2.
The proof will be by induction on the number of edges. For the graph with zero
edges, we have V = 1, E = 0, F = 1, and the formula holds. Suppose it holds for
all graphs with n edges; then it is valid for any connected subgraphH of G with n
edges; take an edge e from G which is not inH but incident toH , and add it toH .
Two cases are possible.

Case 1. Only one endpoint of e belongs toH . Then F is the same for G as for
H and both V and E increase by one.

Case 2. Both endpoints of e belong to toH . Then e lies inside a face ofH and
divides it into two.1 Thus by adding e we increase both E and F by one and leave
V unchanged. Hence the Euler characteristic does not change. !

5.2.3. Kuratowski Theorem. We conclude this subsection with a beautiful the- small print for parts outside of
the main line: no proofs or too

difficultorem, which gives a simple geometrical obstruction to the planarity of graphs. We do not
present the proof (which is not easy), because this theorem, unlike the previous one, is not
used in the sequel.

THEOREM 5.2.7. [Kuratowski] A graph is nonplanar if and only if it contains, as a
topological subspace, the graph K3,3 or the graph K5.

REMARK 5.2.8. The words “as a topological subspace” are essential in this theorem.
They cannot be replaced by “as a subgraph”: if we subdivide an edge of K5 by adding a
vertex at its midpoint, then we obtain a nonplanar graph that does not contain either K3,3

orK5.

EXERCISE 5.2.1. Can the graphK3,3 be embedded in (a) the Möbius strip, (b)
the torus?

EXERCISE 5.2.2. Is there a graph that cannot be embedded into the torus?

EXERCISE 5.2.3. Is there a graph that cannot be embedded into the Mob̈ius
strip?

5.3. Surfaces and their triangulations

In this section, we define (two-dimensional) surfaces, which are topological
spaces that locally look like R2 (and so are supplied with local systems of coor-
dinates). It can be shown that surfaces can always be triangulated (supplied with
a PL-structure) and smoothed (supplied with a smooth manifold structure). We proof will be added here or later

an easy consequence of PLwill not prove these two assertions here and limit ourselves to the study of trian-
gulated surfaces (also known as two-dimensional PL-manifolds). The main result
is a neat classification theorem, proved by means of some simple piecewise linear
techniques and with the help of the Euler characteristic.

1It is here that we need the conclusion of Jordan curve Theorem Theorem 5.1.2 in the case of
general graphs. The rest of the argument remains the same as for polygonal graphs.
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5.3.1. Definitions and examples.

DEFINITION 5.3.1. A closed surface is a compact connected 2-manifold (with-
out boundary), i.e., a compact connected space each point of which has a neigh-
borhood homeomorphic to the open 2-disk Int D2. In the above definition, con-
nectedness can be replaced by path connectedness without loss of generality (see
??)

A surface with boundary is a compact space each point of which has a neigh-
borhood homeomorphic to the open 2-disk Int D2 or to the open half disk

Int D2
1/2 = {(x, y) ∈ R2|x " 0, x2 + y2 < 1}.

EXAMPLE 5.3.2. Familiar surfaces are the 2-sphere S2, the projective plane
RP 2, and the torus T2 = S1 × S1, while the disk D2, the annulus, and the Möbius
band are examples of surfaces with boundary.

S2 T 2 D2

FIGURE 5.3.1. Examples of surfaces

DEFINITION 5.3.3. The connected sum M1#M2 of two surfaces M1 and M2

is obtained by making two small holes (i.e., removing small open disks) in the
surfaces and gluing them along the boundaries of the holes

EXAMPLE 5.3.4. The connected sum of two projective planes RP 2#RP 2 is
the famous Klein bottle, which can also be obtained by gluing two Möbius bands
along their boundaries (see Fig.??). The connected sum of three tori T2#T2#T2

is (topologically) the surface of a pretzel (see Fig.??).

FIGURE 5.3.2. Klein bottle and pretzel
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5.3.2. Polyhedra and triangulations. Our present goal is to introduce a com-
binatorial structure (called PL-structure) on surfaces. First we we give the corre-
sponding definitions related to PL-structures.

A (finite) 2-polyhedron is a topological space represented as the (finite) union
of triangles (its faces or 2-simplices) so that the intersection of two triangles is
either empty, or a common side, or a common vertex. The sides of the triangles
are called edges or 1-simplices, the vertices of the triangles are called vertices or
0-simplices of the 2-polyhedron.

Let P be a 2-polyhedron and v ∈ P be a vertex. The (closed) star of v in P
(notation Star(v, P )) is the set of all triangles with vertex v. The link of v in P
(notation Link(v, P )) is the set of sides opposite to v in the triangles containing v.

A finite 2-polyhedron is said to be a closed PL-surface (or a closed triangu-
lated surface) if the star of any vertex v is homeomorphic to the closed 2-disk with
v at the center (or, which is the same, if the links of all its vertices are homeomor-
phic to the circle).

Stx Lk y

y
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

FIGURE 5.3.3. Star and link of a point on a surface

A finite 2-polyhedron is said to be a PL-surface with boundary if the star of
any vertex v is homeomorphic either to the closed 2-disk with v at the center or to
the closed disk with v on the boundary (or, which is the same, if the links of all its
vertices are homeomorphic either to the circle or to the line segment). It is easy to
see that in a PL-surface with boundary the points whose links are segments (they
are called boundary points) constitute a finite number of circles (called boundary
circles). It is also easy to see that each edge of a closed PL-surface (and each
nonboundary edge of a surface with boundary) is contained in exactly two faces.

A PL-surface (closed or with boundary) is called connected if any two vertices
can be joined by a sequence of edges (each edge has a common vertex with the
previous one). Further, unless otherwise stated, we consider only connected PL-
surfaces.

A PL-surface (closed or with boundary) is called orientable if its faces can be
coherently oriented; this means that each face can be oriented (i.e., a cyclic order
of its vertices chosen) so that each edge inherits opposite orientations from the
orientations of the two faces containing this edge. An orientation of an orientable
surface is a choice of a coherent orientation of its faces; it is easy to see that that
any orientable (connected!) surface has exactly two orientations.
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A face subdivision is the replacement of a face (triangle) by three new faces
obtained by joining the baricenter of the triangle with its vertices. An edge sub-
division is the replacement of the two faces (triangles) containing an edge by four
new faces obtained by joining the midpoint of the edge with the two opposite ver-
tices of the two triangles. A baricentric subdivision of a face is the replacement
of a face (triangle) by six new faces obtained by constructing the three medians of
the triangles. A baricentric subdivision of a surface is the result of the baricentric
subdivision of all its faces. Clearly, any baricentric subdivision can be obtained
by means of a finite number of edge and face subdivisions. A subdivision of a
PL-surface is the result of a finite number of edge and face subdivisions.

Two PL-surfaces M1 and M2 are called isomorphic if there exists a homeo-
morphism h : M1 → M2 such that each face ofM1 is mapped onto a face ofM2.
Two PL-surfaces M1 and M2 are called PL-homeomorphic if they have isomor-
phic subdivisions.

FIGURE 5.3.4. Face, edge, and baricentric subdivisions

EXAMPLE 5.3.5. Consider any convex polyhedron P ; subdivide each of its
faces into triangles by diagonals and project this radially to a sphere centered in
any interior point of P . The result is a triangulation of the sphere.

If P is a tetrahedron the triangulation has four vertices. This is the minimal
number of vertices in a triangulation of any surface. In fact, any triangulation
of a surface with four vertices is equivalent of the triangulation obtained from a
tetrahedron and thus for any surface other than the sphere the minimal number of
vertices in a triangulation is greater then four.

EXERCISE 5.3.1. Prove that there exists a triangulation of the projective plane
with any given number N > 4 of vertices.

EXERCISE 5.3.2. Prove that minimal number of vertices in a triangulation of
the torus is six.

5.4. Euler characteristic and genus

In this section we introduce, in an elementary combinatorial way, one of the
simplest and most important homological invariants of a surface M – its Euler
characteristic χ(M). The Euler characteristic is an integer (actually defined for a
much wider class of objects than surfaces) which is topologically invariant (and,
in fact, also homotopy invariant). Therefore, if we find that two surfaces have
different Euler characteristics, we can conclude that they are not homeomorphic.
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5.4.1. Euler characteristic of polyhedra.

DEFINITION 5.4.1. The Euler characteristic χ(M) of a two-dimensional poly-
hedron, in particular of a PL-surface, is defined by

χ(M) := V − E + F ,

where V,E, and F are the numbers of vertices, edges, and faces ofM , respectively.

PROPOSITION 5.4.2. The Euler characteristic of a surface does not depend on
its triangulation. PL-homeomorphic PL-surfaces have the same Euler character-
istic.

PROOF. It follows from the definitions that we must only prove that the Euler
characteristic does not change under subdivision, i.e., under face and edge subdi-
vision. But these two facts are proved by a straightforward verification. !

EXERCISE 5.4.1. Compute the Euler characteristic of the 2-sphere, the 2-disk,
the projective plane and the 2-torus.

EXERCISE 5.4.2. Prove that χ(M#N) = χ(M) + χ(N) − 2 for any PL-
surfaces M and N . Use this fact to show that adding one handle to an oriented
surface decreases its Euler characteristic by 2.

5.4.2. The genus of a surface. Now we will relate the Euler characteristic
with a a very visual property of surfaces – their genus (or number of handles).
The genus of an oriented surface is defined in the next section (see ??), where
it will be proved that the genus g of such a surface determines the surface up to
homeomorphism. The model of a surface of genus g is the sphere with g handles;
for g = 3 it is shown on the figure.

≈

FIGURE 5.4.1. The sphere with three handles

PROPOSITION 5.4.3. For any closed surfaceM , the genus g(M) and the Euler
characteristic χ(M) are related by the formula

χ(M) = 2− 2g(M) .
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PROOF. Let us prove the proposition by induction on g. For g = 0 (the sphere),
we have χ(S2) = 2 by Exercise ??. It remains to show that adding one handle
decreases the Euler characteristic by 2. But this follows from Exercise ?? !

REMARK 5.4.4. In fact χ = β2 − β1 + β0, where the βi are the Betti numbers
(defined in ??). For the surface of genus g, we have β0 = β2 = 1 and β1 = 2g, so
we do get χ = 2− 2g.

5.5. Classification of surfaces

In this section, we present the topological classification (which coincides with
the combinatorial and smooth ones) of surfaces: closed orientable, closed nonori-
entable, and surfaces with boundary.

5.5.1. Orientable surfaces. The main result of this subsection is the follow-
ing theorem.

THEOREM 5.5.1 (Classification of orientable surfaces). Any closed orientable
surface is homeomorphic to one of the surfaces in the following list

S2, S1 × S1 (torus), (S1 × S1)#(S1 × S1) (sphere with 2 handles), . . .
. . . , (S1 × S1)#(S1 × S1)# . . .#(S1 × S1) (sphere with k handles), . . .

Any two surfaces in the list are not homeomorphic.

