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Abstract. Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system
constitute an interesting study considering it can become a mathematical model of variety of real problem whose
variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we
propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time
invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

INTRODUCTION

Given the following linear time invariant (LTI) system:= + + , (0) = (1)= + ,
where is the state vector, is the output vector, is the input vector, is disturbance
vector, × , × , × , × and × . The system (1) is called positive if for each
nonnegative initial state, nonnegative input and nonnegative disturbance imply the state and output are nonnegative
for every nonnegative time, i.e. and for every . It is well known that system (1) is positive if
and only if is a Metzler matrix, × , × , × and × [1]. The characterization of positive
systems attracts interest because this kind of system appears in the modelling of many processes in various field, e.g.
in biology, chemistry and economics [4, 6]. In these models state variables represent population, measure, mass,
etc., and therefore, they are nonnegative. Many aspects of positive linear systems have been considered by different
authors. A complete introduction to positive linear systems can be found in Farina and Rinaldi [3]. Stability of the
positive linear system has been studied in Leenheer and Aeyels [5]. It turns out that system (1) is asymptotic stable if
and only if A is Hurwitz, namely, ( ) for all ( ).

Recently, Wu, et al. [9] discussed the linear quadratic optimization subject to LTI system with disturbance
without positiveness constraint of the system (1). The problem is to determine a control that satisfy (1) and
to minimize the following quadratic performance index:

( ) = ( + ) ,
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where > 0 is a parameter and × is a symmetric positive semidefinite. Moreover, Roszak and Davidson
[7], Beauthier and Winkin [2] also discussed other aspect of the linear quadratic optimization subject to the system
(1) but considering positiveness constraint.

In practice, output does not always behave as desired. This occurs because of there are some disruption in the
system. Therefore, the objective function can be modified into another form. In this short note, we extend the results
from Roszak and Davidson [7] by eliminating the assumption asymptotic stability of the system (1).

PROBLEM FORMULATION

Given the system (1) where state is unmeasurable and the initial condition (0) . Assume that the
system (1) is positive, rank( ) = , = , i.e. the number of inputs is equal to the number of outputs, and

is a constant desired output. Find an optimal LTI controller ( ) = ( ) for some × that
minimize the following objective function: ( ) = ( + ) , (2)
where > 0 is a parameter and × is a symmetric positive definite, and closed system= ( + ) + , (0) = , (3)= + ,
is

1. asymptotic stable;
2. the state and the output for every ;
3. error = ( ) as .
Note that in this case we do not need assume that the system (1) is asymptotic stable; compare to the assumption

in Roszak and Davidson [7].

MAIN RESULT

In the following we present the process to construct the optimal control ( ). Assume thatrank( ) = and define = ( ) and = ( ). It is easy to show that for any
desire output and disturbance , the steady state control satisfies= + ,

if the optimal control ( ) exists [7].
Define a new variable such that = , the system (1) can be written as follows:

= + + . (4)

Since the disturbance and the desire output are constant, (1) can be written as

= + . (5)

Define = . Likewise the problem under consideration becomes to find the control that satisfy (5)
and to minimize the objective function (2) and simultaneously to satisfy the condition 1-3. In other form this
optimization problem can be written as follows:
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min ( + ) (6)s. t. = + ,
where

= , = , = , = and = . (7)
Base on the LQR theory [8], if the pair ( , ) is stabilizable and the pair ( , ) is detectable then the optimal
control for the problem (6) is = ( ) , (8)
where is a symmetric positive definite matrix that constitute a solution of the following algebraic Riccati equation:+ + ( )( ) = , (9)
and is the corresponding optimal state that satisfy the following differential equation:= ( ) ,
where as . This implies and that proving the condition 1 and 3.

On applying (7) we have = ( ) , (10)
where ( ) = ( ) , × and × such that= ( ) .
So, we can choose = . Furthermore, using Corollary 3.7 in Beauthier and Winkin [2], the closed loop (1) is
positive if the matrix + is Metzler. This prove the condition 2.

CONCLUSION

We have already show that desire optimal control for the problem under consideration is given by= .
This control makes the closed loop (3) is asymptotic stable, positive and error = ( ) as . Some
open problems of this note are:

1. under what condition the pair ( , ) is stabilizable and the pair ( , ) is detectable.
2. under what condition the matrix + is Metzler matrix.
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