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ABSTRACT: Infection process of bird flu within a poultry farm is studied to propose strategies a.gainst outbreaks of
bird-flu within a poultry farm. Mathematical models proposed in previous studies are extended to take spatial effects into
consideration. Numerical results show that removal of infected birds is a crucial factor to avoid an outbreak in a poultry
farm.
AMS (MOS) Subject Classification. 92D30, 92-08

1 INTRODUCTION

Bird flu or avian influenza is an epidemic disease among birds. Since it prevailed worldwide in 2003, poultry farmers
have been under constant threat from loss of domestic birds due to the disease. The source of the disease is influenza
virus H5SN1 carried naturally by wild birds. Infection of domestic birds with HSN1 ses leads to two types of diseases,
low pathogenic form and highly pathogenic form. The infection of domestic birds with highly pathogenic form spreads
rapidly over a poultry farm and causes domestic birds serious sicknesses that eventually lead to death. In practice, spot-
check is conducted to detect infection of domestic birds with HSN1 viruses. If one bird in a farm is detected positive for
infection, all the birds in the farm are disposed of. 1

Primary factors for outbreak of bird flu include avian influenza virus as source of disease, poultry as host, and envi-
ronment as medium. In a production process on a poultry farm, the entire population of domestic birds is kn constant at
the manageable capacity by supply of new healthy birds for vacancies. After intrusion of influenza virus, some infected
birds die at an early stage of infection, and some others live longer. However, regardless of being alive or dead, infected
birds are the sources of infection, unless they are completely removed from the entire population.

Mathematical models based on these factors were proposed to study bird flu infection processes within a poultry farm.
A mathematical model originally proposed consists of ordinary differential equations whose unknowns are populations
of susceptible birds and infected birds (Nova et al., 2010 (1)). The mathematical model was extended to cover time
evolution of populations of susceptible birds and infected birds, and concentration of bird flu virus (Nova et al., 2010 (2),
(3)).

Analysis based on the model has shown that the population of domestic birds can be m secure against infection
with bird flu by proper vaccination and proper removal of infected birds. It is shown that the state free of inf@fion is
made stable in the sense that the state returns to the original state after intrusion of bird flu. It is also shown that the
population cannot be made secure by vaccination alone without removal of infected bird and that it can be made secure
by re 1 of infected birds alone without vaccination.

The Study on bird flu infection processes within a poultry farm is continued with virus diffusion taken into consideration
in modeling. In the following sections, the model is described and numerical resulis are introduced.

F
2 MODELINGINFECTION PROCESSES WITHIN A POULTRY FARM

The intrusion of bird flu into a poultry farm divides the population of domestic birds into two classes, the class of healthy
birds susceptible to infection and the class of infected birds. 1

The ST model (1), (2) is introduced in studies on infectious diseases to analyze the population of susceptible individuals
x and the population of infected individuals y?eeling et al., 2007).

x
g = c— bz — waxy, (1)
dy = wzy— (b+my. 2)
dt 2

Here c is the rate at which new birds are bom, b is the death rate for susceptible birds and infected birds, and m is the
additional death rate for infected birds. term way is the number of susceptible birds infected per unit time, and it is
proportional to the number of susceptiblj&s  and the number of infected birds y. The system of equations (1), (2) is
called the SI model because S and 1 stand for susceptible birds and infected birds, respectively, the population of which
the unknowns of the system denaote. 2

The S1model (1), (2) is not appropriate for closed systems such as poultry farms. In the production process of a poultry
farm, the entire population of domestic birds is balanced with the capacity of the farm by supply of new healthy birds when
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2
vacaifEles are created, and the#st two terms on the right hand side of the equation (1) are replaced witha {¢ — (z + y)}.
Here ¢ is the capacity[ll the farm, and « is the rate of supply of susceptible birds. The infected domestic birds eventually
die from the disease. Some infected birds die at a@rfy stage and others stay alive longer. Regardless of being alive or
dead, infected birds remain as sources of infection unless they are removed from the population. The removal of infect
birds is proportional to the population of infected birds, and so the second term in the right hand side of the equation (2) 1s
replaced with —my, where m is the removal rate. The foregoing discussion leads to the system of differential equations
(3) (Nova et al., 2010 (1)). .
2

dt
dy
dt

afc—(z+y)} —way,
3)

Wry — miy .