PROOF. By ?? we may assume that M is triangulated and take the double
baricentric subdivision M ′′ of M . In this triangulation, the star of a vertex of M ′′

is called a cap, the union of all faces of M ′′ intersecting an edge of M but not
contained in the caps is called a strip, and the connected components of the union
of the remaining faces ofM ′′ are called patches.

Consider the union of all the edges of M ; this union is a graph (denoted G).
Let G0 be a maximal tree of G. Denote by M0 the union of all caps and strips
surrounding G0. Clearly M0 is homeomorphic to the 2-disk (why?). If we suc-
cessively add the strips and patches fromM −M0 toM0, obtaining an increasing
sequence

M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mp = M,

we shall recoverM .
Let us see what happens when we go fromM0 toM1.
If there are no strips left, then there must be a patch (topologically, a disk),

which is attached along its boundary to the boundary circle Σ0 ofM0; the result is
a 2-sphere and the theorem is proved.

Suppose there are strips left. At least one of them, say S, is attached along
one end to Σ0 (because M is connected) and its other end is also attached to Σ0

(otherwise S would have been part ofM0). Denote byK0 the closed collar neigh-
borhood of Σ0 in M0. The collar K0 is homoeomorphic to the annulus (and not
to the Möbius strip) because M is orientable. Attaching S to M0 is the same as
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FIGURE 5.5.1. Caps, strips, and patches

attaching another copy of K ∪ S to M0 (because the copy of K can be homeo-
morphically pushed into the collar K). But K ∪ S is homeomorphic to the disk
with two holes (what we have called “pants”), because S has to be attached in the
orientable way in view of the orientability ofM (for that reason the twisting of the
strip shown on the figure cannot occur). ThusM1 is obtained fromM0 by attaching
the pantsK ∪ S by the waist, andM1 has two boundary circles.

FIGURE ??? This cannot happen

Now let us see what happens when we pass fromM1 toM2.
If there are no strips left, there are two patches that must be attached to the two

boundary circles ofM1, and we get the 2-sphere again.
Suppose there are patches left. Pick one, say S, which is attached at one end

to one of the boundary circles, say Σ1 ofM1. Two cases are possible: either
(i) the second end of S is attached to Σ2, or
(ii) the second end of S is attached to Σ1.
Consider the first case. Take collar neighborhoods K1 and K2 of Σ1 and Σ2;

both are homoeomorphic to the annulus (becauseM is orientable). Attaching S to
M1 is the same as attaching another copy ofK1∪K2∪S toM1 (because the copy
ofK1 ∪K2 can be homeomorphically pushed into the collarsK1 andK2).
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FIGURE ??? Adding pants along the legs

But K − 1 ∪K2 ∪ S is obviously homeomorphic to the disk with two holes.
Thus, in the case considered, M2 is obtained from M1 by attaching pants to M1

along the legs, thus decreasing the number of boundary circles by one,
The second case is quite similar to adding a strip toM0 (see above), and results

in attaching pants toM1 along the waist, increasing the number of boundary circles
by one.

What happens when we add a strip at the ith step? As we have seen above,
two cases are possible: either the number of boundary circles ofMi−1 increases by
one or it decreases by one. We have seen that in the first case “inverted pants” are
attached toMi−1 and in the second case “upright pants” are added toMi−1.

FIGURE ??? Adding pants along the waist

After we have added all the strips, what will happen when we add the patches?
The addition of each patch will “close” a pair of pants either at the “legs” or at the
“waist”. As the result, we obtain a sphere with k handles, k " 0. This proves the
first part of the theorem.

cup upsidedown pants

cap pants (right side up)

FIGURE 5.5.2. Constructing an orientable surface

To prove the second part, it suffices to compute the Euler characteristic (for
some specific triangulation) of each entry in the list of surfaces (obtaining 2, 0,−2,−4, . . . ,
respectively). !
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5.5.2. Nonorientable surfaces and surfaces with boundary. Nonorientable
surfaces are classified in a similar way. It is useful to begin with the best-known
example, the Möbius strip, which is the nonorientable surface with boundary ob-
tained by identifying two opposite sides of the unit square [0, 1]× [0, 1] via (0, t) ∼
(1, 1− t). Its boundary is a circle.

Any compact nonorientable surface is obtained from the sphere by attaching
severalMöbius caps, that is, deleting a disk and identifying the resulting boundary
circle with the boundary of a Möbius strip. Attaching m Möbius caps yields a
surface of genus 2−m. Alternatively one can replace any pair of Möbius caps by
a handle, so long as at least one Möbius cap remains, that is, one may start from a
sphere and attach one or two Möbius caps and then any number of handles.

All compact surfaces with boundary are obtained by deleting several disks
from a closed surface. In general then a sphere with h handles, m Möbius strips,
and d deleted disks has Euler characteristic

χ = 2− 2h−m− d.

In particular, here is the finite list of surfaces with nonnegative Euler characteristic:

Surface h m d χ Orientable?
Sphere 0 0 0 2 yes
Projective plane 0 1 0 1 no
Disk 0 0 1 1 yes
Torus 1 0 0 0 yes
Klein bottle 0 2 0 0 no
Möbius strip 0 1 1 0 no
Cylinder 0 0 2 0 yes

5.6. The fundamental group of compact surfaces

Using the Seifert–van Kampen theorem (see ???), here we compute the funda-
mental groups of closed surfaces.

5.6.1. π1 for orientable surfaces.

THEOREM 5.6.1. The fundamental group of the orientable surface of genus
g can be presented by 2g generators p1,m1, . . . , pn,mn satisfying the following
defining relation:

p1m1p
−1
1 m−1

1 . . . pnmnp−1
n m−1

n = 1.

PROOF. +++++++++++++++++++++++++++++++++++ !
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5.6.2. π1 for nonorientable surfaces.

THEOREM 5.6.2. The fundamental group of the nonorientable surface of genus
g can be presented by the generators c1, . . . cn, where n := 2g + 1, satisfying the
following defining relation:

c2
1 . . . c2

n = 1.

PROOF. +++++++++++++++++++++++++++++++++++ !

5.7. Vector fields on the plane

The notion of vector field comes from mechanics and physics. Examples: the
velocity field of the particles of a moving liquid in hydrodynamics, or the field
of gravitational forces in Newtonian mechanics, or the field of electromagnetic
induction in electrodynamics. In all these cases, a vector is given at each point of
some domain in space, and this vector changes continuously as we movefrom point
to point.

In this section we will study, using the notion of degree (see??) a simpler
model situation: vector fields on the plane (rather than in space).

5.7.1. Trajectories and singular points. A vector field V in the plane R2 is
a rule that assigns to each point p ∈ R2 a vector V (p) issuing from p. Such an
assignment may be expressed in the coordinates x, y of R2 as

X = α(x, y) Y = β(x, y),

where α : R2 → R and β : R2 → R are real-valued functions on the plane, (x, y)
are the coordinates of the point p, and (X, Y ) are the coordinates of the vector
V (p). If the functions α and β are continuous (respectively differentiable), then
the vector field V is called continuous (resp. smooth).

A trajectory through the point p ∈ R2 is a curve γ : R → R2 passing through
p and tangent at all its points to the vector field (i.e., the vector V (q) is tangent to
the curve C := γ(R) at each point q ∈ C). A singular point p of a vector field V
is a point where V vanishes: V (p) = 0; when V is a velocity field, such a point
is often called a rest point, when V is a field of forces, it is called an equilibrium
point.

5.7.2. Generic singular points of plane vector fields. We will now describe
some of the simplestf singular points of plane vector fields. To define these points,
we will not write explicit formulas for the vectors of the field, but instead describe
the topological picture of its trajectories near the singular point and give physical
examples of such singularities.

The node is a singular point contained in all the nearby trajectories; if all the
trajectories move towards the point, the node is called stable and unstable if all
the trajectories move away from the point. As an example, we can consider the
gravitational force field of water droplets flowing down the surface z = x2 + y2

near the point (0, 0, 0) (stable node) or down the surface z = −x2 − y2 near the
same point (unstable node).
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The saddle is a singular point contained in two transversal trajectories, called
separatrices, one of which is ingoing, the other outgoing, the other trajectories
behaving like a family of hyperbolas whose asymptotes are the separatrices. As
an example, we can consider the gravitational force field of water droplets flowing
down the surface z = x2 − y2 near the point (0, 0, 0); here the separatrices are the
coordinates axes.

saddle focus center node

FIGURE 5.7.1. Simplest singular points of vector fields

The focus is a singular point that ressembles the node, except that the trajec- topology of the node is right but
geometry is wrong: in general

“parabolas” tangent to the
horizontal line plus horizontal

and vertical lines

tories, instead of behaving like the set of straight lines passing through the point,
behave as a family of logarithmic spirals converging to it (stable focus) or diverging
from it (unstable focus).

The center is a singular point near which the trajectories behave like the family
of concentric circles centered at that point; a center is called positive if the trajecto-
ries rotate counterclockwise and negative if they rotate clockwise. As an example,
we can consider the velocity field obtained by rotating the plane about the origin
with constant angular velocity.

REMARK 5.7.1. From the topological point of view, there is no difference be-
tween a node and a focus: we can unfurl a focus into a node by a homeomorphism
which is the identity outside a small neighborhood of the singular point. However,
we can’t do this by means of a diffeomorphism, so that the node differs from the
focus in the smooth category.

A singular point is called generic if it is of one of the first three types described
above (node, saddle, focus). A vector field is called generic if it has a finite number
of singular points all of which are generic. In what follows we will mostly consider
generic vector fields.

REMARK 5.7.2. Let us explain informally why the term generic is used here.
Generic fields are, in fact, the “most general” ones in the sense that, first, they
occur “most often” (i.e., as close as we like to any vector field there is a generic
one) and, second, they are “stable” (any vector field close enough to a generic one
is also generic, has the same number of singular points, and those points are of the
same types). Note that the center is not generic: a small perturbation transforms it
into a focus. These statements are not needed in this course, so we will not make
them more precise nor prove them.
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REMARK 5.7.3. It can be proved that the saddle and the center are not topo-
logically equivalent to each other and not equivalent to the node or to the focus;
however, the focus and the node are topologically equivalent, as we noted above.

5.7.3. The index of plane vector fields. Suppose a vector field V in the plane
is given. Let γ : S1 → R2 be a closed curve in the plane not passing through any
singular points of V ; denoteC := γ(S1). To each vector V (c), c ∈ C, let us assign
the unit vector of the same direction as V (c) issuing from the origin of coordinates
O ∈ R2; we then obtain a map g : C → S1

1 (where S1
1 ⊂ R2 denotes the unit

circle centered atO), called the Gauss map corresponding to the vector field V and
to the curve γ. Now we define the index of the vector field V along the curve γ as
the degree of the Gauss map g : S1 → S1 (for the definition of the degree of circle
maps, see section 5, §3): Ind(γ, V ) := deg(g). Intuitively, the index is the total
number of revolutions in the positive (counterclockwise) direction that the vector
field performs when we go around the curve once.

REMARK 5.7.4. A simple way of computing Ind(γ) is to fix a ray issuing
from O (say the half-axis Ox) and count the number of times p the endpoint of
V (c) passes through the ray in the positive direction and the number of times q in
the negative one; then Ind(γ) = p− q.

THEOREM 5.7.5. Suppose that a simple closed curve γ does not pass through
any singular points of a vector field V and bounds a domain that also does not
contain any singular points of V . Then

Ind(γ, V ) = 0 .

PROOF. By the Schoenflies theorem, we can assume that there exists a home-
omorphism of R2 that takes the domain bounded by C := γ(S1) to the unit disk
centered at the origin O. This homeomorphism maps the vector field V to a vector
field that we denote by V ′. Obviously,

Ind(γ, V ) = Ind(S1
0 , V ),

where S1
O denotes the unit circle centered at O. Consider the family of all circles

S1
r of radius r < 1 centered at O. The vector V ′(O) is nonzero, hence for a small
enough r0 all the vectors V ′(s), s ∈ S1

r0
, differ little in direction from V ′(O), so

that Ind(S1
r , V ) = 0. But then by continuity Ind(S1

r , V ) = 0 for all r # 1. Now
the theorem follows from (1). !

Now suppose that V is a generic plane vector field and p is a singular point of
V . Let C be a circle centered at p such that no other singular points are contained
in the disk bounded by C. Then the index of V at the singular point p is defined as
Ind(p, V ) := Ind(C, V ). This index is well defined, i.e., it does not depend on the
radius of the circle C (provided that the disk bounded by C does not contain any
other singular points); this follows from the next theorem.



CHAPTER 6

COVERING SPACES AND DISCRETE GROUPS

We have already met covering spaces in Chapter 2, where our discussion was
geometric and basically limited to definitions and examples. In this chapter, we
return to this topic from a more algebraic point of view, which will allow us to
produce numerous examples coming from group actions and to classify all covering
spaces with given base (provided the latter is “nice” enough).

The main tools will be groups:
• discrete groups acting on manifolds, as the source of numerous examples of

covering spaces;
• the fundamental groups of the spaces involved (and the homomorphisms

induced by their maps), which will play the key role in the classification theorems
of covering spaces.

6.1. Coverings associated with discrete group actions

We already mentioned (see ???) that one classical method for obtaining cover-
ing spaces is to consider discrete group actions on nice spaces (usually manifolds)
and taking the quotient map to the orbit space. In this section, we dwell on this
approach, providing numerous classical examples of covering spaces and conclude
with a discussion of the generality of this method.

6.1.1. Discrete group actions. Here we present some basic definitions and
facts related to group actions.

DEFINITION 6.1.1. The action of a group G on a set X is a map

G×X → X, (g, x) #→ g(x),

such that
(1) (gh)(x) = g(h(x));
(2) e(x) = x if e is the unit element of G.

We will be interested in the case in which the group G is discrete (i.e., pos-
sesses, besides its group structure, the structure of a discrete topological space)
and X is a Hausdorff topological space (more often than not a manifold). We then
require the action to be a continuous map of topological spaces.

DEFINITION 6.1.2. The orbit of a point x ∈ X is the set {g(x) | g ∈ G}.
It immediately follows from definitions that the orbits constitute a partition of X .
The orbit space of the action of G on X is the quotient space of X under the

147
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equivalence relation identifying all points lying in the same orbit; it is standardly
denoted by X/G, and we have the quotient map X → X/G of the action.

We say that G acts by homeomorphisms if there is an inclusion (a mono-
morphism) µ : G → Homeo(X) of the group G into the group Homeo(X) of
homeomorphisms of X if µ satisfies g(x) = (µ(g))(x) for all x ∈ X and all
g ∈ G. This means that the assignment (x, g) #→ g(x) is a homeomorphism of
X . Similarily, for a metric space X , we say that a group G acts by isometries on
X if there is a monomorphism µ : G → Isom(X) of the group G into the group
Isom(X) of isometries of X such that g(x) = (µ(g))(x) for all x ∈ X and all
g ∈ G. A similar meaning is assigned to the expressions act by rotations, act by
translations, act by homotheties, etc.

Suppose G acts by homeomorphisms on a Hausdorff space X; we then say
that the action of G is normal if any x ∈ X has a neighborhood U such that all the
images g(U) for different g ∈ G are disjoint, i.e.,

g1(U) ∩ g2(U) &= ∅ =⇒ g1 = g2.

REMARK 6.1.3. There is no standard terminology for actions that we have
called “normal”; sometimes the expressions “properly discontinuous action” or
“covering space action” are used. We strongly favor “normal” – the reason for
using it will become apparent in the next subsection.

EXAMPLE 6.1.4. Let X be the standard unit square centered at the origin of
R2 and letG be its isometry group, acting onX in the natural way. Then the orbits
of this action consist of 8, or 4, or 1 points (see the figure), the one-point orbit
being the orbit of the origin. The orbit space can be visualized as a right isoceles
triangle with the hypothenuse removed. Obviously, this action is not normal.

FIGURE ??? Isometry group acting on the square

EXAMPLE 6.1.5. Let the two-element group Z2 act on the 2-sphere S2 by
symmetries with respect to its center. Then all the orbits consist of two points, the
action is normal, and the orbit space is the projective plane RP 2.

EXAMPLE 6.1.6. Let the permutation group S3 act on the regular tetrahedron
X by isometries. Then the orbits consist of 6, 4, or 1 point, and the action is not
normal.
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EXERCISE 6.1.1. Suppose X is the union of the boundary of the equilateral
triangle and its circumscribed circle (i.e., the graph on 3 vertices of valency 3 and
6 edges). Find a normal group action for which the orbit space is the figure eight
(i.e., the one-vertex graph with two edges (loops)).

EXERCISE 6.1.2. Find a normal action of the cyclic group Z5 on the annulus
so that the orbit space is also the annulus.

6.1.2. Coverings as quotient maps to orbit spaces. The main contents of
this subsection are its examples and exercises, which are all based on the following
statement.

PROPOSITION 6.1.7. The quotient mapX → X/G of a Hausdorff topological
space X to its orbit space X/G under a normal action (in the sense of Definition
???) of a discrete group G is a covering space .

PROOF. By the definition of normal action, it follows that each orbit is in bi-
jective correspondence withG (which plays the role of the fiber F in the definition
of covering space). If x is any point of X and U is the neighborhood specified
by the normality condition, each neighborhood of the family {g(U) | g ∈ G} is
projected homeomorphically onto another copy of U in the quotient space, which
means that p :→ X/G is a covering space. !

REMARK 6.1.8. We will see later that in the situation of the proposition, the
covering space will be normal (or regular, in another terminology), which means
that the subgroup p#(π1(X)) ⊂ π1(X/G) is normal. This explains our preference
for the term “normal” for such group actions and such covering spaces.

EXAMPLE 6.1.9. Let the lattice Z2 act on the plane R2 in the natural way (i.e.,
by parallel translations along integer vectors). Then the orbit space of this action is
the torus T2, and the corresponding quotient map
τ : R2 → T2 is a covering. The covering map τ is actually a universal cover-
ing (i.e., it covers any other covering, see Definition ???), but we cannot prove this
yet.

EXAMPLE 6.1.10. In the hyperbolic plane H2, choose a regular polygon P of
4g sides, g ≥ 2, with inner angle π/2g. Consider the natural action of the subgroup
G of isometries of H2 generated by parallel translations identifying opposite sides
of the polygon. Then the entire hyperbolic plane will be covered by nonoverlapping
copies of P .

Then the orbit space of this action is M2
g , the sphere with g handles and the

corresponding quotient map µ : H2 → M2
g is a covering. Since H2 is contractible,

the map µ is the universal covering ofM2
g .
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FIGURE ??? Universal covering of the sphere with two handles

EXAMPLE 6.1.11. LetX be the real line with identical little 2-spheres attached
at its integer points. Let the group Z act onX by integer translations. The covering
space corresponding to this action is represented in the figure.

FIGURE ??? Universal covering of the wedge of S1 and S2

EXERCISE 6.1.3. Construct a space X and an action of the cyclic group Z3

whose orbit space (i.e., the base of the corresponding covering space) is the wedge
of the circle and the 2-sphere.

EXERCISE 6.1.4. Construct a 5-fold covering of the sphere with 11 handles
over the sphere with 3 handles. Generalize to n-fold coverings (find k and l such
thatMk is the n-fold cover ofMl)

6.1.3. Group actions and deck transformations. Recall that a deck trans-
formation (see Definition ???) of a covering space p : X → B is an isomorphism
of p to itself, i.e., a commutative diagram

X
F−−−−→ X

"p

"p

B
Id−−−−→ B

PROPOSITION 6.1.12. The group of deck transformations of the covering space
obtained as the quotient map of a Hausdorff spaceX to its orbit spaceX/G under
a normal action (see Definition ???) of a discrete group G is isomorphic to the
group G.

PROOF. This immediately follows from the definition of normal action: the
fiber of the covering space under consideration is an orbit of the action of G, and
property (1) of the definition of an action (see ???) implies that the deck transfor-
mations can be identified with G. !
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6.1.4. Subgroup actions and associated morphisms. If G is a group acting
by homeomorphisms on a Hausdorff space X , and H is a subgroup of G, then H
acts by homeomorphisms on X in the obvious way.

PROPOSITION 6.1.13. A subgroup H of a discrete group G possessing a nor-
mal action on a Hausdorff space X induces an injective morphism of the covering
space pH corresponding to H into the covering space pG corresponding to G.

In this case the image of pH in pG is called a subcovering of pG.

PROOF. The statement of the proposition is an immediate consequence of def-
initions. !

EXAMPLE 6.1.14. Let wn : S1 → S1 be the n-fold covering of the cicle by
another copy of the circle, where n = pq with p and q coprime. We can then con-
sider two more coverings of the circle by itself, namely the p- and q-fold coverings
wp, wq : S1 → S1. Both of them are subcoverings of wn, and their composition is
(isomorphic to) wn.

EXERCISE 6.1.5. Prove that the p-fold covering of the circle by itself has no
subcoverings (other than the identity map) if p is prime.

EXERCISE 6.1.6. Describe (up to isomorphism) all the subcoverings of the
universal covering of the torus.

6.2. The hierarchy of coverings, universal coverings

In this section we are interested in the “social life” of covering spaces, i.e., in
how they interact with each other. In this study, a number of natural questions arise,
for example concerning the “hierarchy” of coverings
p : X → B over a fixed space B and the so-called universal coverings. These
questions will mainly be answered in the next sections, but here the reader will
find many useful constructions and examples.

6.2.1. Definitions and examples. Recall that the definition of covering space
p : X → B implies that p is a local homeomorphism, and the number of points of
p−1(b) (which can be finite or countable) does not depend on the choice of b ∈ B.
Recall further that covering spaces form a category, morphisms being pairs of maps
f : B → B′, F : X → X ′ for which f ◦ p = p′ ◦ F , i.e., the square diagram

X
F−−−−→ X ′

"p

"p′

B
f−−−−→ B′

is commutative. If the maps f and F are homeomorphisms, then the two covering
spaces are isomorphic. We do not distinguish isomorphic covering spaces: the
classification of covering spaces will always be performed up to isomorphism.
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Consider a fixed Hausdorff topological space B and the set (which is actually
a category) of covering spaces with base B. Our aim is to define an order in this
set.