Here ¢, w, and m are positive constants. q

Stationary points of the system (3) are constant sunnx obtained by setting the right hand sides equal to zero. For
fixed but arbitrary positive constants a, ¢, w, and m, there are two stationary points of the system (3). One stationary
point of the system (3) is

(z, ) =(c0), (C5]
9

ich corresponds to the state free of infection, in which none of the birds is infected. The other stationary point of the

system (3) is
TR - (E M) , )

w’ wla+m)
The y component of the stationary point (3) is positive if and only if
aw—m>0. (6)
The stationary point (3) is practically significant under the condition (6), while it is practically insignificant for cw —m <
0. The stationary points (5) and (6) coincide for cw — m = 0.

‘When the stationary point (4) is asymptotically stable, the state always returns to the original ac after a perturbation
due to intrusion of bird flu. The stationary point (4) is unstable under the condition (6), and that it is asymptotically stable
for cco — m < 0. The stationary point (5) is asymptotically stable under the condition (6), and that it is unstable for
cw —m < 0 (Nova et al., 2010 (1)). The stability of a stationary point (x, y) = (&, 1) of the system (3) depends on the
eigenvalues of the Jacobian matrix

[ ~(atun) —@+wd) ]

wn wE—m
The stationary point (£, 1) is asymptotically stable when all the eigenvalues of A have negative real parts, and unstable
when at least one of the eigenvalues has a positive real part (Coddington et al., 1955). The eigenvalues A_ and Ay of A

are given by
wA  V(rd)? —ddetA
At = T - = (7)
Here
trA=—(a+wn) +wE—m, 8)
and
det A = — (a + wn) (wé —m) +wn(a+ wE). 9

The stationary point is asymptotically stable for tr A < 0 and det A > 0.
For the stationary point (4), expressions (7) — (9) lead to

A== —q, = We — M.

Under the condition (6), the stationary point (4) is unstable, and it is asymptotically stable for cw — m < 0. For the
stationary point (5), expressions (8) and (9) become
tr.ﬁl:—w, det A = a(cw —m).
a+m

Ulﬁr the condition (6), the stationary point (5) is asymptotically stablead it is unstable under the condition cw—m < 0.

In order to propose effective measures against outbreaks of bird flu, it is important to take temporal and spatial distri-
bution of virus concemr@n into consideration. The time rate in increase of virus concentration is proportional to itself.
The decrease in number of susceptible birds due to infection is propor?ml to the population of susceptible birds, and it
is also proportional to the virus concentration. The decrease in number of susceptible birds due to infection is the increase
in number of infected birds. The rate of increase in virus concentration depends on the number of infected birds as hosts.
It is positive when the virus concentration stays below the capacity of the hosts, and it becomes negative when the virus
poflllation exceeds the capacity of the hosts.

Let =, v, and z the population of susceptible birds, the population of infected birds, and virus concentration,
respectively. In the production process of a poultry farm, the total population @ -+ ¥ is maintained at the capacity of the
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farm ¢. When vacancies are created (c — +1) > 0), healthy susceptible birds are supplied. The increasing rate due
to supply of healthy susceptible birds is a {¢ — (x + . where a is a positive constant. When susceptible birds are
infected with bird flu, they become infected birds. The number of susceptible birds infected per unit time is proportional
to the virus concentration in the medium, and it is also proporgnal to the number of susceptible birds. The decreasing
rate of susceptible birds due to infection is oxz. Here o is a positive constant. Thenne rate of change in number of
susceptible birds is the difference between the increasing rate and the decreasing rate, and

d—f =afc—(z+y)} +ozz

d
holds. ﬂne decreasing rate of the susceptible birds due to infection is the increasing rate of infected birds, the number of
infected birds removed from the entire population is proportional to the number of infected birds, and
dy

3¢ = eE—my

holds. Infected birds are hosts of influenza virus. The increasing rate of the virus concentration is proportional to the
number of infected birds, the decreasing rate of virus is proportional to the virus concentration, and

& _ g
0 ry—q
holds. The forgoing discussion leads to the system of equations

% = afe—(z+y)} —wrzz,

dy

9% = = 10
= wraz — my, (10)
dz

B = ply—rz),

which governs the time evolution of the population of susceptible birds, the population of infected birds, and the virus
concentration (Nova et al., 2010 (2), (3)). Here r = ¢/p and afr.