DEFINITION 6.2.1. We say that the covering space p′ : X ′ → B supersedes
or covers the covering space p : X → B (and write p′ , p) if there is a covering
space q : X ′ → X for which the following diagram

X
q−−−−→ X ′

"p

"p

B
Id−−−−→ B′

is commutative.

The relation , is obviously reflexive and transitive, so it is a partial order
relation. Thus we obtain a hierarchy of covering spaces over each fixed base.

EXAMPLE 6.2.2. Let wn : S1 → S1 denote the n-fold covering of the circle
by itself. Then wm supersedes wn iff n divides m. Further, the least (in the sense
of the order,) covering wd that supersedes both wr and ws is wm, wherem is the
least common multiple of r and s, while the greatest covering superseded by both
wr and ws is wd, where d is the greatest commom divisor of r and s.

EXERCISE 6.2.1. Prove that no covering of the projective plane RP 2 super-
sedes its double covering by the sphere S2.

EXERCISE 6.2.2. Prove that no covering of the circle S1 supersedes its cover-
ing by R (via the exponential map).

6.2.2. Universal coverings. Recall that the universal covering space s : E →
B of a given spaceB was defined as a covering satisfying the condition π1(E) = 0.
It turns out that such a covering s : E → B exists, is unique (up to isomorphism),
and coincides with the maximal covering of B with respect to the relation ,,
provided B is nice enough (if it has no local pathology, e.g. is a manifold, a
simplicial space, or a CW-space). We could prove this directly now, but instead
we will prove (later in this chapter) a more general result from which the above
statements follow.

In this subsection, using only the definition of universal covering (the condition
π1(E) = 0), we will accumulate some more examples of universal coverings.
Recall that we already know several: R over S1, S2 over RP 2, R2 over T2.

EXAMPLE 6.2.3. The universal covering of the sphere Sn, n ≥ 2, and more
generally of any simply connected space, is the identity map.

EXAMPLE 6.2.4. The universal covering of the wedge sum S1 ∨ S1 of two
circles is the infinite 4-valent graph Γ (shown on the figure) mapped onto S1 ∨ S1

in the following way.
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FIGURE ??? Universal covering of the wedge of S1 and S1

Each vertex of Γ is sent to the point of tangency of the wedge and each edge
is wrapped once around one of the circles (you can think of this as an infinite
process, beginning at the center of the graph and moving outwards in a uniform
way). It follows that we have obtained the universal covering of S1 ∨ S1, since Γ
is (obviously) simply connected and the map described above is indeed a covering
with fiber Z (this can be checked directly in the two different types of points of
S1 ∨ S1 – the tangency point, and all the others).

EXERCISE 6.2.3. Find an appropriate group G and define a normal action of
G on the graph Γ from the previous example so as to obtain the universal covering
of the wedge sum of two circles.

EXERCISE 6.2.4. Describe the universal covering of the wedge sum of three
circles.

EXERCISE 6.2.5. Describe the universal covering of the union of three circles,
two of which are tangent (at different points) to the third.

6.3. Path lifting and covering homotopy properties

In this section, we prove two important technical assertions which allow, given
a covering space p : X → B, to lift “upstairs” (i.e., to X) continuous processes
taking place “downstairs” (i.e., in B). The underlying idea has already been ex-
ploited when we defined the degree of circle maps by using the exponential map
(see ???), and we will now be generalizing the setting from the exponential map to
arbitrary covering spaces.

6.3.1. Path lifting. Let p : X → B be a covering space. Recall that the lift
of a map f : A → B was defined (see ???) as any map f̃ : A → X such that
p ◦ f̃ = f .

LEMMA 6.3.1 (Path lifting lemma). Any path in the base of a covering space
can be lifted to the covering, and the lift is unique if its initial point in the covering
is specified. More precisely, if p : X → B is a covering space, α : [0, 1] → B is
any path, and x0 ∈ p−1(α(0)), then there exists a unique map α̃ : [0, 1] → X such
that p ◦ α̃ = α and α̃(0) = x0.

PROOF. By the definition of covering space, for each point b ∈ α([0, 1]))
there is a neighborhood Ub whose inverse image under p falls apart into disjoint
neighborhoods each of which is projected homeomorphically by p onto Ub. The
set of all such Ub covers α([0, 1]) and, since α([0, 1]) is compact, it possesses a
finite subcover that we denote by U0, U1, . . . Uk.

Without loss of generality, we assume that U0 contains b0 := α(0) and denote
by Ũ0 the component of p−1(U0) that contains the point x0. Then we can lift a
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part of the path α contained in U0 to Ũ0 (uniquely!) by means of the inverse to the
homeomorphism between Ũ0 and U0.

Now, again without loss of generality, we assume that U1 intersects U0 and
contains points of α[0, 1] not lying in U0. Let b1 ∈ α([0, 1]) be a point contained
both in U0 and U1 and denote by b̃1 the image of b1 under p−1

∣∣
U0
. Let Ũ1 be the

component of the inverse image of U1 containing b̃1. We now extend the lift of our
path to its part contained inU1 by using the inverse of the homeomorphism between
Ũ1 and U1. Note that the lift obtained is the only possible one. Our construction is
schematically shown on the figure.

FIGURE ??? Path lifting construction

Continuing in this way, after a finite number of steps we will have lifted the
entire path α([0, 1]) to X , and the lift obtained will be the only one obeying the
conditions of the lemma.

To complete the proof, it remains to show that the lift that we have constructed
is unique and continuous. We postpone the details of this argument (which uses
the fact that X and B are “locally nice”, e.g. CW-spaces) to Subsection ??? . !

REMARK 6.3.2. Note that the lift of a closed path is not necessarily a closed
path, as we have already seen in our discussion of the degree of circle maps.

Note that if all paths (i.e., maps of A = [0, 1]) can be lifted, it is not true that
all maps of any space A can be lifted.

EXAMPLE 6.3.3. Let τ : R2 → T2 be the standard covering of the torus by the
plane. Then the map α : S1 → T2 taking the circle to some meridian of the torus
cannot be lifted to the plane. Indeed, if such a lift existed, it would be a continuous
map of a compact set (S1) with a noncompact image.

EXERCISE 6.3.1. Give an example of a map α : A → RP 2 which cannot be
lifted to the standard covering space p : S2 → RP 2.

6.3.2. Homotopy lifting. Now we generalize the path lifting lemma to homo-
topies, having in mind that a path is actually a homotopy, namely a homotopy of
the one-point space. This trivial observation is not only the starting point of the
formulation of the covering homotopy theorem, but also the key argument in its
proof.
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THEOREM 6.3.4 (Covering homotopy theorem). Any homotopy in the base
of a covering space can be lifted to the covering, and the homotopy is unique if
its initial map in the covering is specified as a lift of the initial map of the given
homotopy. More precisely, if p : X → B is a covering, F : A× [0, 1] → B is any
homotopy whose initial map f0(·) := F (·, 0) possesses a lift f̃0, then there exists a
unique homotopy F̃ : A× [0, 1] → X such that p ◦ F̃ = F and F̃ (·, 0) = f̃0(·).

PROOF. The theorem will be proved by means of a beautiful trick, magically
reducing the theorem to the path lifting lemma from the previous subsection. Fix
some point a ∈ A. Define αa(t) := F (a, t) and denote by xa the point f̃0(a).
Then αa is a path, and by the path lifting lemma, there exists a unique lift α̃a of
this path such that α̃(0) = xa. Now consider the homotopy defined by

F̃ (a, t) := α̃a(t), for all a ∈ A, t ∈ [0, 1].

Then, we claim that F̃ satisfies all the conditions of the theorem.
To complete the proof, one must verify that F̃ is continuous and unique. We

leave this verification to the reader. !

REMARK 6.3.5. Although the statement of the theorem is rather technical, the
underlying idea is of fundamental importance. The covering homotopy property
that it asserts holds not only for covering spaces, but more generally for arbitrary
fiber bundles. Still more generally, this property holds for a very important class of
fibrations, known as Serre fibrations (see ???), which are defined as precisely those
which enjoy the covering homotopy property.

EXAMPLE 6.3.6. Let X be the union of the lateral surface of the cone and the
half-line issuing from its vertex v, and let p : X → B be the natural projection of
X on the line B = R (see the figure).

FIGURE ??? A map without the covering homotopy property
Then the covering homotopy property does not hold for p. Indeed, the path

lifting property already fails for paths issuing from p(v) and moving to the left of
p(v) (i.e., under the cone). Of course, lifts of such paths exist, but they are not
unique, since they can wind around the cone in different ways.

6.4. Classification of coverings with given base via π1

As we know, a covering space p : X → B induces a homomorphism p# :
π1(X) → π1(B) (see ???). We will see that when the spacesX and B are “locally
nice”, p# entirely determines (up to isomorphism) the covering space p over a
given B.
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More precisely, in this section we will show that, provided that the “local
nicety” condition holds, p# is a monomorphism and that, given a subgroup G
of π1(B), we can effectively construct a unique space X and a unique (up to iso-
morphism) covering map p : X → B for which G is the image of π1(X) under
p#. Moreover, we will prove that there is a bijection between conjugacy classes
of subgroups of π1(B) and isomorphism classes of coverings, thus achieving the
classification of all coverings over a given base B in terms of π1(B).

Note that here we are not assuming that G is a normal subgroup of π1(B), and
so the covering space is not necessarily normal andG does not necessarily coincide
with the group of deck transformations.

6.4.1. Injectivity of the induced homomorphism. The goal of this subsec-
tion is to prove the following theorem.

THEOREM 6.4.1. The homomorphism p# : π1(X) → π1(B) induced by any
covering space p : X → B is a monomorphism.

PROOF. The theorem is an immediate consequence of the homotopy lifting
property proved in the previous section. Indeed, it suffices to prove that a nonzero
element [α] of π1(X) cannot be taken to zero by p#. Assume that p#([α]) = 0.
This means that the loop p ◦ α, where α ∈ [α], is homotopic to a point in B. By
the homotopy lifting theorem, we can lift this homotopy to X , which means that
[α] = 0. !

6.4.2. Constructing the covering space. Here we describe the main con-
struction of this chapter: given a space and a subgroup of its fundamental group,
we construct the associated covering. This construction works provided the space
considered is “locally nice” in a sense that will be specified in the next subsection,
and we will postpone the conclusion of the proof of the theorem until then.

THEOREM 6.4.2. For any “locally nice” space B and any subgroup G ⊂
π1(B, b0) there exists a unique covering space p : X → B such that p#(X) = G.

PROOF. The theorem is proved by means of another magical trick. Let us
consider the set P (B, b0) of all paths in B issuing from b0. Two such paths αi :
[0, 1] → B, i = 1, 2 will be identified (notation α1 ∼ α2) if they have a common
endpoint and the loop λ given by

λ(t) =

{
α1(2t) if 0 ≤ t ≤ 1/2,

α2(2− 2t) if 1/2 ≤ t ≤ 1.

determines an element of π1(B) that belongs to G. (The loop λ can be described
as first going along α1 (at double speed) and then along α2 from its endpoint back
to b0, also at double speed.)

Denote byX := P (B, b0)
/
∼ the identification space of P (B, b0) by the equiv-

alence relation just defined. EndowX with the natural topology (the detailed defi-
nition appears in the next subsection) and define the map p : X → B by stipulating
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that it takes each equivalence class of paths in P (B, b0) to the endpoint of one of
them (there is no ambiguity in this definition because equivalent paths have the
same endpoint).

Then p : X → B is the required covering space. It remains to prove that
(i) p is continuous;
(ii) p is a local homeomorphism;
(iii) p#(π1(X)) coincides with G;
(iv) p is unique.
This will be done in the next subsection. !

To better understand the proof, we suggest that the reader do the following
exercise.

EXERCISE 6.4.1. Prove the theorem in the particular case G = 0, i.e., con-
struct the universal covering of B,

6.4.3. Proof of continuity and uniqueness. In this subsection, we fill in the
missing details of the previous exposition: we specify what is meant by “locally
nice” and use that notion to prove the continuity of different key maps constructed
above and give rigorous proofs of their uniqueness properties.

DEFINITION 6.4.3. A topological space X is called locally path connected if
for any point x ∈ X and any neighborhood U of x there exists a smaller neighbor-
hood V ⊂ U of x which is path connected. A topological spaceX is called locally
simply connected if for any point x ∈ X and any neighborhood U of x there exists
a smaller neighborhood V ⊂ U of x which is simply connected.

EXAMPLE 6.4.4. Let X ⊂ R2 be the union of the segments
{
(x, y) | y = 1/n, 0 ≤ x ≤ 1

}
n = 1, 2, 3, . . .

and the two unit segments [0, 1] of the x-axis and y-axis (see the figure). Then X
is path connected but not locally path connected (at all points of the interval (0, 1]
of the x-axis).

FIGURE ??? Not locally connected and not simply connected spaces
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EXAMPLE 6.4.5. Let X ⊂ R2 be the union of the circles
{
(x, y) |x2 + (y − 1/n)2 = 1/n2

}
n = 1, 2, 3, . . . ;

the circles are all tangent to the x-axis and to each other at the point (0, 0) (see
the figure). Then X is path connected but not locally simply connected (at the
point(0, 0)).

We will now conclude, step by step, the proof of the main theorem of the
previous subsection under the assumption that B is locally path connected and
locally simply connected.

(o) Definition of the topology in X = P (B, b0)/∼. In order to define the
topology, we will specify a base of open sets of rather special form, which will
be very convenient for our further considerations. Let U be an open set in B and
x ∈ X be a point such that p(x) ∈ U . Let α be one of the paths in x with initial
point x0 and endpoint x1. Denote by (U, x) the set of equivalence classes (with
respect to ∼) of extensions of the path α whose segments beyond x1 lie entirely
inside U . Clearly, (U, x) does not depend on the choice of α ∈ x.

We claim that (U, x) actually does not depend on the choice of the point x
in the following sense: if x2 ∈ (U, x1), then (U, x1) = (U, x2). To prove this,
consider the points b1 := p(x1) and b2 := p(x2). Join the points b1 and (b2) by a
path (denoted β) contained in U (see the figure).

FIGURE ??? Defining the topology in the covering space
Let αα1 denote an extension of α, with the added path segment α1 contained

in U . Now consider the path αββ−1α1, which is obviously homotopic to αα1. On
the other hand, it may be regarded as the extension (beyond x2) of the path αβ
by the path β−1α−1. Therefore, the assignment αα1 #→ αββ−1α1 determines a
bijection between (U, x1) and (U, x2), which proves our claim.

Now we can define the topology in X by taking for a base of the topology
the family of all sets of the form (U, x). To prove that this defines a topology, we
must check that a nonempty intersection of two elements of the base contains an
element of the base. Let the point x belong to the intersection of the sets (U1, x1)
and (U2, x2). Denote V := U1∩U2 and consider the set (V, x); this set is contained
in the intersection of the sets (U1, x1) and (U2, x2) (in fact, coincides with it) and
contains x, so that

{
(U, x)

}
is indeed a base of a topology on X .

(i) The map p is continuous. Take x ∈ X . Let U be any path connected
and simply connected neighborhood of p(x) (it exists by the condition imposed on
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B). The inverse image of U under p is consists of basis open sets of the topology
of X (see item (o)) and is therefore open, which establishes the continuity at the
(arbitrary) point x ∈ X .

(ii) The map p is a local homeomorphism. Take any point x ∈ X and denote
by p|U : (U, x) → U the restriction of p to any basis neighborhood (U, x) of x, so
that U will be an open path connected and simply connected set in B. The path
connectedness of U implies the surjectivity of p|U and its simple connectedness,
the injectivity of p|U .

(iii) The subgroup p#(π1(X)) coincides with G. Let α be a loop in B with
basepoint b0 and α̃ be the lift of α initiating at x0 (α̃ is not necessarily a closed
path). The subgroup p#(π1)(X) consists of homotopy classes of the loopsαwhose
lifts α̃ are closed paths. By construction, the path α̃ is closed iff the equivalence
class of the loop α corresponds to the point x0, i.e., if the homotopy class of α is
an element of G.

(iv) The map p is unique. To prove this we will need the following lemma.

LEMMA 6.4.6 (Map Lifting Lemma). Suppose p : X → B is a covering space,
f : A → B is a (continuous) map of a path connected and locally path connected
spaces A and B, and f# is a monomorphism of π1(A, a0) into p#(π1(X, x0)).
Then there exists a unique lift f̃ of the map f , i.e., a unique map f̃ : A → X
satisfying p ◦ f̃ = f and f̃(a0) = x0.

PROOF. Consider an arbitrary path α inA joining a0 to some point a. The map
f takes it to to the path f ◦ α. By the Path Lifting Lemma (see ???), we can lift
f ◦α to a (unique) path ã inX issuing from the point x0. Let us define f̃ : A → X
by setting f̃(a) = x, where x is the endpoint of the path α̃.

First let us prove that f̃ is well defined, i.e., does not depend on the choice of
the path α. Let αi, i = 1, 2, be two paths joining a0 to a. Denote by λ the loop at
a0 defined by

λ(t) =

{
α1(2t) if 0 ≤ t ≤ 1/2,

α2(2− 2t) if 1/2 ≤ t ≤ 1.

Then the lift of the loop f ◦ λ issuing from x0 should be a closed path in X0,
i.e., the class of the loop f ◦ α should lie in p#π1(X, x0), i.e., we should have
f#π1(A, a0) ⊂ p#π1(X, x0). But this holds by assumption. Thus f̃ is well de-
fined.

It remains to prove that f̃ is continuous. Let a ∈ A and x := f̃(a). For the
point p(x), let us choose a path connected neighborhood U from the definition of
covering space. Let Ũ be the path connected component of p−1(U) containing the
point x0. Since f is continuous, f−1(U) contains a certain neighborhood of the
point a. SinceA is locally path connected, we can assume that V is path connected.
Now we claim that f̃(V ) ⊂ Ũ (which means that f̃ is continuous). Indeed, any
point a1 ∈ V can be joined to α0 by a path α entirely contained in V . Its image
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α ◦ f lies in U , therefore α ◦ f can be lifted to a path entirely contained in Ũ . But
this means that f̃(a) ∈ Ũ . !

Now to prove the uniqueness of p (the covering space corresponding to the
given subgroup of π1(B), where B is path connected and locally path connected),
suppose that we have two coverings pi : Xi → B, i = 1, 2 such that

(p1)#
(
π1(X − 1, x1)

)
⊂ (p2)#

(
π1(X2, x2)

)
.

By the Map Lifting Lemma, we can lift p1 to a (unique) map h : X1 → X2 suchsomething is wrong here

that h(x1) = x2 and lift p2 to a (unique) map k : X2 → X1 such that k(x2) = x1.
The maps k is the inverse of h, so that h is a homeomorphism, which proves that
p1 and p2 are isomorphic.

EXAMPLE 6.4.7. This example, due to Zeeman, shows that for a covering
space p : X → B with non locally path connected space X , the lift f̃ of a map
f : A → B (which always exists and is unique) may be discontinuous.

The spaces A, B, and X consist of a central circle, one (or two) half circles,
one (or two) infinite sequences of segments with common end points as shown on
the figure. Obviously all three of these spaces fail to be locally path connected at
the points a, b, c, d, e.

FIGURE ??? Zeeman’s example
The covering space p : X → B is obtained by wrapping the central circle of

X around the central circle of B twice, and mapping the segments and arcs of X
homeomorphically onto the corresponding segments and the arc of B. The map
f : A → B (which also happens to be a covering) is defined exactly in the same
way. Then we have

f#

(
π1(A)

)
= p#

(
π1(X)

) ∼= 2Z ⊂ Z ∼= π1(B),

but the map f has no continuous lift f̃ , because the condition f ◦ f̃ = p implies the
uniqueness of f̃ , but this map is necessarily discontinuous at the points a and b.

EXERCISE 6.4.2. Can the identity map of S1 to S1 be lifted to the exponential
covering R → S1?

EXERCISE 6.4.3. Prove that a map of S1 to S1 can be lifted to the exponential
covering R → S1 if and only if its degree is zero.
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EXERCISE 6.4.4. Describe the maps of S1 to S1 that can be lifted to the n-
sheeted covering wn : S1 → S1.

EXERCISE 6.4.5. What maps of the circle to the torus T2 can be lifted to the
universal covering R2 → T2?

6.5. Coverings of surfaces and the Euler characteristic

In this section we compute the fundamental group of compact surfaces, use it
to investigate the covering spaces of surfaces, and investigate the behavior of the
Euler characteristic under the corresponding covering maps.

6.5.1. Behavior of the Euler characteristic. Here we will see that for a cov-
ering of a surface by another surface, the Euler characteristics of the surfaces are
directly related to the number of sheets of the covering. In fact, we have the fol-
lowing theorem.

THEOREM 6.5.1. For any n-sheeted covering p : M → N of the compact
surface N by the compact surface M , the Euler characteristics of the surfaces are
related by the formula

χ(N) = n · χ(M)

PROOF. We will prove the theorem for triangulated surfaces, which does not
restrict generality by Theorem ??? Let U1, . . . , Uk be a covering of N by neigh-
borhoods whose inverse images consist of n disjoint sets each of which is mapped
homeomorphically onto the corresponding Ui. Take a triangulation of N and sub-
divide it barycentrically until each 2-simplex is contained in one of the Ui. Using
the projection p, pull back this triangulation toM . Then the inverse image of each
2-simplex of N will consist of n 2-simplices ofM and we will have

χ(M) = VM − EM + FM = nVM − nEM + nFM

= n(VM − EM + FM ) = nχ(N),

where V , E, and F (with subscripts) stand for the number of vertices, edges, and
faces of the corresponding surface. !