Stationary points of the system (10) are constant soffllions obtained by setting the right hand sides equal to 0. For fixed
but arbitrary positive constants a, ¢, w, 7, m, p, and g, there are two stationary points of system (10). One stationary point
is
(@, 9, 2} =(c,0,0) , (11)
which corresponds to the state free of infection. The other stationary point is

m a(cw —m) a(cw— i)

(z,9,2)= (— ) : (12)

w' wl@a+m)’ rwla+m)

The y component and z component of stationary point (12) are positive, and the stationary (12) point is practically
significant if and only if the condition (5) holds. The stationary points (11) and (12) coincide for m = cw. As m
increases from 0 to cw, stationary point (12) moves on a curve connecting the point (0, ¢, ¢/r) and the stationary point
(11) (Figure 1). 2

Suppose that (€, 7, ¢) is a stationary point of the system (10). The stability of the stationary point (£, 7, () is deter-
mined by the eigenvalues Ay, Az, and Az of matrix

—(a+rwl) —-a -—-rwé
B= rw( ﬂ, rwé
0 P =m
The stationary point (£, 77, ¢) is asymptotically stable when the real parts of Ay, Az, and A3 are all negative, and it is
unstable when at least one of the eigenvalues has a positive real part (Coddington et al., 1955). For the stationary point

(11),
i mapr (m— ;}7’)2 + dprwe i m+ pr N v/ (m — p?')a + dprwe
&g 2 : T 2
These eigenvalues always have real values. For 0 < i < we, Ay and As are negative, and As is positive. They are all
negative for m > we. The stationary point (11) is unstable for 0 < in < we, and asymptotically stable for m > we.
The eigenvalues of I3 associated with the stationary point (12) were evaluated for the special case a = pr (Nova et al,
2010 (2)). In this case,

Al = —a,

/3

M =-a, Az = — s Az = —
1 a, 2 (a+m), 3 pg

(ew — m) .
For 0 < m < we, A1, A2, and A3 are all negative, and M\ and A2 are negative, and Az is positive for m > we. The
stationary point (12) is asymptotically stable for 0 < rn < we, and it is unstable for m > we.
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a=1.0,c=1.0,0mega=20,p=10,9g=1.0

Stationary point (11) =
Stationary point (12) with z > Q =======
; Stationary point (12) with z< 0 =reseeee

08 =
06 =
04 =

02 = -

R = = 08

Figure 1: Stationary points of the system (10).

The system (10) was solved numerically for 100 initial values
z=1%0.5, y=7x0.5, z=kx 0.5

forie = 0,1,2,3,4, 57 =0/1,2,3,4 k = 1, 2, 3, 4 (Nova et al, 2010 (2), (3)) using the fourth-order Adams
Bashforth-Moulton Predictor-Corrector in PECE mode in conjunction with the Runge-Kutta Method to generate values
of approximate solution at the first three steps (Lambert, 1973). Here numerical results were obtained for m = [ x 0.25
(I =0,1,..., 20) with time step length 0.001 (Nova et al., 2010 (3)). Here the system wgsolvcd numerically for 100,000
steps. Figure 2 shows the stationary points (11) and (12), and the numerical solutions fora = l,e =1, w = 2, p = 1,
and ¢ = 1, and for two different values of m, m = 1, and m = 3.

The influenza virus is transmitted through a medium, but the systems (3) and (10) reflect no spatial effects. Suppose
that influenza viruses are transmitted through the medium by diffusion. Let £ be the one dimensional coordinate variable
(Figure 3). The system (10) becomes

dx

5 = ole-@+y}-wrz,

% = wrrz—my, (13)
0z 9z

= = =rz =, , t>0,

o ply r)+A8€9_ 0< €<, =0,

The solution of the system is subject to the boundary condition
dz dz
= 0,t)==1({,t)=0, =0, 4
D€ (0, 1) 06{1_1‘) 0, t>0, (14)
and the initial condition
z(€ 0)=2(), w&0)=w()., =20&0==2(&), 0<&{<L (15)

Note that the stationary points of the system (10) are constant solutions of the system (13) that satisfy the boundary
condition (14). The stabilities of the stationary solutions (11) and (12} as solutions of the boundary value problem (13),
(14) are investigated in (3).
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a=li0.c=10 omega=20. me10.p=10.r=10 azlf.c=10.omege=20.m=30.p=10r=1.0
Stationary point (11)  + Stationary point {11)  +
Stationary point (12)  + Stationary point (12)  +
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Figure 2: Numerical solutions. Numerical solutions of the system (10) are generated fora = 1l,c = l,w =2,p = 1,
r = 1, and for m = 1and m = 3. All the numerical solutions terminated in the sphere of radius 10~ centered at the
stationary point (12) for m = 1 (left). All the numerical solutions terminated in the sphere of radius 10~ centered at the
stationary point (11) for m = 3 (right).