EXAMPLE 6.5.2. There is no covering of the surface M(4) of genus 4 by the
surface M(6) of genus 6. Indeed, the Euler characteristic of M(4) is −6, while the
Euler characteristic ofM(6) is −10, and −6 does not divide −10.

EXERCISE 6.5.1. Can the surface of genus 7 cover that of genus 5?

EXERCISE 6.5.2. State and prove a theorem similar to the previous one for
coverings of graphs.
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6.5.2. Covering surfaces by surfaces. After looking at some examples, we
will use the previous theory to find the genus of surfaces that can cover a surface
of given genus.

EXAMPLE 6.5.3. The surface M(9) of genus 9 is the 4-fold covering of the
surface of genus M(3). To see this, note that M(9) has a Z4 rotational symmetry
(this is clear from the figure) which can be regarded as a normal action of Z4 on
M(9). Obviously, the corresponding quotient space isM(3).

FIGURE ??? A four-sheeted covering of surfaces

EXERCISE 6.5.3. Generalizing the previous example, construct a d-fold cov-
ering p : X → B of of the orientable surface of genus k by the orientable surface
of genus d(k − 1) + 1.

THEOREM 6.5.4. A compact orientable surface M covers a compact ori-
entable surface N if and only if the Euler characteristic of N divides that of M .

PROOF. If χ(N) does not divide χ(M), then M cannot cover N by the the-
orem in the previous subsection, which proves the “only if” part of the theorem.
To prove the “if” part, assume that χ(M) = d · χ(N). Since the Euler char-
acteristic of a surface can be expressed via its genus as χ = 2 − 2g, we have
d(2− gN ) = 2−2gM , whence gM = dgN −d−1. Now the construction from the
previous exercise (which is a straightforward generalization of the one described
in the previous example) completes the proof of the theorem. !

EXERCISE 6.5.4. Describe all possible coverings of nonorientable surfaces by
nonorientable surfaces.

EXERCISE 6.5.5. Describe all possible coverings of orientable surfaces by
nonorientable ones.
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6.6. Branched coverings of surfaces

In this and the next section, we study the theory of branched coverings (also
called ramified coverings) of two-dimensional manifolds (surfaces). This is a beau-
tiful theory, originally coming from complex analysis, but which has drifted into
topology and, recently, into mathematical physics, where it is used to study such
fashionable topics as moduli spaces and Gromov–Witten theory.

6.6.1. Main definitions. Suppose thatM2 andN2 are two-dimensional man-
ifolds. Recall that a continuous map p : M2 → N2 is said to be a covering (with
fiber Γ, where Γ is a fixed discrete space) if for every point x ∈ N2 there exists
a neighborhood U and a homeomorphism ϕ : p−1(U) → U × Γ such that the
restriction of p to p−1(U) coincides with π ◦ ϕ, where the map π : U × Γ → U
is the projection on the first factor. Then M2 is called the covering manifold or
covering space, while N2 is the base manifold or base. If the fiber Γ consists of n
points, then the covering p is said to be n-fold.

A continuous map p : M2 → N2 is said to be a branched (or ramified)
covering if there exists a finite set of points x1, . . . , xn ∈ N2 such that the set
p−1({x1, . . . , xn}) is discrete and the restriction of the map p to the set M2 −
p−1({x1, . . . , xn}) is a covering. In other words, after we delete a finite set of
points, we get a covering. The points x1, . . . , xn ∈ N2 that must be deleted are
called the branch points of p. The following obvious statement not only provides
an example of a branched covering, but shows how branched coverings behave near
branch points.

PROPOSITION 6.6.1. Let D2 = {z ∈ C : |z| " 1} and let p : D2 → D2 be
the map given by the formula p(z) = zm. Then p is an m-fold branched covering
with unique branch point z = 0. !

The example in the proposition for different m describes the structure of an
arbitrary branched covering near its branch points. Indeed, it turns out that if p is
an n-fold branched covering and U is a sufficiently small disk neighborhood of a
branch point, then p−1(U) consists of one or several disks on which p has the same
structure as the map in the proposition (in general, with different values of m).
We shall not prove this fact in the general case, but in all the examples considered
it will be easy to verify that this is indeed the case. If in a small neighborhood
of a point x of the covering manifold the covering map is equivalent to the map
z #→ zm, we shall say that x has branching index m. The following proposition is
obvious.

PROPOSITION 6.6.2. For any n-fold branched covering, the sum of branching
indices of all the preimages of any branch point is equal to n.

Here is another, less trivial, example of a branched covering, which will allow
us to construct a branched covering of the open disk (actually, the open set with
boundary an ellipse) by the open annulus.

PROPOSITION 6.6.3. Consider the map f : C\{0} → C given by the formula
f(z) = 2(z + 1/z). This map is a 2-fold branched covering with branch points
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±4. The preimages of these points are the points ±1, and the branching index of
each is 2.

PROOF. The equation 2(z + 1/z) = c is quadratic. Its discriminant c2/4 − 4
vanishes iff c = ±4. This value is assumed by the function f when z = ±1. !

PROPOSITION 6.6.4. Let p be the restriction of the map f from the previous
proposition to the annulus C = {z ∈ C : 1/2 < |z| < 2}. If z = ρeiϕ, then we
have

p(z) = 2((ρ + 1/ρ) cos ϕ + i(ρ− 1/ρ) sinϕ),
so that the image of the annulus C is the set of points located inside the ellipse (see
Fig. ??): {ρ = 5 cos ϕ + 3i sinϕ, 0 " ϕ < 2π}. !

FIGURE ?? Branched covering of the ellipse by the annulus

A more geometric description of p is the following. Imagine the open annulus
C as a sphere with two holes (closed disks) and an axis of symmetry l (Fig.??).
Let us identify points of the set C symmetric with respect to l. It is easy to see
that the resulting space is homeomorphic to the open disk D2. The quotient map
p : C → D2 thus constructed is a 2-fold branched covering with two branch points
(the intersection points of l with the sphere).

FIGURE ?? Sphere with two holes and symmetry axis

EXERCISE 6.6.1. Prove that if the base manifold M2 of a branched covering
p : N2 → M2 is orientable, then so is the covering manifold N2.

THEOREM 6.6.5. Let M2
g be the sphere with g handles. Then there exists a

branched covering p : M2
g → S2.

First proof. Consider a copy of the sphere with g handles with an axis of
symmetry l (Fig.??). Identify all pairs of points symmetric with respect to l. The
resulting quotient space is (homeomorphic to) the ordinary sphere S2. The natural
projection p : M2

g → S2 is a 2-fold branched covering which has 2g + 2 branch
points. !
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FIGURE ?? Branched covering of the 2-sphere
Second proof. Consider a triangulation of the manifoldM2

g . (This means that
M2

g is cut up into (curvilinear) triangles, any two of which either intersect along a
common side, or intersect in a common vertex, or have no common points.) Let
A1, . . . , An be the vertices of the triangulation. On the sphere S2 choose n points
B1, . . . , Bn situated in general position in the following sense: no three of them
lie on one and the same great circle and no two are antipodes. Then any three
points Bi, Bj , Bk uniquely determine a spherical triangle ∆1. Suppose ∆2 is the
closure of its complement S2−∆1; then∆2 is also homeomorphic to the triangle.
Therefore there exist homeomorphisms

f1 : AiAjAk → ∆1, f2 : AiAjAk → ∆2

that are linear in the following sense. We can assume that the length of a curve is
defined both on the manifoldM2

g and on the sphere S2; we require that an arbitrary
pointX divide the arc ApAq in the same ratio as the point fr(X), r = 1, 2, divides
the arc BpBq.

Let us fix orientations ofM2
g and S2. The orientations of the trianglesAiAjAk

and BiBjBk induced by their vertex order may agree with or be opposite to that of
M2

g and S2. If both orientations agree, or both are opposite, then we map AiAjAk

onto ∆1 = BiBjBk by the homeomorphism f1. If one orientation agrees and
the other doesn’t, we map AiAjAk onto ∆2 (the complement to BiBjBk) via f2.
Defining such maps on all the triangles of the triangulation ofM2

g , we obtain a map
f : M2

g → S2. We claim that this map is a branched covering.
For each interior point x0 of triangle AiAjAk there obviously exists a neigh-

borhood U(x0)mapped homeomorphically onto its image. Let us prove that this is
not only the case for interior points of the triangles, but also for inner points of their
sides. Indeed, let the side AiAj belong to the two triangles AiAjAk and AiAjAl.
On the sphere S2, the great circle passing through the points Bi and Bj may either
separate the points Bk and Bl or not separate them. In the first case we must have
used the maps f1 and f1 (or the maps f2 and f2), in the second one f1 and f2 (or
f2 and f1). In all cases a sufficiently small neighborhood of a point chosen inside
AiAj will be mapped bijectively (and hence homeomorphically) onto its own im-
age (Fig.??). So at all points except possibly the vertices A1, . . . , An we have a
covering, so f is a branched covering. !

FIGURE ?? Structure of f at inner points of the sides
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In fact not all the points B1, . . . , Bn are necessarily branch points, although
some must be when g > 0. How few can there be? The answer is contained in the
next statement, and surprisingly does not depend on g.

THEOREM 6.6.6. Let M2
g be the sphere with g handles, where g # 1. Then

there exists a branched covering p : M2
g → S2 with exactly three branch points.

PROOF. Choose an arbitrary triangulation of the manifold M2
g and take its

baricentric subdivision, i.e., subdivide each triangle into 6 triangles by its three
medians. To the vertices of the baricentric subdivision assign the numbers 0, 1, 2
as follows:

0 to the vertices of the initial triangulation;
1 to the midpoints of the sides;
2 to the baricenters of the triangles.

If the orientation of some triangle 012 induced by its vertex order agrees with that
of the manifold M2

g , then we paint the triangle black, otherwise we leave it white
(Fig.??).

FIGURE ?? Black and white coloring of the baricentric subdivision

We can regard the sphere S2 as the union of two triangles glued along their
sides; denote their vertices by 0′, 1′, 2′ and paint one of these triangles black, leav-
ing the other white. Now we map each white triangle 012 from the baricentric
subdivision in M2

g to the white triangle 0′1′2′ in S2, and each black one to the
black 0′1′2′. In more detail this map was described in the second proof of Theo-
rem ??, where it was established that this map is a branched covering. The three
branch points are of course 0′, 1′, 2′. !

6.7. Riemann–Hurwitz formula

The formula that we prove in this section relates the topological properties of
the base and covering manifolds in a branched covering with the branching indices.
The main tool involved is the Euler characteristic, and we begin by recalling some
of its properties.

6.7.1. Some properties of the Euler characteristic for surfaces. The prop-
erties that we need were proved in the previous chapter, but we restate them here
for completeness as exercises.

Recall that a triangulationK ′ is said to be a subdivision of the triangulationK
if any simplex ofK ′ is the union of simplices fromK. Two triangulationsK1 and
K2 of a two-dimensional manifold are called transversal if their edges intersect
transversally at a finite number of points. Any two triangulations of a 2-manifold
can be made transversal by a small move (see ??)
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EXERCISE 6.7.1. (a) Verify that the Euler characteristic of a 2-manifold does
not change when we pass to a subdivision of its triangulation.

(b) Prove that any two transversal triangulations of a 2-manifold have a com-
mon subdivision. Using (a) and (b), show that the Euler characteristic for 2-
manifolds does not depend on the choice of the triangulation.

EXERCISE 6.7.2. Suppose a surface M is cut into two components A and B
by a circle. Prove that in this case χ(M) = χ(A) + χ(B).

EXERCISE 6.7.3. Show that if the surfaceM can be obtained from the surface
F by adding a handle (see Fig.??), then χ(M) = χ(F )− 2

FIGURE 21.1 Adding a handle

EXERCISE 6.7.4. Prove that ifM2
g is the sphere with g handles, then χ(M2

g ) =
2− 2g.

Thus the topological type of any oriented compact 2-manifold without bound-
ary is entirely determined by its Euler characteristic.

6.7.2. Statement of the Riemann-Hurwitz theorem. The main result of this
section is the following

THEOREM 6.7.1 (Riemann-Hurwitz formula). Suppose p : M2 → N2 is an
n-fold branched covering of compact 2-manifolds, y1, . . . , yl are the preimages of
the branch points, and d1, . . . , dl are the corresponding branching indices. Then

χ(M2) +
l∑

i=1

(di − 1) = nχ(N2).

The proof of Theorem ?? will be easier to understand if we begin by recalling
its proof in the particular case of non-branched coverings (see Theorem ?? in the
previous section) and work out the following exercise.

EXERCISE 6.7.5. a) Let p : M2
g → N2

h be the covering of the sphere with h
handles by the sphere with g handles. Prove that g − 1 is divisible by h− 1.

b) Suppose that g, h # 2 and g−1 is divisible by h−1. Prove that there exists
a covering p : M2

g → N2
h .
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6.7.3. Proof of the Riemann–Hurwitz formula. First let us rewrite formula
?? in a more convenient form. After an appropriate renumbering of the branching
indices, can assume that d1, . . . , da1 are the branching indices of all the preim-
ages of one branch point, da1+1, . . . , da1+a2 are the branching indices of all the
preimages of another branch point, and so on. Since (see ??)

d1 + · · · + da1 = da1+1 + · · · + da1+a2 = · · · = n,

we obtain
l∑

i=1

(di − 1) = (n− a1) + (n− a2) + · · · = kn− a1 − a2 − · · · − ak,

where k is the number of branch points and ai is the number of preimage points of
the ith branch point. Hence formula ?? can be rewritten as

χ(M2) = n(χ(N2)− k) + a1 + · · · + ak.

It will be more convenient for us to prove the Riemann–Hurwitz formula in this
form.

The manifoldsM2 and N2 may be presented as follows
M2 = AM ∪BM and N2 = AN ∪BN ,

whereAN is the union of the closures of small disk neighborhoods of all the branch
points, AM is the inverse image of AN , while BM and BN are the closures of the
complementsM2−AM andN2−AN . The sets AM ∩BM and AN ∩BN consist
of nonintersecting circles, and so we can use formula from Exercise ??. As the
result we get

χ(M2) = χ(AM ) + χ(BM ), χ(N2) = χ(AN ) + χ(BN ).

The restriction of the map p to the set BM is a (nonbranched) covering, so by
Theorem ?? we have

χ(BM ) = nχ(BN ).
The setAN consists of k disks, whileAM consists of a1+· · ·+ak disks. Therefore

χ(AM ) = a1 + · · · + ak, χ(AN ) = k.

Combining the displayed formulas, we get
χ(M2) = a1 + · · · + ak + nχ(BN ) = a1 + · · · + ak + n(χ(N2)− k),

which is the required formula ??. This completes the proof of the Riemann–
Hurwitz formula. !

6.7.4. Some applications. The Riemann–Hurwitz formula has numerous ap-
plications. The first one that we discuss has to do with Theorem ??, which asserts
the existence of a branched covering p : M2

g → S2 with exactly 3 branch points
(when g # 1). Can this number be decreased? The answer is ‘no’, as the next
statement shows.

THEOREM 6.7.2. If g # 1, there exists no branched covering p : M2
g → S2 of

the sphere by the sphere with g handles having less than 3 branch points.
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PROOF. By formula ??, we have
2− 2g = χ(M2

g ) = n(χ(S2)− k) + a1 + · · · + ak = n(2− k) + a1 + · · · + ak.

If k " 2, then n(2 − k) # 0 and hence n(2 − k) + a1 + · · · + ak > 0, because
the relations n(2 − k) = 0 and a1 + · · · + ak = 0, i.e., k = 0, cannot hold
simultaneously. Thus 2 − 2g > 0, hence g = 0, contradicting the assumption of
the theorem. Therefore k > 2 as asserted. !

EXERCISE 6.7.6. Prove that if p : D2 → D2 is a branched covering of the disk
by the disk with exactly one branch point, then the preimage of the branch point
consists of one point.

6.7.5. Genus of complex algebraic curves. The Riemann–Hurwitz formula
can be applied to the computation of the genus of algebraic curves in CP 2. We
begin with the necessary background material. An algebraic curve of degree n in
CP 2 is the set of points satisfying the homogeneous equation

F (x, y, z) =
∑

i+j+k=n

aijx
iyjzn−i−j , x, y, z ∈ CP 2.

When z = 1 and x, y ∈ R, we get a plane algebraic curve:
∑

i+j!n

aijx
iyj = 0.

If the gradient

gradF =
(

∂F

∂x
,

∂F

∂y
,

∂F

∂z

)

does not vanish at all points of an algebraic curve in CP 2, then the curve is called
nonsingular. If the polynomial F is irreducible, i.e., cannot be represented as
the product of two homogeneous polynomials of lesser degree, then the curve is
said to be irreducible. It can be proved that any nonsingular irreducible algebraic
curve in CP 2 is homeomorphic to the sphere with g handles for some g # 0; the
nonnegative integer g is called the genus of the curve.

PROPOSITION 6.7.3. Fermat’s curve xn+yn+zn = 0 is of genus (n−1)(n−
2)/2.

PROOF. First note that Fermat’s curve Γ ⊂ CP 2 is nonsingular, because

gradF = n
(
xn−1, yn−1, zn−1

)
&= 0 ∀(x : y : z) ∈ CP 2.

Now consider the map p : CP 2 − {(0 : 0 : 1)} → CP 1 that takes the point
(x : y : z) ∈ CP 2 to (x : y) ∈ CP 1. The point (0 : 0 : 1) does not lie on the curve
Γ, therefore the map p induces the map p′ : Γ → CP 1 = S2. The inverse image
of the point (x0 : y0) ∈ CP 1 consists of all points (x0 : y0 : z) ∈ CP 2 such that
zn = −(xn

0 + yn
0 ). When xn

0 + yn
0 &= 0, the inverse image consists of n points,
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when xn
0 + yn

0 = 0, of only one. Hence p′ is an n-fold branched covering with
branch points (1 : εn) ∈ CP 1, where εn is a root of unity of degree n. So there are
n branch points, and the inverse image of each consists of one point. According to
formula ??, we get

χ(Γ) = n(χ(S2)− n) + n = n(2− n) + n = −n2 + 3n.

Therefore,

g =
2− χ(Γ)

2
=

n2 − 3n + 2
2

=
(n− 1)(n− 2)

2
.

!

PROPOSITION 6.7.4. The hyperelliptic curve y2 = Pn(x), where Pn is a poly-
nomial of degree n # 5 without multiple roots, is of genus

[n + 1
2

]
− 1.

REMARK 6.7.5. This statement is also true for n < 5. When n = 3, 4 the
curve y2 = Pn(x) is called elliptic.

PROOF. Let Pn(x) = a0 + · · ·+anxn. Then the hyperelliptic curve Γ in CP 2

is given by the equation

y2zn−2 =
n∑

k=0

akx
kzn−k.

For the curve Γ, we have gradF = 0 at the point (0 : 1 : 0) ∈ Γ, so the hyperelliptic
curve is singular.

Consider the map
p : CP 2 − {(0 : 1 : 0)} → CP 1, CP 2 2 (x : y : z) #→ (x : z) ∈ CP 1.

Let p′ : Γ− {(0 : 1 : 0)} → CP 1 be the restriction of p. We claim that for x = 1
the preimage of the point (x : z) tends to the singular point (0 : 1 : 0) ∈ Γ as
z → 0. Indeed, by ?? we have y2 ≈ anz2−n →∞, so that

(1 : y : z) = (1/y : 1 : z/y) → (0 : 1 : 0).

Therefore the map p′ can be extended to a map of the whole curve, p′ : Γ → CP 1,
by putting p′((0 : 1 : 0)) = (1 : 0).

In order to find the inverse image under p′ of the point (x0 : z0) ∈ CP 1 when
z0 &= 0, we must solve the equation

y2 = z2
0

∑

k

ak ·
(

x0

z0

)k

= z2
0 Pn

(
x0

z0

)
.

If x0/z0 is not a root of the polynomial Pn, then this equation has exactly two
roots. Therefore the map p′ : Γ → CP 1 is a double branched covering, the branch
points being (x0 : z0) ∈ CP 1, where x0/z0 is a root of Pn and, possibly, the point
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(1 : 0). We claim that (1 : 0) is a branch point iff n is odd. To prove this claim,
note that for small z the preimage of the point (1 : z) consists of points of the form
(1 : y : z), where y2 ≈ anz2−n. Let z = ρeiφ. When φ varies from 0 to 2π, i.e.,
when we go around the point (1 : 0) ∈ CP 1, the argument of the point y ∈ C
changes by

(2− n)2π/2 = (2− n)π.

Therefore for odd n the number y changes sign, i.e., we switch to a different
branch, while for n even y does not change, i.e., we stay on the same branch.

Thus the number of branch points is 2[(n + 1)/2]. Let g be the genus of the
curve Γ. Then, according to ??,

2− 2g = 2
(

2− 2
[
n + 1

2

])
+ 2

[
n + 1

2

]
, i.e., g =

[
n + 1

2

]
− 1.

!

6.8. Problems

EXERCISE 6.8.1. Give an example of the covering of the wedge sum of two
circles which is not normal.

EXERCISE 6.8.2. Prove that any nonorientable surface possesses a double cov-
ering by an oriented one.

EXERCISE 6.8.3. Prove that any subgroup of a free group is free by using
covering spaces.

EXERCISE 6.8.4. Prove that if G is a subgroup of a free group F of index
k := [F : G] ≤ ∞, then its rank is given by rkG = k(rkF − 1) + 1

REMARK 6.8.1. Note that the purely group-theoretic proofs of the two the-
orems appearing in the previous two exercises, especially the first one, are quite
difficult and were hailed, in their time, as outstanding achievements. As the reader
should have discovered, their topological proofs are almost trivial.

EXERCISE 6.8.5. Prove that the free group of rank 2 contains (free) subgroups
of any rank n (including n = ∞)

EXERCISE 6.8.6. Give two examples of nonisomorphic three-sheeted cover-
ings of the wedge of two circles,

EXERCISE 6.8.7. Suppose the graph G′′ covers the graph G′. What can be
said about their Euler characteristics?