Figure 3: One dimensional spatial variable £.

3 NUMERICAL SIMULATION BASED ON HOST VIRUS MODEL
In order to solve the initial boundary problem, the interval [0, 1] was divided into n intervals [€i-1, &] (i =1, 2, ... n)
where £; = tA£ and AE = 1/n, and the rectangular grid
(&, t5) GF=0, 100y F=0,Ty 1)

was set to implement a finite difference method. Denote by w; (t), i (t), and z; (t) approximate values of x (&, f),
y (&, ), and z (&, t), respectively. When the central difference approximation is applied to the third equation of the
system (13), the system (13) leads to

% = afe— (@i +y)} —wrzizi, e
Ei;: WTTizi — MyYi , i=0,1,...,m)
%:p(yi—rz;)+)«m. (o=1.2 o pm=1) an
The equation (17) holds foré = 1, 2, ..., n — 1. Fori = 0 and i = n, the boundary condition (14} implies
21— 21 Zn+l — Fn—1

=0,

A : AL =0,
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Zcomponent, 8 =1.0.6=1.0.9gma=2.0,m =10, lambda= 1.0, p=10.g=10 Zcomponant, a=10,¢= 10, sigma=20.m=30, lambda =10.p=10,9=10
. . . . . . .

1200
t=0.0001 -
1=0.0002 -
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Figure 4: Numerical solution of the initial-boundary value problem (13) = (16). The figure shows the zcomponent of the
numerical solutions for 0 < ¢ < 0.005. The z component of the solution diffuses to become spatially uniform. There is
no significant difference between numerical solutions for m = 1 and m = 3.

which leads to 21 = z; and 2441 = zn—1. Fori = 0 and i = n, the equation (17) becomes
d 2z — 2z dz, 22n—1 — 22n
f =p (-yn — 'J"Z[]} =+ A% 5 % =p (yn = 'I‘Zn) + /\2&1752 (18)

Suppose that intrusion of influenza virus takes place at £ = 0. The initial boundary value problem (13), (14), (15) is
solved numerically for n = 200, and

1-2008, 0< 0.005,
zo(§) =c, Yo (‘E) =0, Zo (EJ = { 0. < UEﬂg : £< ‘i (19

The initial value problem (16), (17), and (19) was solved numerically for a = 1.0, ¢ = 1.0, ¢ = 2.0, A = 1.0,
p=1.0,and ¢ = 1.0, and two values of m, m = 1 and m = 3 using the Runge-Kutta Method (Lambert, 1973). Figure
4 shows the z component of the numerical solution for m = 1 and m = 3 over the period 0 < ¢ < 0.005. In both cases
the solutions become spatially uniform at an early stage.

Figures (5) shows numerical solutions of the initial boundary value problem fora = 1.0,0 = 2.0, m = 1.0, A = 1.0,
p = 1.0, g = 1.0. over the period 0 < ¢ < 15. The figure shows that the solution of the initial boundary value problem
approach uniformly to the stationary point (12). Figures (6) shows numerical solutions of the initial boundary value
problem fora = 1.0, ¢ = 2.0, m = 3.0, A = 1.0, p = 1.0, ¢ = 1.0. over the period 0 < ¢ < 15. The figure shows that
the solution of the initial boundary value problem approach uniformly to the stationary point (11).

4 aISCUSIION

Analysis based on a mathematical model shows that solutions of the initial boundary value problem approach station-
ary point (12) for small 772, and that they approach the stationary peint (11)for sufficiently large m. Figure 5) shows that
the solution approach to the stationary point (8) uniformly after intrusion of bird flu for a small m, and the state does not
return to the state free of infection. Figure 6) Shows that the solution approach to the stationary point (11) uniformly after
rusion of bird flu for a sufficiently large m, and the state does return to the state free of infection. The results show that
the removal of infected birds is essential for maintenance of the state free of infection. The state free of infection can be
made secure against infection of bird flu by proper vaccination and proper removal of infected birds.
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Figure 6: Numerical solutions of the initial boundary value problem (13) — (16). The figure shows the x component, y
component, and zcomponent of the numerical solutions fora = 1.0, = 2.0, m = 3.0, A = 1.0, p = 1.0, g = 1.0. All
the components converge uniformly to the corresponding components of the stationary point (11).
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