EXERCISE 6.8.8. Prove that any double (i.e., two-sheeted) covering is normal.
To what group-theoretic statement does this fact correspond?
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EXERCISE 6.8.9. Prove that any three-sheeted covering of the sphere with two
handles cannot be normal (i.e., regular in the traditional terminology).

EXERCISE 6.8.10. Construct a double covering of n-dimensional projective
space RPn by the sphere and use it to prove that

(i) RPn is orientable for even n and orientable for odd n.
(ii) π1(RPn) = Z2 and πk(RPn) ∼= πk(Sn) for n ≥ 2.

EXERCISE 6.8.11. Prove that all the coverings of the torus are normal (i.e.,
regular in the traditional terminology) and describe them.

EXERCISE 6.8.12. Find the universal covering of the Klein bottle K and use
it to compute the homotopy groups ofK.

EXERCISE 6.8.13. Can the torus double cover the Klein bottle?

EXERCISE 6.8.14. Prove that any deck transformation of an arbitrary (not nec-
essarily normal) covering is entirely determined by one point and its image.
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HOMEWORK #1; September 11, 2006

Topological Spaces

Due on Monday September 18

1. Write complete proof of Proposition 1.1.13: For any set X and
any collection C of subsets of X there exists a unique weakest topology
for which all sets from C are open.

2.(Ex. 1.1.1.) How many different (non-homeomorphic) topologies
are there on the 2–element set and on the 3–element set?

3.(Ex. 1.3.2.)Prove that the sphere S
2 with two points removed is

homeomorphic to the infinite cylinder C := {(x, y, z) ∈ R
3|x2+y2 = 1}.

4.(Example 1.3.3.+ Ex. 1.3.4 & 1.3.5.) Prove that the following
three constructions of the n-torus T

n produce homeomorphic topolog-
ical spaces:

• Product of n copies of the circle
• The following subset of R

2n:

{(x1, . . . x2n) : x2

2i−1
+ x2

2i
= 1, i = 1, . . . , n.}

with the induced topology.
• The identification space of the unit n–cube In:

{(x1, . . . , xn) ∈ R
n : 0 ≤ xi ≤ 1, i = 1, . . . n}.

where any two points are identified if all of their coordinates
but one are equal and the remaining one is 0 for one point and
1 for another.

5.(Ex. 1.10.4 & 1.10.5.) Consider the profinite topology on Z in
which open sets are defined as unions (not necessarily finite) of non-
constant arithmetic progressions

a) Prove that this defines a topology.
b) Let T

∞ be the product of countably many copies of the circle with
the product topology. Define the map ϕ : Z → T

∞ by

ϕ(n) = (exp(2πin/2), exp(2πin/3), exp(2πin/4), exp(2πin/5), . . . )
1



2

Show that the map ϕ is injective and that the pullback topology on
ϕ(Z) coincides with its profinite topology.
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HOMEWORK #2; September 18, 2006

Factor–spaces, Separation, Compactness

Due on Monday September 25

6. Ex 1.3.9.

7. Ex 1.3.11.

8. Ex 1.4.3.

9. Ex 1.10.6.

10. Ex 1.5.3.

“‘Extra credit” problems
You may submit solutions until October 6.

E1. Ex 1.10.9.

E2. Ex 1.10.10.

1
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A.Katok

HOMEWORK # 3; September 25, 2006

Compactness, Connectedness, Manifolds

Due on Monday, October 2

ATTENTION: NUMBERS FROM REVISED VERSION of “Chapter 1”

11. Ex 1.5.5

Hint: You may use induction in n.

12. Ex. 1.10.7

13. Ex 1.7.2.

14. Ex 1.10.14.

15. Ex 1.8.6.

“‘Extra credit” problem
You may submit solutions until October 13.

E3. Ex 1.8.3.

1
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HOMEWORK # 4; October 2, 2006

Manifolds, graphs, beginning homotopy

Due on Monday October 9

16. Consider the torus T
2 = R

2/Z
2 and let S be the quotient space

obtained by identifying orbits of the map I : x 7→ −x. Prove that S is
homeomorphic to the sphere S

2.

17. Ex 2.3.1.

18. Ex. 2.12.1.

19. Ex 2.12.2.

20. Ex 2.12.4.

“‘Extra credit” problems
You may submit solutions until October 27.

E4. Consider regular 2n-gon and identify pairs of opposite side by
the corresponding parallel translations. Prove that the identification
space is a topological manifold. Prove that the manifolds obtained by
this construction from the 4n-gon and and 4n + 2-gon are homeomor-
phic.

E5. Prove that the manifold of the previous exercise is homeomor-
phic to the surface of the sphere to which n “handles” are attached, or,
equivalently, to the surface of n tori joint into a “chain” (Figure 1.8.1
illustrates this for n = 1 and n = 3.

1
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HOMEWORK # 5: October 9, 2006

Fundamental group, covering spaces

Due on Monday October 16

21.Prove that for any path connected topological space X we have
π1(Cone(X)) = 0.

22. Consider the following map f of the torus T
2 into itself:

f(x, y) = (x + sin 2πy, 2y + x + 2 cos 2πx) ( mod 1).

Describe the induced homomorphism f∗ of the fundamental group.

23. Let X = R
2 \ Q

2. Prove that π1(X) is uncountable.

24. Let X be the quotient space of the disjoint union of S
1 and S

2

with a pair of points x ∈ S1 and y ∈ S2 identified. Calculate π1(X).

25. Describe two-fold coverings of

(1) the (open) Möbius strip by the open cylinder S
1 × R;

(2) the Klein bottle by the torus T
2.

26. Prove that the real projective space RP (n) is not simply con-
nected.

Hint: Use the fact that RP (n) is the sphere S
n with diametrically

opposed points identified.

1
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HOMEWORK # 6; October 23 2006

Hopf fibration, Cantor sets, differentiable manifolds

Due on Monday October 30

26.For any finite cyclic group C there exists a compact connected
three-dimensional manifold whose fundamental group is isomorphic to
C.

Hint: Use the Hopf fibration.

27.For any abelian finitely generated group A there exists a compact
manifold whose fundamental group is isomorphic to A.

Hint: Use the fact that any finitely generated abelian group is the
direct product of cyclic groups (finite and infinite).

28. Prove that complex projective space CP (n) is simply connected
for every n.

29.Introduce a metric d on the Cantor set C (generating the Cantor
set topology) such that (C, d) cannot be isometrically embedded to R

n

for any n.

30. Construct a smooth atlas of the projective space RP (3) with as
few charts as possible.

“‘Extra credit” problems
You may submit solutions until November 14.

E6. Introduce a metric d on the Cantor set C such that (C, d) is not
Lipschitz equivalent to a subset of R

n for any n.

E7. Prove that for any finite graph G, πn(G) = 0 for any n ≥ 2.

1
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HOMEWORK # 7; October 30, 2006

Differentiable manifolds; diffeomorphisms, submanifolds

Due on Monday, November 6

31. Construct an explicit diffeomorphism between R
n and the open

unit ball Bn.

32. Prove that any convex open set in R
n is diffeomorphic to R

n.

33. Prove that the following three smooth structures on the torus
T

2 are equivalent, i.e. the torus provided with any of these structure
is diffeomorphic to the one provided with another:

• T
2 = S

1 × S
1 with the product structure;

• T
2 = R

2/Z
2 with the factor-structure;

• The embedded torus of revolution in R
3

T
2 =

{

(x, y, z) ∈ R
3 :

(

√

x2 + y2 − 2
)2

+ z2 = 1
}

with the submanifold structure.

34. Prove that the n-dimensional torus in R
2n:

x2

2k−1
+ x2

2k
=

1

n
, k = 1, . . . , n

is a smooth submanifold of the (2n − 1)-dimensional sphere

2n
∑

i=1

x2

i
= 1.

35. Prove that the upper half of the cone

x2 + y2 = z2, z ≥ 0

is not a submanifold of R
3, while the punctured one

x2 + y2 = z2, z > 0

is a submanifold of R
3.

1
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HOMEWORK # 8; November 10, 2006

Tangent bundles, examples of Lie groups, orientability

Due on Monday November 20

36. Prove that the tangent bundle to the three-dimensional sphere
S

3 is diffeomorphic to the direct product S
3 × R

3.

37. Find a natural smooth group structure on the sphere S
3.

38. Prove that real projective spaces RP (n) are orientable for odd
n and non-orientable for even n.

39. Prove that complex projective spaces CP (n) are orientable.

40. Prove that there exists a non-vanishing smooth vector field on
any odd–dimensional sphere S

2n−1.

41. Prove that the group SL(2, R) of 2×2 matrices with determinant
one is homotopy equivalent to the circle.

1
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HOMEWORK # 9; November 20, 2006

Complex manifolds, Lle groups

Due on Monday November 27

42. Give a detailed proof that any complex manifold is orientable.

43. Find a polynomial in two complex variables whose zero set is a
complex curve homeomorphic to the sphere with two handles.

44. Let M is a complex manifold and suppose X is a nonvanishing
vector field on M . Prove that there exists another nonvanishing vector
field Y linearly independent of X.

45. Represent the torus T
n as a linear group.

46. Prove that the group of affine transformations of R
n is isomor-

phic to a Lie subgroup of GL(n + 1, R). Calculate its dimension.
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Surfaces I: triangulations, functions, Möbius caps

Due on Monday December 4

47. Prove that there exists a triangulation of the projective plane
with any given number N > 4 of vertices.

48. Prove that minimal number of vertices in a triangulation of the
torus is seven.

Hint: Use Euler theorem.

49. Prove that for any triangulation T of a surface there exists a
smooth function whose local maxima are vertices of T and which has
exaclty one saddle on each edge of T , exaclty one local minimum inside
each face of T and no more critical points.

50. Construct a smooth function of the torus with three critical
points.

In the next two problems you must describe the homeomorphisms

explicitly and not refer to the general theorem about classification of

surfaces.

51. Given a surface M attaching a Möbius cap consists of deleting
a small disk and identifying the resulting boundary circle with the
boundary of a Möbius strip.

Prove that the sphere with two Möbius caps attached is homeomor-
phic to the Klein bottle.

52. Prove that sphere with three Möbius caps attached is homeo-
morphic to the torus with a Möbius cap attached.

1
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HOMEWORK # 11

Surfaces II: Classification, fundamental group, covering spaces

Due on Monday December 11

You cannot use classification of surfaces for the next two problems

53. Prove that attaching a handle decreases Euler characteristic of
a compact surface (with or without boundary) by two.

54. Prove that attaching a Möbius cap decreases Euler characteristic
of a compact surface (with or without boundary) by one.

55. Prove that the only compact surfaces from the standard list
(spheres with handles, Möbius caps, and holes) which have abelian
fundamental group are the sphere, the closed cylinder, the closed M
öbius strip, the projective plane, and the torus.

57. Prove that any compact covering space for the torus is another
torus.

58. Prove that the orientable surface of genus m is a covering space
for an orientable surface of genus n ≥ 2 if and only if m > n and n− 1
divides m − 1.

1
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